2020版高考數(shù)學(xué) 3年高考2年模擬 第3章 不等式

上傳人:艷*** 文檔編號(hào):111366416 上傳時(shí)間:2022-06-20 格式:DOC 頁(yè)數(shù):60 大小:3.92MB
收藏 版權(quán)申訴 舉報(bào) 下載
2020版高考數(shù)學(xué) 3年高考2年模擬 第3章 不等式_第1頁(yè)
第1頁(yè) / 共60頁(yè)
2020版高考數(shù)學(xué) 3年高考2年模擬 第3章 不等式_第2頁(yè)
第2頁(yè) / 共60頁(yè)
2020版高考數(shù)學(xué) 3年高考2年模擬 第3章 不等式_第3頁(yè)
第3頁(yè) / 共60頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué) 3年高考2年模擬 第3章 不等式》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué) 3年高考2年模擬 第3章 不等式(60頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第七章 不等式第一部分 三年高考薈萃2011年高考題 一、選擇題 1.(重慶理7)已知a>0,b>0,a+b=2,則y=的最小值是 A. B.4 C. D.5 【答案】C 2.(浙江理5)設(shè)實(shí)數(shù)滿足不等式組若為整數(shù),則的最小值是 A.14 B.16 C.17 D.19 【答案】B 3.(全國(guó)大綱理3)下面四個(gè)條件中,使成立的充分而不必要的條件是 A. B. C. D. 【答案】A 4.(江西理2)若集合,則 A. B. C.

2、 D. 【答案】B 5.(遼寧理9)設(shè)函數(shù),則滿足的x的取值范圍是 (A),2] (B)[0,2] (C)[1,+) (D)[0,+) 【答案】D 6.(湖南理7)設(shè)m>1,在約束條件下,目標(biāo)函數(shù)z=x+my的最大值小于2,則m 的取值范圍為 A.(1,) B.(,) C.(1,3 ) D.(3,) 【答案】A 7.(湖北理8)已知向量a=(x+z,3),b=(2,y-z),且a⊥??b.若x,y滿足不等式,則z的取值范圍為 A.[-2,2] B.[-2,3] C.[-3,2] D.

3、[-3,3] 【答案】D 8.(廣東理5)。已知在平面直角坐標(biāo)系上的區(qū)域由不等式組給定。若為上的動(dòng)點(diǎn),點(diǎn)的坐標(biāo)為,則的最大值為 A.    B.   C.4      D.3 【答案】C 9.(四川理9)某運(yùn)輸公司有12名駕駛員和19名工人,有8輛載重量為10噸的甲型卡車和7輛載重量為6噸的乙型卡車.某天需運(yùn)往地至少72噸的貨物,派用的每輛車虛滿載且只運(yùn)送一次.派用的每輛甲型卡車虛配2名工人,運(yùn)送一次可得利潤(rùn)450元;派用的每輛乙型卡車虛配1名工人,運(yùn)送一次可得利潤(rùn)350元.該公司合理計(jì)劃當(dāng)天派用兩類卡車的車輛數(shù),可得最大利潤(rùn)z= A.4650元 B.4700元

4、 C.4900元 D.5000元 【答案】C 【解析】由題意設(shè)派甲,乙輛,則利潤(rùn),得約束條件畫出可行域在的點(diǎn)代入目標(biāo)函數(shù) 10.(福建理8)已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-1,1)若點(diǎn)M(x,y)為平面區(qū)域,上的一個(gè)動(dòng)點(diǎn),則·的取值范圍是 A.[-1.0] B.[0.1] C.[0.2] D.[-1.2] 【答案】C 11.(安徽理4)設(shè)變量的最大值和最小值分別為 (A)1,-1 (B)2,-2 (C) 1,-2 (D) 2,-1 【答案】B 12.(上海理15)若,且,則下列不等式中,恒成立的是

5、 A. B. C.D D. 【答案】 二、填空題 13.(陜西理14)植樹節(jié)某班20名同學(xué)在一段直線公路一側(cè)植樹,每人植一棵,相鄰兩棵樹相距10米。開始時(shí)需將樹苗集中放置在某一樹坑旁邊,使每位同學(xué)從各自樹坑出發(fā)前來(lái)領(lǐng)取樹苗往返所走的路程總和最小,這個(gè)最小值為 (米)。 【答案】2000 14.(浙江理16)設(shè)為實(shí)數(shù),若則的最大值是 .。 【答案】 15.(全國(guó)新課標(biāo)理13)若變量x,y滿足約束條件,則的最小值是_________. 【答案】-6 16.(上海理4)不等式的解為

6、 。 【答案】或 17.(廣東理9)不等式的解集是 . 【答案】 18.(江蘇14)設(shè)集合, , 若則實(shí)數(shù)m的取值范圍是______________ 【答案】 三、解答題 19.(安徽理19) (Ⅰ)設(shè)證明, (Ⅱ),證明. 本題考查不等式的基本性質(zhì),對(duì)數(shù)函數(shù)的性質(zhì)和對(duì)數(shù)換底公式等基本知識(shí),考查代數(shù)式的恒等變形能力和推理論證能力. 證明:(I)由于,所以 將上式中的右式減左式,得 從而所要證明的不等式成立. (II)設(shè)由對(duì)數(shù)的換底公式得 于是,所要證明的不等式即為 其中 故由

7、(I)立知所要證明的不等式成立. 20.(湖北理17) 提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況。在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù)。當(dāng)橋上的的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明;當(dāng)時(shí),車流速度v是車流密度x的一次函數(shù). (Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式; (Ⅱ)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀點(diǎn)的車輛數(shù),單位:輛/每小時(shí))可以達(dá)到最大,并求出最大值(精確到1輛/小時(shí)) 本小題主要考查函數(shù)、最值等基礎(chǔ)知識(shí),同時(shí)考查運(yùn)用

8、數(shù)學(xué)知識(shí)解決實(shí)際問題的能力。(滿分12分) 解:(Ⅰ)由題意:當(dāng);當(dāng) 再由已知得 故函數(shù)的表達(dá)式為 (Ⅱ)依題意并由(Ⅰ)可得 當(dāng)為增函數(shù),故當(dāng)時(shí),其最大值為60×20=1200; 當(dāng)時(shí), 當(dāng)且僅當(dāng),即時(shí),等號(hào)成立。 所以,當(dāng)在區(qū)間[20,200]上取得最大值 綜上,當(dāng)時(shí),在區(qū)間[0,200]上取得最大值。 即當(dāng)車流密度為100輛/千米時(shí),車流量可以達(dá)到最大,最大值約為3333輛/小時(shí)。 21.(湖北理21) (Ⅰ)已知函數(shù),,求函數(shù)的最大值; (Ⅱ)設(shè)…,均為正數(shù),證明: (1)若……,則; (2)若…=1,則 本題主要考查函數(shù)、

