歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2021屆高三數(shù)學(xué)二輪復(fù)習(xí) 專題三 第2講 數(shù)列求和及數(shù)列的綜合應(yīng)用教案

  • 資源ID:114810186       資源大?。?span id="mkvfqkv" class="font-tahoma">240KB        全文頁數(shù):9頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

2021屆高三數(shù)學(xué)二輪復(fù)習(xí) 專題三 第2講 數(shù)列求和及數(shù)列的綜合應(yīng)用教案

第2講數(shù)列求和及數(shù)列的綜合應(yīng)用自主學(xué)習(xí)導(dǎo)引真題感悟1(2012·大綱全國卷)已知等差數(shù)列an的前n項和為Sn,a55,S515,則數(shù)列的前100項和為A. B. C. D.解析利用裂項相消法求和設(shè)等差數(shù)列an的首項為a1,公差為d.a55,S515,ana1(n1)dn.,數(shù)列的前100項和為11.答案A2(2012·浙江)已知數(shù)列an的前n項和為Sn,且Sn2n2n,nN,數(shù)列bn滿足an4log2bn3,nN.(1)求an,bn;(2)求數(shù)列an·bn的前n項和Tn.解析(1)由Sn2n2n,得當(dāng)n1時,a1S13;當(dāng)n2時,anSnSn14n1.所以an4n1,nN.由4n1an4log2bn3,得bn2n1,nN.(2)由(1)知anbn(4n1)·2n1,nN,所以Tn37×211×22(4n1)·2n1,2Tn3×27×22(4n5)·2n1(4n1)·2n,所以2TnTn(4n1)2n34(2222n1)(4n5)2n5.故Tn(4n5)2n5,nN.考題分析數(shù)列的求和是高考的必考內(nèi)容,可單獨命題,也可與函數(shù)、不等式等綜合命題,求解的過程體現(xiàn)了轉(zhuǎn)化與化歸的數(shù)學(xué)思想,解答此類題目需重點掌握幾類重要的求和方法,并加以靈活應(yīng)用網(wǎng)絡(luò)構(gòu)建高頻考點突破考點一:裂項相消法求數(shù)列的前n項和【例1】(2012·門頭溝一模)數(shù)列an的前n項和Snn21.(1)求數(shù)列an的通項公式;(2)設(shè)bn(nN),求數(shù)列bn的前n項和Tn.審題導(dǎo)引(1)運用公式an求an,注意n1時通項公式an;(2)裂項法求和規(guī)范解答(1)由已知,當(dāng)n1時,a1S12,當(dāng)n2時,anSnSn12n1,數(shù)列an的通項公式為an(2)由(1)知,bn當(dāng)n1時,T1b1,當(dāng)n2時,Tnb1b2bn,bn的前n項和Tn.【規(guī)律總結(jié)】常用的裂項技巧和方法用裂項相消法求和是最難把握的求和問題之一,其原因是有時很難找到裂項的方向突破這類問題的方法是根據(jù)式子的結(jié)構(gòu)特點,掌握一些常見的裂項技巧,如:(1);(2)();(3)CCC;(4)n·n!(n1)!n!等易錯提示利用裂項相消法解決數(shù)列求和問題,容易出現(xiàn)的錯誤有兩個方面:(1)裂項過程中易忽視常數(shù),如容易誤裂為,漏掉前面的系數(shù);(2)裂項之后相消的過程中容易出現(xiàn)丟項或添項的問題,導(dǎo)致計算結(jié)果錯誤【變式訓(xùn)練】1(2012·大連模擬)已知函數(shù)f(x),數(shù)列an滿足a11,an1f(an)(nN)(1)求數(shù)列an的通項公式an;(2)若數(shù)列bn滿足bnanan1·3n,Snb1b2bn,求Sn.解析(1)由已知,an1,1.3,并且,數(shù)列為以為首項,3為公比的等比數(shù)列,·3n1,an.(2)bn,Snb1b2bn.考點二:錯位相減法求數(shù)列的前n項和【例2】(2012·濱州模擬)設(shè)等比數(shù)列an的前n項和為Sn,已知an12Sn2(nN)(1)求數(shù)列an的通項公式;(2)在an與an1之間插入n個數(shù),使這n2個數(shù)組成公差為dn的等差數(shù)列,求數(shù)列的前n項和Tn.審題導(dǎo)引(1)利用遞推式消去Sn可求an;(2)利用錯位相減法求數(shù)列的前n項和規(guī)范解答(1)由an12Sn2(nN),得an2Sn12(nN,n2),兩式相減得an1an2an,即an13an(nN,n2),又a22a12,an是等比數(shù)列,所以a23a1,則2a123a1,a12,an2·3n1.(2)由(1)知an12·3n,an2·3n1.an1an(n1)dn,dn,令Tn,則TnTn得Tn×.【規(guī)律總結(jié)】錯位相減法的應(yīng)用技巧(1)設(shè)數(shù)列an為等差數(shù)列,數(shù)列bn為等比數(shù)列,求數(shù)列anbn的前n項和可用錯位相減法應(yīng)用錯位相減法求和時需注意:(2)給數(shù)列和Sn的等式兩邊所乘的常數(shù)應(yīng)不為零,否則需討論;在轉(zhuǎn)化為等比數(shù)列的和后,求其和時需看準(zhǔn)項數(shù),不一定為n.