2013屆高三數(shù)學(xué)二輪復(fù)習(xí) 必考問題專項突破20 統(tǒng)計及其與概率的交匯問題 理

上傳人:xian****hua 文檔編號:147620147 上傳時間:2022-09-02 格式:DOC 頁數(shù):13 大?。?69.50KB
收藏 版權(quán)申訴 舉報 下載
2013屆高三數(shù)學(xué)二輪復(fù)習(xí) 必考問題專項突破20 統(tǒng)計及其與概率的交匯問題 理_第1頁
第1頁 / 共13頁
2013屆高三數(shù)學(xué)二輪復(fù)習(xí) 必考問題專項突破20 統(tǒng)計及其與概率的交匯問題 理_第2頁
第2頁 / 共13頁
2013屆高三數(shù)學(xué)二輪復(fù)習(xí) 必考問題專項突破20 統(tǒng)計及其與概率的交匯問題 理_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

11.8 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2013屆高三數(shù)學(xué)二輪復(fù)習(xí) 必考問題專項突破20 統(tǒng)計及其與概率的交匯問題 理》由會員分享,可在線閱讀,更多相關(guān)《2013屆高三數(shù)學(xué)二輪復(fù)習(xí) 必考問題專項突破20 統(tǒng)計及其與概率的交匯問題 理(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、必考問題20 統(tǒng)計及其與概率的交匯問題  (2012·廣東)某班 50位學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是: [40,50),[50,60),[60,70),[70,80),[80,90),[90,100]. (1)求圖中x的值; (2)從成績不低于80分的學(xué)生中隨機選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望. 解 (1)由題意得:10x=1-(0.006×3+0.01+0.054)×10=0.18, ∴x=0.018. (2)成績不低于80分的學(xué)生共有(0.018+0.006)×10×50=12人,其中90

2、分以上(含90分)的共有0.006×10×50=3人,ξ的可能值為0,1,2, P(ξ=0)==,P(ξ=1)==,P(ξ=2)==, ∴ξ的分布列為 ξ 0 1 2 P ∴E(ξ)=0×+1×+2×=. 本部分主要考查隨機抽樣、樣本估計總體、線性回歸分析,獨立性檢驗的簡單應(yīng)用,一般是選擇題、填空題,試題難度中等或稍易.若以解答題出現(xiàn),往往與概率、離散型隨機變量的分布列交匯考查. 在復(fù)習(xí)統(tǒng)計問題時,要緊緊抓住這些圖表和方法,把圖表的含義弄清楚,這樣剩下的問題就是有關(guān)的計算和對統(tǒng)計思想的理解,在弄清楚統(tǒng)計問題的基礎(chǔ)上,要與概率、離散型隨機變量的分布列、期望

3、、方差密切結(jié)合掌握. 必備知識 抽樣方法 抽樣方法包含簡單隨機抽樣、系統(tǒng)抽樣、分層抽樣三種方法,三種抽樣方法都是等概率抽樣,體現(xiàn)了抽樣的公平性,但又各有其特點和適用范圍. 用樣本估計總體 (1)利用樣本頻率分布估計總體分布: ①頻率分布表和頻率分布直方圖; ②總體密度曲線; ③莖葉圖. (2)用樣本的數(shù)字特征估計總體的數(shù)字特征: ①眾數(shù)、中位數(shù); ②樣本平均數(shù)=(x1+x2+…+xn)=i; ③樣本方差s2=[(x1-)2+(x2-)2+…+(xn-)2]=(xi-)2; ④樣本標(biāo)準(zhǔn)差 s= = . 線性回歸方程 方程=bx+a稱為線性回歸方程,其

4、中b= a=-b;(,)稱為樣本中心點. 獨立性檢驗 假設(shè)有兩個分類變量X和Y,它們的可能取值分別為{x1,x2}和{y1,y2},其樣本頻數(shù)列聯(lián)表(稱為2×2列聯(lián)表)為: 2×2列聯(lián)表 y1 y2 總計 x1 a b a+b x2 c d c+d 總計 a+c b+d a+b+c+d 構(gòu)造一個隨機變量K2=, P(K2≥k) 0.100 0.050 0.025 0.010 0.001 k 2.706 3.841 5.024 6.635 10.828 必備方法 用樣本估計總體 (1)在頻率分布直方圖中,各小長方形的