9、導(dǎo)數(shù)、不等式的證明等基礎(chǔ)知識(shí),同時(shí)考查綜合運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行推理論證的能力,以及化歸與轉(zhuǎn)化的思想。(滿分14分) 解:(I)的定義域?yàn)?,? 當(dāng)在(0,1)內(nèi)是增函數(shù); 當(dāng)時(shí),內(nèi)是減函數(shù); 故函數(shù)處取得最大值 (II)(1)由(I)知,當(dāng)時(shí), 有 ,從而有, 得, 求和得 即 (2)①先證 令 則于是 由(1)得,即 ②再證 記, 則, 于是由(1)得 即 綜合①②,(

10、2)得證。 2020年高考題 一、選擇題 1.(2020上海文)15.滿足線性約束條件的目標(biāo)函數(shù)的最大值是 ( ) (A)1. (B). (C)2. (D)3. 答案 C 解析:當(dāng)直線過(guò)點(diǎn)B(1,1)時(shí),z最大值為2 2.(2020浙江理)(7)若實(shí)數(shù),滿足不等式組且的最大值為9,則實(shí)數(shù) (A) (B) (C)1 (D)2 答案 C 解析:將最大值轉(zhuǎn)化為y軸上的截距,將m等價(jià)為斜率的倒數(shù),數(shù)形結(jié)合可知答案選C,本題主要考察了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的

11、轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題 3.(2020全國(guó)卷2理)(5)不等式的解集為 (A) (B) (C) (D) 【答案】C 【命題意圖】本試題主要考察分式不等式與高次不等式的解法. 【解析】利用數(shù)軸穿根法解得-2<x<1或x>3,故選C 4.(2020全國(guó)卷2文)(5)若變量x,y滿足約束條件 則z=2x+y的最大值為 (A)1 (B)2 (C)3 (D)4 【解析】C:本題考查了線性規(guī)劃的知識(shí)。 ∵ 作出可行域,作出目標(biāo)函數(shù)線,可得直線與 與的交點(diǎn)為最優(yōu)解點(diǎn)

12、,∴即為(1,1),當(dāng)時(shí) 5.(2020全國(guó)卷2文)(2)不等式<0的解集為 (A) (B) (C) (D) 【解析】A :本題考查了不等式的解法 ∵ ,∴ ,故選A 6.(2020江西理)3.不等式 的解集是( ) A. B. C. D. 【答案】 A 【解析】考查絕對(duì)值不等式的化簡(jiǎn).絕對(duì)值大于本身,值為負(fù)數(shù).,解得A。 或者選擇x=1和x=-1,兩個(gè)檢驗(yàn)進(jìn)行排除。 7.(2020安徽文)(8)設(shè)x,y滿足約束條件則目標(biāo)函數(shù)z=x+y的最大值是 (A)3 (B) 4

13、 (C) 6 (D)8 答案 C 【解析】不等式表示的區(qū)域是一個(gè)三角形,3個(gè)頂點(diǎn)是,目標(biāo)函數(shù)在取最大值6。 【規(guī)律總結(jié)】線性規(guī)劃問題首先作出可行域,若為封閉區(qū)域(即幾條直線圍成的區(qū)域)則區(qū)域端點(diǎn)的值是目標(biāo)函數(shù)取得最大或最小值,求出直線交點(diǎn)坐標(biāo)代入目標(biāo)函數(shù)即可求出最大值. 8.(2020重慶文)(7)設(shè)變量滿足約束條件則的最大值為 (A)0 (B)2 (C)4 (D)6 解析:不等式組表示的平面區(qū)域如圖所示, 當(dāng)直線過(guò)點(diǎn)B時(shí),在y軸上截距最小,z最大 由B(2,2

14、)知4 解析:將最大值轉(zhuǎn)化為y軸上的截距,可知答案選A,本題主要考察了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題 10.(2020重慶理數(shù))(7)已知 x>0,y>0,x+2y+2xy=8,則x+2y的最小值是 A.3 B.4 C. D. 答案 B 解析:考察均值不等式 ,整理得 即,又, 11.(2020重慶理數(shù))(4)設(shè)變量x,y滿足約束條件,則z=2x+y的最大值為 A.—2 B.4

15、C.6 D.8 答案 C 解析:不等式組表示的平面區(qū)域如圖所示 當(dāng)直線過(guò)點(diǎn)B(3,0)的時(shí)候,z取得最大值6 12.(2020北京理)(7)設(shè)不等式組 表示的平面區(qū)域?yàn)镈,若指數(shù)函數(shù)y=的圖像上存在區(qū)域D上的點(diǎn),則a 的取值范圍是 (A)(1,3] (B )[2,3] (C ) (1,2] (D )[ 3, ] 答案:A 13.(2020四川理)(12)設(shè),則的最 小值是 (A)2 (B)4 (C) (D)5 解析: = = ≥0+2+

16、2=4 當(dāng)且僅當(dāng)a-5c=0,ab=1,a(a-b)=1時(shí)等號(hào)成立 如取a=,b=,c=滿足條件. 答案:B y 0 x 70 48 80 70 (15,55) 14.(2020四川理)(7)某加工廠用某原料由甲車間加工出A產(chǎn)品,由乙車間加工出B產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時(shí)10小時(shí)可加工出7千克A產(chǎn)品,每千克A產(chǎn)品獲利40元,乙車間加工一箱原料需耗費(fèi)工時(shí)6小時(shí)可加工出4千克B產(chǎn)品,每千克B產(chǎn)品獲利50元.甲、乙兩車間每天共能完成至多70箱原料的加工,每天甲、乙兩車間耗費(fèi)工時(shí)總和不得超過(guò)480小時(shí),甲、乙兩車間每天總獲利最大的生產(chǎn)計(jì)劃為 (A)甲車間加工原料10箱

