歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2021屆高三數(shù)學(xué)二輪復(fù)習(xí) 必考問(wèn)題專項(xiàng)突破8 平面向量線性運(yùn)算及綜合應(yīng)用問(wèn)題 理

  • 資源ID:114759603       資源大?。?span id="rsaxf2l" class="font-tahoma">239.50KB        全文頁(yè)數(shù):8頁(yè)
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

2021屆高三數(shù)學(xué)二輪復(fù)習(xí) 必考問(wèn)題專項(xiàng)突破8 平面向量線性運(yùn)算及綜合應(yīng)用問(wèn)題 理

必考問(wèn)題8平面向量線性運(yùn)算及綜合應(yīng)用問(wèn)題1(2012·廣東)若向量(2,3),(4,7),則()A(2,4) B(2,4) C(6,10) D(6,10)答案: A抓住向量的起點(diǎn)與終點(diǎn),用終點(diǎn)坐標(biāo)減去起點(diǎn)坐標(biāo)即可由于(2,3),(4,7),那么(2,3)(4,7)(2,4)2(2012·四川)設(shè)a,b都是非零向量下列四個(gè)條件中,使成立的充分條件是()Aab Bab Ca2b Dab且|a|b|答案:C對(duì)于A,注意到當(dāng)ab時(shí),;對(duì)于B,注意到當(dāng)ab時(shí),與可能不相等;對(duì)于C,當(dāng)a2b時(shí),;對(duì)于D,當(dāng)ab,且|a|b|時(shí),可能有ab,此時(shí).綜上所述,使成立的充分條件是a2b.3(2012·浙江)設(shè)a,b是兩個(gè)非零向量,下列選項(xiàng)正確的是()A若|ab|a|b|,則abB若ab,則|ab|a|b|C若|ab|a|b|,則存在實(shí)數(shù),使得baD若存在實(shí)數(shù),使得ba,則|ab|a|b|答案:C對(duì)于A,可得cosa,b1,因此ab不成立;對(duì)于B,滿足ab時(shí),|ab|a|b|不成立;對(duì)于C,可得cosa,b1,因此成立,而D顯然不一定成立4(2012·新課標(biāo)全國(guó))已知向量a,b夾角為45°,且|a|1,|2ab|,則|b|_.解析依題意,可知|2ab|24|a|24a·b|b|244|a|b|·cos 45°|b|242|b|b|210,即|b|22|b|60,|b|3(負(fù)值舍去)答案31高考一般會(huì)以客觀題的形式重點(diǎn)考查向量的線性運(yùn)算及其應(yīng)用,向量的垂直、平移、夾角和模的運(yùn)算,向量的幾何運(yùn)算等2平面向量作為工具在考查三角函數(shù)、平面解析幾何等內(nèi)容時(shí)常用到,屬于中等偏難題1要理解平面向量具有兩個(gè)方面的特征:幾何特征和代數(shù)特征,可以認(rèn)為平面向量是聯(lián)系幾何圖形和代數(shù)運(yùn)算的紐帶,因此復(fù)習(xí)時(shí)要抓住平面向量的核心特征2由于平面向量在三角函數(shù)、平面解析幾何中的工具作用,所以備考時(shí)要熟練掌握平面向量的基礎(chǔ)知識(shí).必備知識(shí)向量的概念(1)零向量模的大小為0,方向是任意的,它與任意非零向量都共線,記為0.(2)長(zhǎng)度等于1個(gè)單位長(zhǎng)度的向量叫單位向量,a的單位向量為±.(3)方向相同或相反的向量叫共線向量(平行向量)(4)如果直線l的斜率為k,則a(1,k)是直線l的一個(gè)方向向量(5)向量的投影:|b|cosa,b叫做b在向量a方向上的投影向量的運(yùn)算(1)向量的加法、減法、數(shù)乘向量是向量運(yùn)算的基礎(chǔ),應(yīng)熟練掌握其運(yùn)算規(guī)律(2)平面向量的數(shù)量積的結(jié)果是實(shí)數(shù),而不是向量,要注意運(yùn)算數(shù)量積與實(shí)數(shù)運(yùn)算律的差異,平面向量的數(shù)量積不滿足結(jié)合律與消去律a·b運(yùn)算結(jié)果不僅與a,b的長(zhǎng)度有關(guān)而且與a與b的夾角有關(guān),即a·b|a|b|cosa,b兩非零向量平行、垂直的充要條件若a(x1,y1),b(x2,y2),則abab,abx1y2x2y10.aba·b0,abx1x2y1y20.