5、面積表示相應(yīng)的頻率,各小長方形的面積的和為1.解決與頻率分布直方圖有關(guān)的問題時,應(yīng)正確理解已知數(shù)據(jù)的含義,掌握圖表中各個量的意義. (2)當(dāng)總體的個體數(shù)較少時,可直接分析總體取值的頻率分布規(guī)律而得到總體分布;當(dāng)總體容量很大時,通常從總體中抽取一個樣本,分析它的頻率分布,以此估計總體分布. ①總體期望的估計,計算樣本平均值=i; ②總體方差(標(biāo)準(zhǔn)差)的估計:方差=(xi-)2,標(biāo)準(zhǔn)差=,方差(標(biāo)準(zhǔn)差)較小者較穩(wěn)定. 此類試題主要考查分層抽樣、頻率分布直方圖、莖葉圖、線性回歸方程、平均數(shù)和方差的計算、以及識圖能力、借助概率統(tǒng)計知識分析、解決問題的能力,均可單獨命制一道小題.    

6、                【例1】? 某校舉行了由全部學(xué)生參加的校園安全知識考試,從中抽出60名學(xué)生,將其成績分成六段[40,50),[50,60),…,[90,100)后,畫出如圖所示的頻率分布直方圖.觀察圖形的信息,回答下列問題:估計這次考試的及格率(60分及以上為及格)為__________;平均分為__________. [審題視點]     [聽課記錄] [審題視點] (1)由圖可知甲、乙的成績,再利用公式計算. 用樣本中及格的頻率估計總體的及格率,以樣本的平均數(shù)估計總體的平均數(shù),即以各組的中點值乘以各組的頻率之和估計總體的平均數(shù). (1)C [由題意可知

7、,甲的成績?yōu)?,5,6,7,8,乙的成績?yōu)?,5,5,6,9.所以甲、乙的成績的平均數(shù)均為6,A錯;甲、乙的成績的中位數(shù)分別為6,5,B錯;甲、乙的成績的方差分別為×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=,C對;甲、乙的成績的極差均為4,D錯.] (2)解析 及格的各組的頻率是(0.015+0.03+0.025+0.005)×10=0.75,即及格率約為75%;樣本的均值為45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,以這個分

8、數(shù)估計總體的分?jǐn)?shù)即得總體的平均分?jǐn)?shù)約為71. 答案 75% 71 (1)如果已知頻率分布直方圖,那么就用樣本在各個小組的頻率估計總體在相應(yīng)區(qū)間內(nèi)的頻率,用樣本的均值估計總體的均值,根據(jù)頻率分布圖估計樣本均值的方法是取各個小組的中點值乘以各個小組的頻率之和進行的. (2)根據(jù)莖葉圖,我們可方便地求出數(shù)據(jù)的眾數(shù)與中位數(shù),大體上估計出兩組數(shù)據(jù)的平均數(shù)大小與穩(wěn)定性. 【突破訓(xùn)練1】 (2012·陜西)從甲乙兩個城市分別隨機抽取16臺自動售貨機,對其銷售額進行統(tǒng)計,統(tǒng)計數(shù)據(jù)用莖葉圖表示(如圖所示).設(shè)甲乙兩組數(shù)據(jù)的平均數(shù)分別為甲,乙,中位數(shù)分別為m甲,m乙,則(  ).           

9、          A.甲<乙,m甲>m乙 B.甲<乙,m甲<m乙 C.甲>乙,m甲>m乙 D.甲>乙,m甲<m乙 答案: (1)C [從960人中用系統(tǒng)抽樣方法抽取32人,則每30人抽取一人,因為第一組抽到的號碼為9,則第二組抽到的號碼為39,第n組抽到的號碼為an=9+30(n-1)=30n-21,由451≤30n-21≤750,得≤n≤,所以n=16,17,…,25,共有25-16+1=10人,選C.] (2)B [由莖葉圖可知甲數(shù)據(jù)集中在10至20之間,乙數(shù)據(jù)集中在20至40之間,明顯甲<乙,甲的中位數(shù)為20,乙的中位數(shù)為29,即m甲<m乙,所以選B.]   