17、,乙車間加工原料60箱 (B)甲車間加工原料15箱,乙車間加工原料55箱 (C)甲車間加工原料18箱,乙車間加工原料50箱 (D)甲車間加工原料40箱,乙車間加工原料30箱 答案:B 解析:設(shè)甲車間加工原料x箱,乙車間加工原料y箱 則 目標(biāo)函數(shù)z=280x+300y 結(jié)合圖象可得:當(dāng)x=15,y=55時(shí)z最大 本題也可以將答案逐項(xiàng)代入檢驗(yàn). 15.(2020天津文)(2)設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)z=4x+2y的最大值為 (A)12 (B)10 (C)8 (D)2 【答案】B 【解析】本題主要考查目標(biāo)函數(shù)最值的求法,屬于容易題,做出

18、可行域,如圖由圖可知,當(dāng)目標(biāo)函數(shù)過(guò)直線y=1與x+y=3的交點(diǎn)(2,1)時(shí)z取得最大值10. 16.(2020福建文) 17.(2020全國(guó)卷1文)(10)設(shè)則 (A)(B) (C) (D) 答案C 【命題意圖】本小題以指數(shù)、對(duì)數(shù)為載體,主要考查指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)、實(shí)數(shù)大小的比較、換底公式、不等式中的倒數(shù)法則的應(yīng)用. 【解析1】 a=2=, b=In2=,而,所以a

19、 (B)3 (C)2 (D)1 答案B 【命題意圖】本小題主要考查線性規(guī)劃知識(shí)、作圖、識(shí)圖能力及計(jì)算能力. x A L0 A 【解析】畫出可行域(如右圖),,由圖可知,當(dāng)直線經(jīng)過(guò)點(diǎn)A(1,-1)時(shí),z最大,且最大值為. 19.(2020全國(guó)卷1理)(8)設(shè)a=2,b=ln2,c=,則 (A) a

20、3 (D)4 答案:D 解析: = = ≥2+2=4 當(dāng)且僅當(dāng)ab=1,a(a-b)=1時(shí)等號(hào)成立 如取a=,b=滿足條件. 22.(2020四川文)y 0 x 70 48 80 70 (15,55) (8)某加工廠用某原料由車間加工出產(chǎn)品,由乙車間加工出產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時(shí)10小時(shí)可加工出7千克產(chǎn)品,每千克產(chǎn)品獲利40元.乙車間加工一箱原料需耗費(fèi)工時(shí)6小時(shí)可加工出4千克產(chǎn)品,每千克產(chǎn)品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費(fèi)工時(shí)總和不得超過(guò)480小時(shí),甲、乙兩車間每天獲利最大的生產(chǎn)計(jì)劃為 (A

21、)甲車間加工原料10箱,乙車間加工原料60箱 (B)甲車間加工原料15箱,乙車間加工原料55箱 (C)甲車間加工原料18箱,乙車間加工原料50箱 (D)甲車間加工原料40箱,乙車間加工原料30箱 答案:B 解析:解析:設(shè)甲車間加工原料x箱,乙車間加工原料y箱 則 目標(biāo)函數(shù)z=280x+300y 結(jié)合圖象可得:當(dāng)x=15,y=55時(shí)z最大 本題也可以將答案逐項(xiàng)代入檢驗(yàn). 23.(2020山東理) 24.(2020福建理)8.設(shè)不等式組所表示的平面區(qū)域是,平面區(qū)域是與關(guān)于直線對(duì)稱,對(duì)于中的任意一點(diǎn)A與中的任意一點(diǎn)B, 的最小值等于( ) A.

22、 B.4 C. D.2 【答案】B 【解析】由題意知,所求的的最小值,即為區(qū)域中的點(diǎn)到直線的距離的最小值的兩倍,畫出已知不等式表示的平面區(qū)域,如圖所示, 可看出點(diǎn)(1,1)到直線的距離最小,故的最小值為 ,所以選B。 二、填空題 1.(2020上海文)2.不等式的解集是 。 【答案】 解析:考查分式不等式的解法等價(jià)于(x-2)(x+4)<0,所以-4

23、 當(dāng)直線z=3x-y過(guò)點(diǎn)C(2,1)時(shí),在y軸上截距最小 此時(shí)z取得最大值5 3.(2020遼寧文)(15)已知且,則的取值 是 . (答案用區(qū)間表示) 【答案】 【解析】填. 利用線性規(guī)劃,畫出不等式組表示的平面區(qū)域,即可求解. 4.(2020遼寧理)(14)已知且,則的取值范圍是_______(答案用區(qū)間表示) 【答案】(3,8) 【命題立意】本題考查了線性規(guī)劃的最值問題,考查了同學(xué)們數(shù)形結(jié)合解決問題的能力。 【解析】畫出不等式組表示的可行域,在可行域內(nèi)平移直線z=2x-3y,當(dāng)直線經(jīng)過(guò)x-y=2與x+y=4的交點(diǎn)A(3,1)時(shí),目標(biāo)函數(shù)有最小值

24、z=2×3-3×1=3;當(dāng)直線經(jīng)過(guò)x+y=-1與x-y=3的焦點(diǎn)A(1,-2)時(shí),目標(biāo)函數(shù)有最大值z(mì)=2×1+3×2=8. 5.(2020安徽文)(15)若,則下列不等式對(duì)一切滿足條件的恒成立的是 (寫出所有正確命題的編號(hào)). ①; ②; ③ ; ④; ⑤ 【答案】①,③,⑤ 【解析】令,排除②②;由,命題①正確; ,命題③正確;,命題⑤正確。 6.(2020浙江文)(15)若正實(shí)數(shù)X,Y 滿足2X+Y+6=XY , 則XY 的最小值是 。 【答案】18 7.(2020山東文)(14)已知,且滿足,則xy的最大值為

25、 . 【答案】3 8.(2020北京文)(11)若點(diǎn)p(m,3)到直線的距離為4,且點(diǎn)p在不等式<3表示的平面區(qū)域內(nèi),則m= 。 【答案】-3 9.(2020全國(guó)卷1文)(13)不等式的解集是 . 【答案】 【命題意圖】本小題主要考查不等式及其解法 【解析】: ,數(shù)軸標(biāo)根得: 10.(2020全國(guó)卷1理)(13)不等式的解集是 . 11.(2020湖北文)12.已知:式中變量滿足的束條件則z的最大值為______。 【答案】5 【解析】同理科 12.(2020山東理) 13.(