可利用它處理幾何中的兩線平行、垂直問(wèn)題,但二者不能混淆必備方法1當(dāng)向量以幾何圖形的形式出現(xiàn)時(shí),要把這個(gè)幾何圖形中的一個(gè)向量用其余的向量線性表示,就要根據(jù)向量加減法的法則進(jìn)行,特別是減法法則很容易使用錯(cuò)誤,向量(其中O為我們所需要的任何一個(gè)點(diǎn)),這個(gè)法則就是終點(diǎn)向量減去起點(diǎn)向量2根據(jù)平行四邊形法則,對(duì)于非零向量a,b,當(dāng)|ab|ab|時(shí),平行四邊形的兩條對(duì)角線長(zhǎng)度相等,此時(shí)平行四邊形是矩形,條件|ab|ab|等價(jià)于向量a,b互相垂直,反之也成立3兩個(gè)向量夾角的范圍是0,在使用平面向量解決問(wèn)題時(shí)要特別注意兩個(gè)向量夾角可能是0或的情況,如已知兩個(gè)向量的夾角為鈍角時(shí),不單純就是其數(shù)量積小于零,還要求不能反向共線??疾槠矫嫦蛄康幕靖拍?、線性運(yùn)算、加減運(yùn)算等基礎(chǔ)知識(shí)同時(shí),要加強(qiáng)三角形法則、平行四邊形法則應(yīng)用技巧的訓(xùn)練和常用結(jié)論的記憶,難度以中低檔為主【例1】 (2010·湖北)已知ABC和點(diǎn)M滿足0,若存在實(shí)數(shù)m使得m成立,則m()A2 B3 C4 D5審題視點(diǎn) 聽課記錄審題視點(diǎn) 由0, 可知M是ABC的重心B0,點(diǎn)M是ABC的重心3 .m3. (1)在用三角形加法法則時(shí)要保證“首尾相接”,結(jié)果向量是第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量終點(diǎn)所在的向量;在用三角形減法法則時(shí)要保證“同起點(diǎn)”,結(jié)果向量的方向是指向被減向量(2)有的問(wèn)題可以采用坐標(biāo)化解決更簡(jiǎn)單【突破訓(xùn)練1】 如圖,平面內(nèi)有三個(gè)向量,其中與的夾角為120°,與的夾角為30°,且|1,|2,若(,R),則的值為_解析法一如圖,11,|1|2,|1|4,42.6.法二以O(shè)為原點(diǎn),OA為x軸建立直角坐標(biāo)系,則A(1,0),C(2 cos 30°,2sin 30°),B(cos 120°,sin 120°)即A(1,0),C(3,),B,.由得,6.答案6數(shù)量積是平面向量最易考查的知識(shí)點(diǎn),??疾椋褐苯永脭?shù)量積運(yùn)算公式進(jìn)行運(yùn)算;求向量的夾角、模,或判斷向量的垂直關(guān)系,試題較容易也常常與解析幾何結(jié)合命制解答題【例2】 (2012·臨沂質(zhì)檢)如圖,ABC中,C90°,且ACBC3,點(diǎn)M滿足2,則·()A2 B3C4 D6審題視點(diǎn) 聽課記錄審題視點(diǎn) 用向量、表示B·()·2·2·()23. 平面向量問(wèn)題的難點(diǎn)就是把平面向量的幾何運(yùn)算與數(shù)量積運(yùn)算的結(jié)合,這里要充分利用平面向量的幾何運(yùn)算法則、平面向量的共線向量定理、兩向量垂直的條件以及平面向量數(shù)量積的運(yùn)算法則,探究解題的思想【突破訓(xùn)練2】 (2012·重慶)設(shè)x,yR,向量a(x,1),b(1,y),c(2,4),且ac,bc,則|ab|()A. B. C2 D10答案:B由題意可知,解得故ab(3,1),|ab|,選B.在近年高考中,三角函數(shù)與平面向量相結(jié)合來(lái)命制綜合問(wèn)題是高考考查的熱點(diǎn),三角函數(shù)的變換與求值、化簡(jiǎn)及解三角形等問(wèn)題常以向量為載體,復(fù)習(xí)時(shí)應(yīng)注意解題的靈活性,難度不大【例3】 (2012·河北衡水調(diào)研)已知向量a(sin x,1),b.(1)當(dāng)ab時(shí),求cos2x3sin 2x的值;(2)求f(x)(ab)·b的最小正周期和單調(diào)遞增區(qū)間審題視點(diǎn) 聽課記錄審題視點(diǎn) (1)由向量平行列方程解出tan x的值,所求式子轉(zhuǎn)化成正切單角名稱的三角代數(shù)式,代入可求解;(2)進(jìn)行向量坐標(biāo)形式的數(shù)量積運(yùn)算得到f(x)的解析式,轉(zhuǎn)化為yAsin (x)b的函數(shù)結(jié)構(gòu)解(1)由ab,得sin xcos x0,即tan x,cos2x3sin 2x.