10、     的交匯問題 準(zhǔn)確提取直方圖、莖葉圖中的信息是解此類題的關(guān)鍵,借助這些數(shù)據(jù)結(jié)合獨立事件、互斥事件可設(shè)計概率、分布列問題,高考在此結(jié)合點處命題有加強的趨勢.                    【例2】? (2012·韶關(guān)模擬)某班同學(xué)進行社會實踐,對[25,55]歲的人群隨機抽取n人進行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖: 組數(shù) 分組 低碳族 的人數(shù) 占本組 的頻率 第一組 [25,30) 120 0.6 第二組 [30,35) 195 p

11、 第三組 [35,40) 100 0.5 第四組 [40,45) a 0.4 第五組 [45,50) 30 0.3 第六組 [50,55) 15 0.3 (1)補全頻率分布直方圖,并求n、a、p的值; (2)從[40,50)歲年齡段的“低碳族”中采用分層抽樣法抽取18人參加戶外低碳體驗活動,其中選取3人作為領(lǐng)隊,記選取的3名領(lǐng)隊中年齡在[40,45)歲的人數(shù)為X,求X的分布列和期望E(X). [審題視點]     [聽課記錄] [審題視點] (1)頻率=小長方形的面積; (2)用超幾何分布解決. 解 (1)第二組的頻率為1-(0.04+0.04

12、+0.03+0.02+0.01)×5=0.3,所以高為=0.06.頻率直方圖如下: 第一組的人數(shù)為=200,頻率為0.04×5=0.2, 所以n==1 000. 由題可知,第二組的頻率為0.3,所以第二組的人數(shù)為1 000×0.3=300,所以p==0.65. 第四組的頻率為0.03×5=0.15,所以第四組的人數(shù)為1 000×0.15=150,所以a=150×0.4=60. (2)因為[40,45)歲年齡段的“低碳族”與[45,50)歲年齡段的“低碳族”的比值為60∶30=2∶1,所以采用分層抽樣法抽取18人,[40,45)歲中有12人,[45,50)歲中有6人.隨機變量X服從

13、超幾何分布. P(X=0)==, P(X=1)==, P(X=2)==,P(X=3)==. X 0 1 2 3 P 所以隨機變量X的分布列為 所以數(shù)學(xué)期望E(X)=0×+1×+2×+3×=2. 解決該類問題的基礎(chǔ)是頻數(shù)分布表、莖葉圖等知識,在解題時,一定要仔細(xì)認(rèn)真,防止在這個數(shù)據(jù)表中出現(xiàn)錯誤,導(dǎo)致后續(xù)各問解答也隨之出現(xiàn)錯誤. 【突破訓(xùn)練2】 (2011·北京)以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù).乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以X表示. 甲組 乙組 9 9 0 X 8 9 1 1 1 0

14、 (1)如果X=8,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差; (2)如果X=9,分別從甲、乙兩組中隨機選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)Y的分布列和數(shù)學(xué)期望. (注:方差s2=[(x1-)2+(x2-)2+…+(xn-)2],其中為x1,x2,…,xn的平均數(shù)) 解 (1)當(dāng)X=8時,由莖葉圖可知,乙組同學(xué)的植樹棵數(shù)是:8,8,9,10, 所以平均數(shù)為:==; 方差為: s2=× =. (2)當(dāng)X=9時,由莖葉圖可知,甲組同學(xué)的植樹棵數(shù)是:9,9,11,11;乙組同學(xué)的植樹棵數(shù)是:9,8,9,10.分別從甲、乙兩組中隨機選取一名同學(xué),共有4×4=16種可能的結(jié)果,這兩名同

15、學(xué)植樹總棵數(shù)Y的可能取值為17,18,19,20,21.事件“Y=17”等價于“甲組選出的同學(xué)植樹9棵,乙組選出的同學(xué)植樹8棵”,所以該事件有2種可能的結(jié)果,因此P(Y=17)==.同理可得P(Y=18)=;P(Y=19)=;P(Y=20)=;P(Y=21)=.所以隨機變量Y的分布列為: Y 17 18 19 20 21 P E(Y)=17×P(Y=17)+18×P(Y=18)+19×P(Y=19)+20×P(Y=20)+21×P(Y=21)=17×+18×+19×+20×+21×=19. 以實際問題為背景,給定數(shù)據(jù)表,借助這些數(shù)據(jù)結(jié)合獨立事件或?qū)α⑹?/p>

16、件設(shè)計概率及分布列問題.                    【例3】? (2012·遼寧)電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖: 將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”. (1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)? 非體育迷 體育迷 合計 男 女 10 55 合計 (2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽

17、取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X). 附:K2=, P(K2≥k) 0.05 0.01 k 3.841 6.635 [審題視點]     [聽課記錄] [審題視點] (1)按照獨立性檢驗的步驟進行;(2)建立概率分布表,利用期望的定義式求解數(shù)學(xué)期望. 解 (1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而2×2列聯(lián)表如下: 非體育迷 體育迷 合計 男 30 15 45 女 45 10 55 合計 75 25 100