26、2020安徽理) 14.(2020安徽理)13、設(shè)滿足約束條件,若目標(biāo)函數(shù)的最大值為8,則的最小值為________。 【答案】 4 【解析】不等式表示的區(qū)域是一個(gè)四邊形,4個(gè)頂點(diǎn)是 ,易見目標(biāo)函數(shù)在取最大值8, 所以,所以,在時(shí)是等號(hào)成立。所以的最小值為4. 【規(guī)律總結(jié)】線性規(guī)劃問題首先作出可行域,若為封閉區(qū)域(即幾條直線圍成的區(qū)域)則區(qū)域端點(diǎn)的值是目標(biāo)函數(shù)取得最大或最小值,求出直線交點(diǎn)坐標(biāo)代入得,要想求的最小值,顯然要利用基本不等式. 15.(2020湖北理)12.已知,式中變量,滿足約束條件,則的最大值為___________. 【答案】5 【解析】依題意,畫出可行

27、域(如圖示), 則對(duì)于目標(biāo)函數(shù)y=2x-z, 當(dāng)直線經(jīng)過(guò)A(2,-1)時(shí), z取到最大值,. 16.(2020湖北理)15.設(shè)a>0,b>0,稱為a,b的調(diào)和平均數(shù)。如圖,C為線段AB上的點(diǎn),且AC=a,CB=b,O為AB中點(diǎn),以AB為直徑做半圓。過(guò)點(diǎn)C作AB的垂線交半圓于D。連結(jié)OD,AD,BD。過(guò)點(diǎn)C作OD的垂線,垂足為E。則圖中線段OD的長(zhǎng)度是a,b的算術(shù)平均數(shù),線段 的長(zhǎng)度是a,b的幾何平均數(shù),線段 的長(zhǎng)度是a,b的調(diào)和平均數(shù)。 【答案】CD DE 【解析】在Rt△ADB中DC為高,則由射影定理可得,故,即CD長(zhǎng)度為a,b的幾何平均數(shù),將OC=代入可得故

28、,所以ED=OD-OE=,故DE的長(zhǎng)度為a,b的調(diào)和平均數(shù). 17.(2020江蘇卷)12、設(shè)實(shí)數(shù)x,y滿足3≤≤8,4≤≤9,則的最大值是 。 【答案】 27 【解析】考查不等式的基本性質(zhì),等價(jià)轉(zhuǎn)化思想。 ,,,的最大值是27。 三、解答題 1.(2020廣東理)19.(本小題滿分12分) 某營(yíng)養(yǎng)師要為某個(gè)兒童預(yù)定午餐和晚餐。已知一個(gè)單位的午餐含12個(gè)單位的碳水化合物6個(gè)單位蛋白質(zhì)和6個(gè)單位的維生素C;一個(gè)單位的晚餐含8個(gè)單位的碳水化合物,6個(gè)單位的蛋白質(zhì)和10個(gè)單位的維生素C.另外,該兒童這兩餐需要的營(yíng)養(yǎng)中至少含64個(gè)單位的碳水化合物,42個(gè)單位的蛋白質(zhì)和

29、54個(gè)單位的維生素C. 如果一個(gè)單位的午餐、晚餐的費(fèi)用分別是2.5元和4元,那么要滿足上述的營(yíng)養(yǎng)要求,并且花費(fèi)最少,應(yīng)當(dāng)為該兒童分別預(yù)定多少個(gè)單位的午餐和晚餐? 解:設(shè)該兒童分別預(yù)訂個(gè)單位的午餐和晚餐,共花費(fèi)元,則。 可行域?yàn)? 12 x+8 y ≥64 6 x+6 y ≥42 6 x+10 y ≥54 x≥0, x∈N y≥0, y∈N 即 3 x+2 y ≥16 x+ y ≥7 3 x+5 y ≥27 x≥0, x∈N y≥0, y∈N 作出可行域如圖所示: 經(jīng)試驗(yàn)發(fā)現(xiàn),當(dāng)x=4,y=3 時(shí),花費(fèi)最少,為=2.5×4+

30、4×3=22元. 2.(2020廣東文)19.(本題滿分12分) 某營(yíng)養(yǎng)師要求為某個(gè)兒童預(yù)訂午餐和晚餐.已知一個(gè)單位的午餐含12個(gè)單位的碳水化合物,6個(gè)單位的蛋白質(zhì)和6個(gè)單位的維生素C;一個(gè)單位的晚餐含8個(gè)單位的碳水化合物,6個(gè)單位的蛋白質(zhì)和10個(gè)單位的維生素C.另外,該兒童這兩餐需要的營(yíng)狀中至少含64個(gè)單位的碳水化合物和42個(gè)單位的蛋白質(zhì)和54個(gè)單位的維生素C. 如果一個(gè)單位的午餐、晚餐的費(fèi)用分別是2.5元和4元,那么要滿足上述的營(yíng)養(yǎng)要求,并且花費(fèi)最少,應(yīng)當(dāng)為該兒童分別預(yù)訂多少個(gè)單位的午餐和晚餐? 解:設(shè)為該兒童分別預(yù)訂個(gè)單位的午餐和個(gè)單位的晚餐,設(shè)費(fèi)用為F,則F,由題意知:

31、 畫出可行域: 變換目標(biāo)函數(shù): 3.(2020湖北理)15.設(shè)a>0,b>0,稱為a,b的調(diào)和平均數(shù)。如圖,C為線段AB上的點(diǎn),且AC=a,CB=b,O為AB中點(diǎn),以AB為直徑做半圓。過(guò)點(diǎn)C作AB的垂線交半圓于D。連結(jié)OD,AD,BD。過(guò)點(diǎn)C作OD的垂線,垂足為E。則圖中線段OD的長(zhǎng)度是a,b的算術(shù)平均數(shù),線段 的長(zhǎng)度是a,b的幾何平均數(shù),線段 的長(zhǎng)度是a,b的調(diào)和平均數(shù)。 【答案】CD DE 【解析】在Rt△ADB中DC為高,則由射影定理可得,故,即CD長(zhǎng)度為a,b的幾何平均數(shù),將OC=代

32、入可得故,所以ED=OD-OE=,故DE的長(zhǎng)度為a,b的調(diào)和平均數(shù). 2020年高考題 第一節(jié) 簡(jiǎn)單不等式及其解法 一、選擇題 1.(2020安徽卷理)下列選項(xiàng)中,p是q的必要不充分條件的是 A.p:>b+d , q:>b且c>d B.p:a>1,b>1 q:的圖像不過(guò)第二象限 C.p: x=1, q: D.p:a>1, q: 在上為增函數(shù) 答案 A 解析 由>b且c>d>b+d,而由>b+d >b且c>d,可舉反例。選A。 2.(2020安徽卷文)“”是“且”的 A. 必要不充