(2)因?yàn)閍(sin x,1),bcos x,absin xcos x,;f(x)(ab)·b(sin xcos x)cos x(sin 2xcos 2x)sin2x,所以最小正周期為.由2k2x2k,得kxk,故單調(diào)遞增區(qū)間為k,k(kZ) 平面向量與三角函數(shù)結(jié)合的這類題目的解題思路通常是將向量的數(shù)量積與模經(jīng)坐標(biāo)運(yùn)算后轉(zhuǎn)化為三角函數(shù)問(wèn)題,然后利用三角函數(shù)基本公式求解【突破訓(xùn)練3】 在ABC中,角A、B、C所對(duì)應(yīng)的邊分別為a、b、c,且滿足cos ,·3.(1)求ABC的面積;(2)若bc6,求a的值解(1)因?yàn)閏os ,所以cos A2cos21,sin A,又由·3,得bccos A3,所以bc5,所以SABCbcsin A2.(2)對(duì)于bc5,又bc6,所以b5,c1或b1,c5,由余弦定理得,a2b2c22bccos A20,所以a2.突破平面向量的得分障礙近幾年高考對(duì)平面向量的考查突出了“創(chuàng)新性”與“靈活性”,其實(shí)質(zhì)可以歸源于平面向量的幾何特征和代數(shù)特征試題常以選擇、填空的形式考查,難度較大平面向量問(wèn)題的難點(diǎn)就是平面向量的幾何運(yùn)算與數(shù)量積運(yùn)算的結(jié)合,這里要充分利用向量的幾何運(yùn)算法則、共線向量定理,下面舉例說(shuō)明【示例1】 (2012·北京)已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E是AB邊上的動(dòng)點(diǎn),則·的值為_;·的最大值為_解析以,為基向量,設(shè)(01),則,所以·()·()·2×011.又,所以·()·2·×101,即·的最大值為1.答案11老師叮嚀:本題考查了平面向量的線性運(yùn)算、幾何運(yùn)算和數(shù)量積運(yùn)算.求·值時(shí),不會(huì)利用平面向量的幾何運(yùn)算法則將其轉(zhuǎn)化為··是造成失分的主要原因.【試一試1】 (2011·新課標(biāo)全國(guó))已知a與b均為單位向量,其夾角為,有下列四個(gè)命題:p1:|ab|>1;p2:|ab|>1;p3:|ab|>1;p4:|ab|>1.其中的真命題是()Ap1,p4 Bp1,p3 Cp2,p3 Dp2,p4答案:A|a|b|1,且0,若|ab|1,則(ab)21,a22a·bb21,即a·b,cos a·b,;若|ab|1,同理求得a·b,cos a·b,故p1,p4正確,應(yīng)選A.【示例2】 (2011·遼寧)若a,b,c均為單位向量,且a·b0,(ac)·(bc)0,則|abc|的最大值為()A.1 B1 C. D2解析設(shè)a(1,0),b(0,1),c(x,y),則x2y21,ac(1x,y),bc(x,1y),則(ac)·(bc)(1x)(x)(y)·(1y)x2y2xy1xy0,即xy1.又abc(1x,1y),|abc| ,法一如圖,c(x,y)對(duì)應(yīng)點(diǎn)在上,而式的幾何意義為P點(diǎn)到上點(diǎn)的距離,其最大值為1.法二|abc|,由xy1,|abc|1,最大值為1.答案B老師叮嚀:解決本題的關(guān)鍵是將向量坐標(biāo)化,利用向量的坐標(biāo)運(yùn)算解決問(wèn)題.其中,不會(huì)將向量坐標(biāo)化是造成失分的主要原因.【試一試2】 (2012·天津)已知ABC為等邊三角形,AB2.設(shè)點(diǎn)P,Q滿足,(1),R,若·,則()A. B. C. D.答案:A|a|b|1,且0,若|ab|1,則(ab)21,a22a·bb21,即a·b,cos a·b,;若|ab|1,同理求得a·b,cos a·b,故p1,p4正確,應(yīng)選A.8

注意事項(xiàng)

本文(2021屆高三數(shù)學(xué)二輪復(fù)習(xí) 必考問(wèn)題專項(xiàng)突破8 平面向量線性運(yùn)算及綜合應(yīng)用問(wèn)題 理)為本站會(huì)員(沈***)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!