18、 將2×2列聯(lián)表中的數(shù)據(jù)代入公式計算,得 K2===≈3.030. 因為3.030<3.841,所以沒有理由認(rèn)為“體育迷”與性別有關(guān). (2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率為. 由題意X~B,從而X的分布列為 X 0 1 2 3 P E(X)=np=3×=, D(X)=np(1-p)=3××=. 根據(jù)圖表給出的信息解決相關(guān)問題時,一定要仔細(xì)閱讀表中信息,千萬別“看花了眼”,同時,要正確理解相關(guān)概念和計算準(zhǔn)確. 【突破訓(xùn)練3】 (2012·寶雞三模)甲乙兩個學(xué)校高三年級分別有1 1

19、00人和1 000人,為了了解這兩個學(xué)校全體高三年級學(xué)生在該地區(qū)二??荚囍械臄?shù)學(xué)成績情況,采用分層抽樣方法從兩個學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了如下的頻數(shù)分布統(tǒng)計表,規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀. 甲校: 分組 [70,80) [80,90) [90,100) [100,110) 頻數(shù) 2 3 10 15 分組 [110,120) [120,130) [130,140) [140,150) 頻數(shù) 15 x 3 1 乙校: 分組 [70,80) [80,90) [90,100) [100,110) 頻數(shù) 1 2

20、 9 8 分組 [110,120) [120,130) [130,140) [140,150) 頻數(shù) 10 10 y 3 (1)試求x,y的值; (2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,若按是否優(yōu)秀來判斷,是否有97.5%的把握認(rèn)為兩個學(xué)校的數(shù)學(xué)成績有差異. 甲校 乙校 總計 優(yōu)秀 非優(yōu)秀 總計 (3)根據(jù)抽樣結(jié)果分別估計甲校和乙校的優(yōu)秀率,若把頻率視為概率,現(xiàn)從乙校學(xué)生中任取3人,求優(yōu)秀學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望. 附:K2=; P(K2≥k) 0.100 0.050 0.025 0.010

21、0.001 k 2.706 3.841 5.024 6.635 10.828 解 (1)由分層抽樣知,甲校抽取了55人成績,乙校抽取了50人的成績.所以,x=6,y=7. (2)由以上統(tǒng)計數(shù)據(jù)填寫右面2×2列聯(lián)表如下: 甲校 乙校 總計 優(yōu)秀 10 20 30 非優(yōu)秀 45 30 75 總計 55 50 105 因為K2=≈6.109>5.024. 故有97.5%的把握認(rèn)為這兩個學(xué)校的數(shù)學(xué)成績有差異. (3)由題意,可知:甲校的優(yōu)秀率為,乙校的優(yōu)秀率為,由題意可知, 隨機變量ξ=0,1,2,3,且 P(ξ=0)=C03=, P(ξ=1

22、)=C12=, P(ξ=2)=C21=, P(ξ=3)=C30=, 從而求得ξ的分布列為: ξ 0 1 2 3 P 故ξ的數(shù)學(xué)期望E(ξ)=3×=. 關(guān)注高考概率與統(tǒng)計新視角 視角一 關(guān)注“實質(zhì)性”知識 【示例1】? (2011·福建)某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個等級,等級系數(shù)X依次為1,2,…,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B.已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為4元/件,假定甲、乙兩廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn). (1)已知甲廠產(chǎn)品的等級系數(shù)X1的概率分布列如表所示: X1

23、5 6 7 8 P 0.4 a b 0.1 且X1的數(shù)學(xué)期望E(X1)=6,求a,b的值; (2)為分析乙廠產(chǎn)品的等級系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機抽取30件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7 用這個樣本的頻率分布估計總體分布,將頻率視為概率,求等級系數(shù)X2的數(shù)學(xué)期望; (3)在(1)、(2)的條件下,若以“性價比”為判斷標(biāo)準(zhǔn),則哪個工廠的產(chǎn)品更具可購買性?說明理由. 注:①產(chǎn)品的“

24、性價比”=; ②“性價比”大的產(chǎn)品更具可購買性. [滿分解答] (1)因為E(X1)=6, 所以5×0.4+6a+7b+8×0.1=6, 即6a+7b=3.2. 又由X1的概率分布列,得0.4+a+b+0.1=1, 即a+b=0.5. 由解得(4分) (2)由已知得樣本的頻率分布表如表: X2 3 4 5 6 7 8 f 0.3 0.2 0.2 0.1 0.1 0.1 用這個樣本的頻率分布估計總體分布,將頻率視為概率,可得等級系數(shù)X2的概率分布列如表: X2 3 4 5 6 7 8 f 0.3 0.2 0.2 0.1 0.