33、分條件 B. 充分不必要條件 C. 充分必要條件 D. 既不充分也不必要條件 答案 A 解析 易得時(shí)必有.若時(shí),則可能有,選A。 3.(2020四川卷文)已知,,,為實(shí)數(shù),且>.則“>”是“->-”的 A. 充分而不必要條件 B. 必要而不充分條件 C. 充要條件 D. 既不充分也不必要條件 答案 B 解析 顯然,充分性不成立.又,若->-和>都成立,則同向不等式相加得> 即由“->-”“>” 4.(2020天津卷理),若關(guān)

34、于x 的不等式>的解集中的整數(shù)恰有3個(gè),則 A. B. C. D. 答案 C 5.(2020四川卷理)已知為實(shí)數(shù),且。則“”是“”的 A. 充分而不必要條件 B. 必要而不充分條件 C.充要條件 D. 既不充分也不必要條件 【考點(diǎn)定位】本小題考查不等式的性質(zhì)、簡(jiǎn)單邏輯,基礎(chǔ)題。(同文7) 答案 B 解析 推不出;但,故選擇B。 解析2:令,則;由可得,因?yàn)?,則,所以。故“”是“”的必要而不充分條件。 6.(2020重慶卷理)不等式對(duì)任意實(shí)數(shù)恒成立,則實(shí)數(shù)的取值范圍為( )

35、A. B. C. D. 答案 A 解析 因?yàn)閷?duì)任意x恒成立,所以 二、填空題 7.(2020年上海卷理)若行列式中,元素4的代數(shù)余子式大于0, 則x滿足的條件是________________________ . 答案 解析 依題意,得: (-1)2×(9x-24)>0,解得: 三、解答題 8.(2020江蘇卷)(本小題滿分16分) 按照某學(xué)者的理論,假設(shè)一個(gè)人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單 價(jià)為元,則他的滿意度為;如果他買進(jìn)該產(chǎn)品的單價(jià)為元,則他的滿意度

36、 為.如果一個(gè)人對(duì)兩種交易(賣出或買進(jìn))的滿意度分別為和,則他對(duì)這兩種交易的綜合滿意度為. 現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的 單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價(jià)分別為元和元,甲買進(jìn)A與 賣出B的綜合滿意度為,乙賣出A與買進(jìn)B的綜合滿意度為 (1)求和關(guān)于、的表達(dá)式;當(dāng)時(shí),求證:=; (2)設(shè),當(dāng)、分別為多少時(shí),甲、乙兩人的綜合滿意度均最大?最 大的綜合滿意度為多少? (3)記(2)中最大的綜合滿意度為,試問能否適當(dāng)選取、的值,使得和 同時(shí)成立,但等號(hào)不同時(shí)成立?試說(shuō)明理由。 解析 本小題主要考查

37、函數(shù)的概念、基本不等式等基礎(chǔ)知識(shí),考查數(shù)學(xué)建模能力、抽 象概括能力以及數(shù)學(xué)閱讀能力。滿分16分。 (1) 當(dāng)時(shí),, , = (2)當(dāng)時(shí), 由, 故當(dāng)即時(shí), 甲乙兩人同時(shí)取到最大的綜合滿意度為。 (3)(方法一)由(2)知:= 由得:, 令則,即:。 同理,由得: 另一方面, 當(dāng)且僅當(dāng),即=時(shí),取等號(hào)。 所以不能否適當(dāng)選取、的值,使得和同時(shí)成立,但等號(hào)不同時(shí)成立。 第二節(jié) 基本不等式 一、 選擇題 1.(2020天津卷理)設(shè)若的最小值為 A . 8

38、 B . 4 C. 1 D. 考點(diǎn)定位 本小題考查指數(shù)式和對(duì)數(shù)式的互化,以及均值不等式求最值的運(yùn)用,考查了變通能力。 答案 C 解析 因?yàn)?,所以? ,當(dāng)且僅當(dāng)即時(shí)“=”成立,故選擇C 2.(2020重慶卷文)已知,則的最小值是( ) A.2 B. C.4 D.5 答案 C 解析 因?yàn)楫?dāng)且僅當(dāng),且 ,即時(shí),取“=”號(hào)。 二、填空題 3.(2020湖南卷文)若,則的最小值為 . 答案 2 解析 ,當(dāng)且僅當(dāng)時(shí)取等號(hào). 三、解答題 4.(2020湖北卷文)(本

39、小題滿分12分) 圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元)。 (Ⅰ)將y表示為x的函數(shù): (Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。 解:(1)如圖,設(shè)矩形的另一邊長(zhǎng)為a m 則-45x-180(x-2)+180·2a=225x+360a-360 由已知xa=360,得a=, 所以y=225x+ (II) .

40、當(dāng)且僅當(dāng)225x=時(shí),等號(hào)成立. 即當(dāng)x=24m時(shí),修建圍墻的總費(fèi)用最小,最小總費(fèi)用是10440元. 第三節(jié) 不等式組與簡(jiǎn)單的線性規(guī)劃 一、選擇題 x 2 2 y O -2 z=ax+by 3x-y-6=0 x-y+2=0 1. (2020山東卷理)設(shè)x,y滿足約束條件 , 若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的

41、是最大值為12, 則的最小值為 ( ). A. B. C. D. 4 答案 A 解析 不等式表示的平面區(qū)域如圖所示陰影部分,當(dāng)直線ax+by= z(a>0,b>0) 過(guò)直線x-y+2=0與直線3x-y-6=0的交點(diǎn)(4,6)時(shí), 目標(biāo)函數(shù)z=ax+by(a>0,b>0)取得最大12, 即4a+6b=12,即2a+3b=6, 而=,故選A. 【命題立意】:本題綜合地考查了線性規(guī)劃問題和由基本不等式求函數(shù)的最值問題.要求能準(zhǔn)確地畫出不等式表示的平面區(qū)域,并且能夠求得目標(biāo)函數(shù)的最值,對(duì)于形如已知2a+

42、3b=6,求的最小值常用乘積進(jìn)而用基本不等式解答. 2.(2020安徽卷理)若不等式組所表示的平面區(qū)域被直線分為面積相等的兩部分,則的值是 A. B. C. D. 答案 B A x D y C O y=kx+ 解析 不等式表示的平面區(qū)域如圖所示陰影部分△ABC 由得A(1,1),又B(0,4),C(0,) ∴△ABC=,設(shè)與的 交點(diǎn)為D,則由知,∴ ∴選A。 3.(2020安徽卷文)不等式組 所表示的平面區(qū)域的面積等于 A. B. C. D. 解析 由可得,

