《平面圖形的鑲嵌》 ).ppt

上傳人:xin****828 文檔編號:14998038 上傳時間:2020-08-02 格式:PPT 頁數(shù):40 大?。?.13MB
收藏 版權(quán)申訴 舉報 下載
《平面圖形的鑲嵌》 ).ppt_第1頁
第1頁 / 共40頁
《平面圖形的鑲嵌》 ).ppt_第2頁
第2頁 / 共40頁
《平面圖形的鑲嵌》 ).ppt_第3頁
第3頁 / 共40頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《平面圖形的鑲嵌》 ).ppt》由會員分享,可在線閱讀,更多相關(guān)《《平面圖形的鑲嵌》 ).ppt(40頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、新課標(biāo)北師大版課件系列,初中數(shù)學(xué) 八年級 上冊,7.4 平面鑲嵌,請你欣賞,,,,,觀察以下圖案,說明它們都是由哪些幾何圖形組成?,,第一頁,第二頁,第三頁,第四頁,觀察以下圖案,說明它們都是由哪些幾何圖形組成?,用一些不重疊擺放的多邊形把平面的一部分全部覆蓋,在幾何里叫做用多邊形覆蓋平面(或平面鑲嵌)。,定義,,,例如:,觀察以下圖形并思考在鑲嵌時如何做到既無縫隙又不重疊?,每個頂點處幾個角的和為360,,,,探究:正多邊形的鑲嵌,若用一種正多邊形進(jìn)行鑲嵌 ,下列哪些正多邊形可以鑲嵌?,正三角形; 正方形 ; 正五邊形; 正六邊形; 正八邊形; 正十二邊形。,,,,,還有其他的正多邊形可

2、以進(jìn)行鑲嵌嗎?,為什么呢?,1、 正三角形的平面鑲嵌,探究:正多邊形的鑲嵌,2、 正方形的平面鑲嵌,,,,90,,探究:正多邊形的鑲嵌,3、 正六邊形的平面鑲嵌,120 ,120 ,120 ,,,,,,探究:正多邊形的鑲嵌,,,,,,,,,,你能只用一種正五邊形拼成一個地面嗎?為什么正五邊形拼不成地面?而用正三角形可以?可以拼成一個地面條件是什么?,因為正五邊形的內(nèi)角不能組成360的角,而正三角形的內(nèi)角能組成360的角。,僅用正多邊形進(jìn)行鑲嵌,要嵌成一個平面,必須要求在公共頂點上所有內(nèi)角和為360,只用一種正多邊形進(jìn)行平面鑲嵌,有三種方法:3個六邊形;4個四邊形;6個三角形。,能,能,能,正三

3、角形,正方形,正五邊形,正六邊形,6,4,3,不能,,1、三角形可以作平面鑲嵌嗎?如果能三角形如何鑲嵌呢?,探究:普通多邊形的鑲嵌,,,,,,,,,如圖,四邊形ABCD中,因為A+B+C+ D = 360,所以 用四邊形也可以作平面鑲嵌,2、四邊形呢?,那么四邊形如何鑲嵌呢? 請看!,探究:普通多邊形的鑲嵌,,,,,(2003年中考題)商店出售下列形狀的地磚:正方形;長方形; 正五邊形;正六邊形。若只選擇其中某一種地磚鑲嵌地面,可供選擇的地磚共有( ) A.1種 B.2種 C.3種 D.4種,,邊長為a的正方形與下列邊長為a的正多邊形組合起來,不能鑲嵌成平面的是( ) 正三角形;正五邊形;正六

4、邊形;正八邊形 A. B. C. D. ,C,B,練習(xí)一:,練習(xí)二,1、形狀、大小完全相同的任意三角形、四邊形 能否單獨作鑲嵌 ( ) 2. 用任意三角形鑲嵌平面時,同一頂點處應(yīng)擺放 ( )個三角形;用任意四邊形鑲嵌平面時,同一頂點處應(yīng)擺放( )個四邊形. 3、下面四種正多邊形中,用同一種圖形不能平面鑲嵌的是( ).,能,6,4,C,練習(xí)三,如圖用兩種顏色的正六邊形的磚按圖所示的規(guī)律,鑲嵌成若干個圖案: (1).第4個圖案中有白色地磚( )塊. (2).第n個圖案中有白色地磚( )塊.,18,4n+2,試試看: 請你用兩種或兩種以上的多邊形設(shè)計鑲嵌圖案,,,

5、,,,探究:幾種多邊形的混合鑲嵌,下列多邊形組合,能夠鋪滿地面的是: (1)正三角形與正六邊形; (2)正三角形與正方形; (3)正方形與正八邊形; (4)正六邊形與正八邊形; (5)正三角形、正方形與正六邊形。,,,,,設(shè)在一個頂點周圍有m個正三角形,n個正方形的角。,,,注意:同一個組合會有不同的鑲嵌效果,二、兩種正多邊形的平面鑲嵌,(1) 正三角形與正方形的平面鑲嵌,120,120,60,60,圖案(),設(shè)在一個頂點周圍有m個正三角形,n個正六邊形的角。,(2)正三角形與正六邊形的平面鑲嵌,圖案(),60,60,120,60,60,,,(2)正三角形與正六邊形的平面鑲嵌,每個頂點處正三角

6、形4個,正六邊形1個。,,,,,,,(3)正三角形和正十二邊形平面鑲嵌圖案,,2m+5n=12,m=1 n=2,,,設(shè)在一個頂點周圍有m個正三角形的角、 n個正十二邊形的角,則有,m、n為正整數(shù),解為,,,2m+3n=8,,m=1 n=2,,,設(shè)在一個頂點周圍有個m正四邊形的角、n個正八邊形 的角,則有,m、n為正整數(shù),解為,更多的兩種正多邊形的鑲嵌,,正十二邊形與正三角形的平面鑲嵌,正十邊形與正五邊形的平面鑲嵌,(05山東)9用兩種正多邊形鑲嵌,不能與正三角形匹配的正多邊形是 (A)正方形 (B)正六邊形 (C)正十二邊形 (D)正十八邊形,小結(jié)與反思,1、鑲嵌的要求:,無縫隙,不重疊,

7、2、多邊形能否鑲嵌的條件:,,每個頂點處幾個角的和為360,生活中利用鑲嵌組成的美麗圖案,鑲嵌畫欣賞,練習(xí)四:,當(dāng)圍繞一點拼在一起的幾個正多邊形的內(nèi)角和加在一起恰好組成一個周角時,就能鑲嵌成一個平面圖形;那么那些正多邊形可以進(jìn)行鑲呢?,2.由表可知,周角與正n邊形每個內(nèi)角的商為( ),當(dāng)n=( ) 時,商為整數(shù),即( )等正多邊形能單獨作平面鑲嵌.,2+4/n-2,3,4,6,正三角形,正方形,正六邊形,360,90,540,108,720,120,1080,135,4,3+1/3,3,2+2/3,(n-2)180/n,(n-2)180,2+4/n-2,再見!,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!