25、1 0.1 所以E(X2)=3·P(X2=3)+4·P(X2=4)+5·P(X2=5)+6·P(X2=6)+7·P(X2=7)+8·P(X2=8)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8. 即乙廠產(chǎn)品的等級系數(shù)的數(shù)學(xué)期望等于4.8.(8分) (3)乙廠的產(chǎn)品更具可購買性.理由如下: 因為甲廠產(chǎn)品的等級系數(shù)的數(shù)學(xué)期望等于6,價格為6元/件,所以其性價比為=1. 因為乙廠產(chǎn)品的等級系數(shù)的數(shù)學(xué)期望等于4.8,價格為4元/件,所以其性價比為=1.2. 據(jù)此,可知乙廠的產(chǎn)品更具可購買性.(12分) 老師叮嚀:本題是一道概率與統(tǒng)計的綜合性問題,考查數(shù)

26、據(jù)的處理能力、函數(shù)與方程思想、必然與或然思想等.本題對高考數(shù)學(xué)的復(fù)習(xí)有很好的導(dǎo)向作用,命題設(shè)計的特色是注重考查考生對概率與統(tǒng)計知識的形成過程的理解和應(yīng)用.其中,在求每一個隨機變量的概率時,要確切地解釋每一個隨機變量的含義,也就是要弄清楚每一個隨機變量指的是什么.對于判斷“哪個工廠的產(chǎn)品更具可購買性”,不僅需要考生理解產(chǎn)品“性價比”的數(shù)學(xué)意義,還要理解“性價比”的大小決定產(chǎn)品的購買價值.這樣的考題,更能體現(xiàn)數(shù)學(xué)的現(xiàn)實性和應(yīng)用性. 視角二 關(guān)注“開放性”知識 【示例2】? (2011·陜西)如圖所示,A地到火車站共有兩條路徑L1和L2,據(jù)統(tǒng)計,通過兩條路徑所用的時間互不影響,所用時間落在各

27、時間段內(nèi)的頻率如下表: 時間(分鐘) 10~20 20~30 30~40 40~50 50~60 L1的頻率 0.1 0.2 0.3 0.2 0.2 L2的頻率 0 0.1 0.4 0.4 0.1 現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站. (1)為了盡最大可能在各自允許的時間內(nèi)趕到火車站,甲和乙應(yīng)如何選擇各自的路徑? (2)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到火車站的人數(shù),針對(1)的選擇方案,求X的分布列和數(shù)學(xué)期望. [滿分解答] (1)Ai表示事件“甲選擇路徑Li時,40分鐘內(nèi)趕到火車站”,Bi表示事件“乙選擇路徑Li時,50

28、分鐘內(nèi)趕到火車站”,i=1,2. 用頻率估計相應(yīng)的概率可得 P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5, 因為P(A1)>P(A2),所以甲應(yīng)選擇L1. P(B1)=0.1+0.2+0.3+0.2=0.8, P(B2)=0.1+0.4+0.4=0.9, 因為P(B2)>P(B1),所以乙應(yīng)選擇L2.(6分) (2)A,B分別表示針對(1)的選擇方案,甲、乙在各自允許的時間內(nèi)趕到火車站,由(1),知P(A)=0.6,P(B)=0.9,又由題意知,A,B獨立, 所以P(X=0)=P( )=P()P()=0.4×0.1=0.04, P(X=1)=

29、P(B+A)=P()P(B)+P(A)P()=0.4×0.9+0.6×0.1=0.42, P(X=2)=P(AB)=P(A)P(B)=0.6×0.9=0.54. 所以X的分布列如下表: X 0 1 2 P 0.04 0.42 0.54 所以E(X)=0×0.04+1×0.42+2×0.54=1.5.(12分) 老師叮嚀:本題考查概率與統(tǒng)計知識的綜合應(yīng)用,在求解離散型隨機變量分布列和計算離散型隨機變量的期望值的問題中,考查考生分析問題、處理數(shù)據(jù)、解答問題的數(shù)學(xué)應(yīng)用能力.設(shè)問的開放性、答題的多樣性以及根據(jù)統(tǒng)計數(shù)據(jù)提供的頻率估計相應(yīng)的概率,作出科學(xué)決策等是本題的亮點,較好地體現(xiàn)了新課標(biāo)理念.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!