43、故陰 =,選C。 答案 C 4.(2020四川卷文)某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸,銷售每噸甲產(chǎn)品可獲得利潤(rùn)5萬(wàn)元,每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元。該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過(guò)13噸,B原料不超過(guò)18噸.那么該企業(yè)可獲得最大利潤(rùn)是 A. 12萬(wàn)元 B. 20萬(wàn)元 C. 25萬(wàn)元 D. 27萬(wàn)元 答案 D (3,4) (0,6) O (,0) 9 13 解析 設(shè)生產(chǎn)甲產(chǎn)品噸,生產(chǎn)乙產(chǎn)品噸,則有關(guān)系:

44、 A原料 B原料 甲產(chǎn)品噸 3 2 乙產(chǎn)品噸 3 則有: 目標(biāo)函數(shù) 作出可行域后求出可行域邊界上各端點(diǎn)的坐標(biāo),經(jīng)驗(yàn)證知: 當(dāng)=3,=5時(shí)可獲得最大利潤(rùn)為27萬(wàn)元,故選D 5.(2020寧夏海南卷理)設(shè)x,y滿足 A.有最小值2,最大值3 B.有最小值2,無(wú)最大值 C.有最大值3,無(wú)最小值 D.既無(wú)最小值,也無(wú)最大值 答案 B 解析 畫出可行域可知,當(dāng)過(guò)點(diǎn)(2,0)時(shí),,但無(wú)最大值。選B. 6.(2020寧夏海南卷文)設(shè)滿足則 A.有最小值2,最大

45、值3 B.有最小值2,無(wú)最大值 C.有最大值3,無(wú)最小值 D.既無(wú)最小值,也無(wú)最大值 答案 B 解析 畫出不等式表示的平面區(qū)域,如右圖,由z=x+y,得y=-x+z,令z=0,畫出y=-x的圖象,當(dāng)它的平行線經(jīng)過(guò)A(2,0)時(shí),z取得最小值,最小值為:z=2,無(wú)最大值,故選.B 7.(2020湖南卷理)已知D是由不等式組,所確定的平面區(qū)域,則圓 在區(qū)域D內(nèi) 的弧長(zhǎng)為 [ B] A

46、. B. C. D. 答案 B 解析 解析如圖示,圖中陰影部分所在圓心角所對(duì)弧長(zhǎng)即為所求,易知圖中兩直線的斜率分別是,所以圓心角即為兩直線的所成夾角,所以,所以,而圓的半徑是2,所以弧長(zhǎng)是,故選B現(xiàn)。 8.(2020天津卷理)設(shè)變量x,y滿足約束條件:.則目標(biāo)函數(shù)z=2x+3y的最小值為 A.6 B.7 C.8 D.23 答案 B 【考點(diǎn)定位】本小考查簡(jiǎn)單的線性規(guī)劃,基礎(chǔ)題。 解析 畫出不等式表示的可行域,如右圖, 讓目標(biāo)函數(shù)表示直線在可行域上平移

47、,知在點(diǎn)B自目標(biāo)函數(shù)取到最小值,解方程組得,所以,故選擇B。 9.(2020四川卷理)某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸、B 原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸、B原料3噸。銷售每噸甲產(chǎn)品可獲得利潤(rùn)5萬(wàn)元,每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元,該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過(guò)13噸,B原料不超過(guò)18噸,那么該企業(yè)可獲得最大利潤(rùn)是 A. 12萬(wàn)元 B. 20萬(wàn)元 C. 25萬(wàn)元 D. 27萬(wàn)元 答案 D 【考點(diǎn)定位】本小題考查簡(jiǎn)單的線性規(guī)劃,基礎(chǔ)題。(同文10)

48、 解析 設(shè)甲、乙種兩種產(chǎn)品各需生產(chǎn)、噸,可使利潤(rùn)最大,故本題即 已知約束條件,求目標(biāo)函數(shù)的最大 值,可求出最優(yōu)解為,故,故選 擇D。 10.(2020福建卷文)在平面直角坐標(biāo)系中,若不等式組(為常數(shù))所表示的平面區(qū)域內(nèi)的面積等于2,則的值為 A. -5 B. 1 C. 2 D. 3 答案 D 解析 如圖可得黃色即為滿足 的直線恒過(guò)(0,1),故看作直線繞點(diǎn)(0,1)旋轉(zhuǎn),當(dāng)a=-5時(shí),則可行域不是一個(gè)封閉區(qū)域,當(dāng)a=1時(shí),面積是1;a=2時(shí),面積是;當(dāng)

49、a=3時(shí),面積恰好為2,故選D. 二、填空題 11.(2020浙江理)若實(shí)數(shù)滿足不等式組則的最小值是 . 答案 4 解析 通過(guò)畫出其線性規(guī)劃,可知直線過(guò)點(diǎn)時(shí), 12.(2020浙江卷文)若實(shí)數(shù)滿足不等式組則的最小 是 . 【命題意圖】此題主要是考查了線性規(guī)劃中的最值問題,此題的考查既體現(xiàn)了正確畫線性區(qū)域的要求,也體現(xiàn)了線性目標(biāo)函數(shù)最值求解的要求 解析 通過(guò)畫出其線性規(guī)劃,可知直線過(guò)點(diǎn)時(shí), 13.(2020北京文)若實(shí)數(shù)滿足則的最大值為 . 答案 9 解析:本題主要考查線性規(guī)

50、劃方面的基礎(chǔ)知. 屬于基礎(chǔ)知識(shí)、基本運(yùn)算的考查. 如圖,當(dāng)時(shí), 為最大值. 故應(yīng)填9. 14.(2020北京卷理)若實(shí)數(shù)滿足則的最小值為__________. 答案 解析 本題主要考查線性規(guī)劃方面 的基礎(chǔ)知. 屬于基礎(chǔ)知識(shí)、基本運(yùn)算 的考查. 如圖,當(dāng)時(shí), 為最小值. 故應(yīng)填. 15.(2020山東卷理)不等式的解集為 . 答案 解析 原不等式等價(jià)于不等式組①或② 或③不等式組①無(wú)解,由②得,由③得,綜上得,所以原不等式的解集為.