【變式訓(xùn)練】2已知等差數(shù)列an滿足:an1an(nN),a11,該數(shù)列的前三項分別加上1、1、3后順次成為等比數(shù)列bn的前三項(1)求數(shù)列an,bn的通項公式;(2)設(shè)Tn(nN),若Tnc(cZ)恒成立,求c的最小值解析(1)設(shè)d、q分別為數(shù)列an的公差、數(shù)列bn的公比由題意知,a11,a21d,a312d,分別加上1、1、3得2、2d、42d,(2d)22(42d),d±2.an1an,d0,d2,an2n1(nN),由此可得b12,b24,q2,bn2n(nN)(2)Tn,Tn.由得Tn.Tn133,Tn33.使Tnc(cZ)恒成立的c的最小值為3.考點三:數(shù)列與不等式的綜合問題【例3】已知數(shù)列an的前n項和Sn滿足:Sna(Snan1)(a為常數(shù),且a0,a1)(1)求an的通項公式;(2)設(shè)bnaSn·an,若數(shù)列bn為等比數(shù)列,求a的值;(3)在滿足條件(2)的情形下,設(shè)cn,數(shù)列cn的前n項和為Tn,求證:Tn2n.審題導(dǎo)引第(1)問先利用anSnSn1(n2)把Sn與an的關(guān)系式轉(zhuǎn)化為an與an1之間的關(guān)系,判斷數(shù)列的性質(zhì),求其通項公式;(2)根據(jù)第(1)問,求出數(shù)列bn的前三項,利用bb1×b3列出方程即可求得a的值;(3)先求出數(shù)列cn的通項公式,根據(jù)所求證問題將其放縮,然后利用數(shù)列求和公式證明規(guī)范解答(1)當(dāng)n1時,S1a(S1a11),得a1a.當(dāng)n2時,Sna(Snan1),Sn1a(Sn1an11),兩式相減得ana·an1,得a.即an是等比數(shù)列所以ana·an1an.(2)由(1)知bn(an)2an,bn,若bn為等比數(shù)列,則有bb1b3,而b12a2,b2a3(2a1),b3a4(2a2a1),故a3(2a1)22a2·a4(2a2a1),解得a,再將a代入bn,得bnn,結(jié)論成立,所以a.(3)證明由(2),知ann,所以cn2.所以cn2.Tnc1c2cn2n2n.結(jié)論成立【規(guī)律總結(jié)】數(shù)列與不等式綜合問題的解題方法(1)在解決與數(shù)列有關(guān)的不等式問題時,需注意應(yīng)用函數(shù)與方程的思想方法,如函數(shù)的單調(diào)性、最值等(2)在數(shù)列的恒成立問題中,有時需先求和,為了證明的需要,需合理變形,常用到放縮法,常見的放縮技巧有:;2()2();利用(1x)n的展開式進行放縮【變式訓(xùn)練】3已知數(shù)列bn滿足:bn1bn,且b1,Tn為bn的前n項和(1)求證:數(shù)列是等比數(shù)列,并求bn的通項公式;(2)如果對任意nN,不等式2n7恒成立,求實數(shù)k的取值范圍解析(1)證明對任意nN,都有bn1bn,所以bn1,則是等比數(shù)列,首項為b13,公比為,所以bn3×n1,即bn3×n1.(2)因為bn3×n1,所以Tn36.因為不等式2n7,化簡,得k,對任意nN恒成立,設(shè)cn,則cn1cn,當(dāng)n5時,cn1cn,數(shù)列cn為單調(diào)遞減數(shù)列;當(dāng)1n5時,cn1cn,數(shù)列cn為單調(diào)遞增數(shù)列而c4c5,所以n5時,cn取得最大值.所以要使k對任意nN恒成立,k.名師押題高考【押題1】在數(shù)列an中,an,又bn,則數(shù)列bn的前n項和Sn_.解析an(123n),bn8數(shù)列bn的前n項和為Sn88.答案押題依據(jù)求數(shù)列的通項公式與數(shù)列的前n項和都是高考的熱點本題綜合考查了以上兩點及等差數(shù)列的求和公式,考查數(shù)列知識全面,綜合性較強,故押此題【押題2】已知數(shù)列an是首項a11的等比數(shù)列,且an0,bn是首項為1的等差數(shù)列,又a5b321,a3b513.(1)求數(shù)列an和bn的通項公式;(2)求數(shù)列的前n項和Sn.解析(1)設(shè)數(shù)列an的公比為q,bn的公差為d,則由已知條件得:,解之得:.an2n1,bn1(n1)×22n1.(2)由(1)知.Sn.Sn.得:Sn1n1.Sn3.押題依據(jù)數(shù)列求和中的錯位相減法因運算量較大,結(jié)構(gòu)形式復(fù)雜能夠較好地考查考生的運算能力,有很好的區(qū)分度,而備受命題者青睞本題綜合考查了等差、等比數(shù)列的通項公式及錯位相減法求和,難度中等,故押此題 - 9 -

注意事項

本文(2021屆高三數(shù)學(xué)二輪復(fù)習(xí) 專題三 第2講 數(shù)列求和及數(shù)列的綜合應(yīng)用教案)為本站會員(無***)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!