51、 16.(2020山東卷文)某公司租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品5件和B類產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品6件和B類產(chǎn)品20件.已知設(shè)備甲每天的租賃費(fèi)為200元,設(shè)備乙每天的租賃費(fèi)為300元,現(xiàn)該公司至少要生產(chǎn)A類產(chǎn)品50件,B類產(chǎn)品140件,所需租賃費(fèi)最少為__________元. 答案 2300 解析 設(shè)甲種設(shè)備需要生產(chǎn)天, 乙種設(shè)備需要生產(chǎn)天, 該公司所需租賃費(fèi)為元,則,甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品的情況為下表所示: 產(chǎn)品 設(shè)備 A類產(chǎn)品 (件)(≥5

52、0) B類產(chǎn)品 (件)(≥140) 租賃費(fèi) (元) 甲設(shè)備 5 10 200 乙設(shè)備 6 20 300 則滿足的關(guān)系為即:, 作出不等式表示的平面區(qū)域,當(dāng)對(duì)應(yīng)的直線過(guò)兩直線的交點(diǎn)(4,5)時(shí),目標(biāo)函數(shù)取得最低為2300元. 【命題立意】:本題是線性規(guī)劃的實(shí)際應(yīng)用問題,需要通過(guò)審題理解題意,找出各量之間的關(guān)系,最好是列成表格,找出線性約束條件,寫出所研究的目標(biāo)函數(shù),通過(guò)數(shù)形結(jié)合解答問題.. 17.(2020上海卷文) 已知實(shí)數(shù)

53、x、y滿足 則目標(biāo)函數(shù)z=x-2y的最小值是_______. 答案 -9 解析 畫出滿足不等式組的可行域如右圖,目標(biāo)函數(shù)化為:-z,畫直線及其平行線,當(dāng)此直線經(jīng)過(guò)點(diǎn)A時(shí),-z的值最大,z的值最小,A點(diǎn)坐標(biāo)為(3,6),所以,z的最小值為:3-2×6=-9。 第二部分 兩年模擬題 2020屆高三模擬題 題組一 一、 選擇題 1. (福建省廈門外國(guó)語(yǔ)學(xué)校2020屆高三11月月考理)已知滿足約束條件,則的最小值是( ▲ ) A.15 B.-18 C.26 D.-20 答案 B. 2.(甘肅

54、省天水一中2020屆高三上學(xué)期第三次月考試題理)設(shè)滿足約束條件:,則的最小值為( ?。? A.6  B.-6       C.      ?。模? 答案 B. 3、(河南省輝縣市第一中學(xué)2020屆高三11月月考理)若,則 A. B. C. D. 答案 D. 4.(湖北省黃岡市浠水縣市級(jí)示范高中2020屆高三12月月考)不等式的解集為( ) A. B. C. D. 答案 C. 5.(河南省輝縣市第一中學(xué)2020屆高三11月月考理)設(shè)雙曲線的兩條漸近線與直線圍成的三角形區(qū)域

55、(包含邊界)為D, P()為D內(nèi)的一個(gè)動(dòng)點(diǎn),則目標(biāo)函數(shù)的最小值為 (A) (B) (C)0 (D) 答案 B. 6.(廣東省惠州三中2020屆高三上學(xué)期第三次考試?yán)恚┎坏仁降慕饧癁?則函數(shù)的圖象為( ) 答案 C. 7.(湖北省黃岡市浠水縣市級(jí)示范高中2020屆高三12月月考)不等式的解集為( ) A. B. C. D. 答案 C. 8.(湖北省南漳縣一中2020年高三第四次月考文)已知0

56、 B.> C (lga)2<(lgb)2 D.()a<()b 答案 A. 9.(湖北省武漢中學(xué)2020屆高三12月月考理)設(shè)的最小值是 ( ) A.2 B. C. D. 答案 C. 二、 填空題 10.(甘肅省天水一中2020屆高三上學(xué)期第三次月考試題理)已知二次項(xiàng)系數(shù)為正的二次函數(shù)對(duì)任意,都有成立,設(shè)向量(sinx,2),(2sinx,),(cos2x,1),(1,2),當(dāng)[0,]時(shí),不等式f()>f()的解集為 。 答案 11.(河南省長(zhǎng)葛第三實(shí)驗(yàn)高中2020屆高三期中考試?yán)恚┤艉褪欠匠痰膬蓚€(gè)實(shí)

57、根,不等式 對(duì)任意實(shí)數(shù)恒成立,則的取值范圍是 答案 12.(湖北省武漢中學(xué)2020屆高三12月月考文)不等式的解集為 。 答案 13.(湖北省武漢中學(xué)2020屆高三12月月考文)區(qū)域D的點(diǎn)滿足不等式組,若一個(gè)圓C落在區(qū)域D中,那么區(qū)域D中的最大圓C的半徑為 。 答案 14、(湖北省武穴中學(xué)2020屆高三12月月考理)若a+1>0,則不等式的解集為 答案 15.(湖南省長(zhǎng)沙市第一中學(xué)2020屆高三第五次月考理)已知函數(shù)f(x)=|x-2|,若a≠0,且a,b∈R,都有不等

58、式|a+b|+|a-b|≥|a|·f(x)成立,則實(shí)數(shù)x的取值范圍是   . 答案 [0,4] . 解:|a+b|+|a-b|≥|a|·f(x)及a≠0得f(x)≤恒成立, 而≥=2,則f(x)≤2,從而|x-2|≤2,解得0≤x≤4. 16.(寧夏銀川一中2020屆高三第五次月考試題全解全析理) 已知實(shí)數(shù)的最小值為 . 【答案】。 【分析】畫出平面區(qū)域,根據(jù)目標(biāo)函數(shù)的特點(diǎn)確定其取得最小值的點(diǎn),即可求出其最小值。 【解析】不等式組所表示的平面區(qū)域,如圖所示。顯然目標(biāo)函數(shù)在點(diǎn)處取得最小值。 【考點(diǎn)】不等式。 【點(diǎn)評(píng)】本題考查不等式組所表示的平面區(qū)域和

59、簡(jiǎn)單的線性規(guī)劃問題。在線性規(guī)劃問題中目標(biāo)函數(shù)取得最值的點(diǎn)一定是區(qū)域的頂點(diǎn)和邊界,在邊界上的值也等于在這個(gè)邊界上的頂點(diǎn)的值,故在解答選擇題或者填空題時(shí),只要能把區(qū)域的頂點(diǎn)求出,直接把頂點(diǎn)坐標(biāo)代入進(jìn)行檢驗(yàn)即可。 三、 解答題 17.(河南省輝縣市第一中學(xué)2020屆高三11月月考理) (本題13分)已知函數(shù)為奇函數(shù)。 (1)求并寫出函數(shù)的單調(diào)區(qū)間; (2)解不等式 答案 14. 18.(河南省長(zhǎng)葛第三實(shí)驗(yàn)高中2020屆高三期中考試?yán)恚ū拘☆}滿分10分)選修4-5:不等式選講 (I)已知都是正實(shí)數(shù),求證:; (II)設(shè)函數(shù),解不等式. 答案 (1)證明:(Ⅰ)∵

60、 , 又∵,∴,∴, ∴. …………(5分) 法二:∵,又∵,∴, ∴,展開得, 移項(xiàng),整理得. …………(5分) 不等式選講.解:(法一)令y=|2x+1|-|x-4|,則 y=……………………2分 作出函數(shù)y=|2x+1|-|x-4|的圖象, 它與直線的交點(diǎn)為和.…… 4分 所以的解集為.…5分 解:(法二) 19.(寧夏銀川一中2020屆高三第五次月考試題全解全析理) (本小題滿分12分)在交通擁擠地段,為了確保交通安全,規(guī)定機(jī)動(dòng)車相互之間的距離(米)與車速

61、(千米/小時(shí))需遵循的關(guān)系是(其中(米)是車身長(zhǎng),為常量),同時(shí)規(guī)定. (1)當(dāng)時(shí),求機(jī)動(dòng)車車速的變化范圍; (2)設(shè)機(jī)動(dòng)車每小時(shí)流量,應(yīng)規(guī)定怎樣的車速,使機(jī)動(dòng)車每小時(shí)流量最大. 【分析】(1)把代入,解這個(gè)關(guān)于的不等式即可;(2)根據(jù)滿足的不等式,以最小車距代替,求此時(shí)的最值即可。 【解析】(1) =av2, v=25, ∴ 025時(shí), Q=≤, ∴當(dāng)v=50時(shí)Q最大為.………12分 【點(diǎn)評(píng)】不等式 【點(diǎn)評(píng)】本題考查函數(shù)建模和基本不等式的應(yīng)用。本題中對(duì)車距

62、有兩個(gè)限制條件,這兩個(gè)條件是在不同的車速的情況下的限制條件,解題中容易出現(xiàn)的錯(cuò)誤是不能正確的使用這兩個(gè)限制條件對(duì)函數(shù)的定義域進(jìn)行分類,即在車速小于或等于時(shí),兩車之間的最小車距是,當(dāng)車速大于時(shí),兩車之間的最小車距是。 20.(寧夏銀川一中2020屆高三第五次月考試題全解全析理)選修4-5:不等式選講 已知函數(shù)(I)求不等式的解集;(II)若關(guān)于x的不等式恒成立,求實(shí)數(shù)的取值范圍。 【分析】(1)只要分區(qū)去掉絕對(duì)值,即轉(zhuǎn)化為普通的一次不等式,最后把各個(gè)區(qū)間內(nèi)的解集合并即可;(2)問題等價(jià)于。 【解析】(I)原不等式等價(jià)于 或 3分 解,得即不等式的解集為 6分 (II

63、) 8分 10分 【考點(diǎn)】不等式選講 【點(diǎn)評(píng)】本題考查帶有絕對(duì)值的不等式的解法、不等式的恒成立問題。本題的不等式的解法也可以根據(jù)幾何意義求解,不等式,等價(jià)于,其幾何意義是數(shù)軸上的點(diǎn)到點(diǎn)距離之和不大于,根據(jù)數(shù)軸可知這個(gè)不等式的解區(qū)間是。 21. (甘肅省甘谷三中2020屆高三第三次檢測(cè)試題) (12分)已知函數(shù)滿足且對(duì)于任意, 恒有成立. (1) 求實(shí)數(shù)的值; (2) 解不等式. 答案 (1) 由知, …① ∴…②又恒成立, 有恒成立,故. 將①式代入上式得:, 即故. 即, 代入② 得,. (2) 即 ∴ 解得:   , ∴不等式

64、的解集為. 22.(甘肅省甘谷三中2020屆高三第三次檢測(cè)試題) (12分)已知函數(shù),. (I)求的最大值和最小值;(II)若不等式在上恒成立,求實(shí)數(shù)的取值范圍 答案 22.(1)3,2;(2)(1,4) 23.(黑龍江哈九中2020屆高三12月月考理)(12分)已知函數(shù). (1)求在上的最大值; (2)若對(duì)任意的實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍; (3)若關(guān)于的方程在上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍. 答案 (1),令,得或(舍) 當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,是函數(shù)在上的最大值 (2)對(duì)恒成立 若即,恒成立 由得或 設(shè) 依題意知或在上

65、恒成立 都在上遞增 或,即或 (3)由知, 令,則 當(dāng)時(shí),,于是在上遞增;當(dāng)時(shí),,于是在上遞減,而, 即在上恰有兩個(gè)不同實(shí)根等價(jià)于 ,解得 24.(黑龍江省哈爾濱市第162中學(xué)2020屆高三第三次模擬理) 設(shè)是函數(shù)的一個(gè)極值點(diǎn)。 (Ⅰ)、求與的關(guān)系式(用表示),并求的單調(diào)區(qū)間; (Ⅱ)、設(shè),。若存在使得成立,求的取值范圍。 點(diǎn)評(píng):本小題主要考查函數(shù)、不等式和導(dǎo)數(shù)的應(yīng)用等知識(shí),考查綜合運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力。 解:(Ⅰ)f `(x)=-[x2+(a-2)x+b-a ]e3-x, 由f `(3)=0,得 -[32+(a-2)3+b-a ]e3-3=0,即得b=

66、-3-2a, 則 f `(x)=[x2+(a-2)x-3-2a-a ]e3-x =-[x2+(a-2)x-3-3a ]e3-x=-(x-3)(x+a+1)e3-x. 令f `(x)=0,得x1=3或x2=-a-1,由于x=3是極值點(diǎn), 所以x+a+1≠0,那么a≠-4. 當(dāng)a<-4時(shí),x2>3=x1,則 在區(qū)間(-∞,3)上,f `(x)<0, f (x)為減函數(shù); 在區(qū)間(3,―a―1)上,f `(x)>0,f (x)為增函數(shù); 在區(qū)間(―a―1,+∞)上,f `(x)<0,f (x)為減函數(shù)。 當(dāng)a>-4時(shí),x2<3=x1,則 在區(qū)間(-∞,―a―1)上,f `(x)<0, f (x)為減函數(shù); 在區(qū)間(―a―1,3)上,f `(x)>0,f (x)為增函數(shù); 在區(qū)間(3,+∞)上,f `(x)<0,f (x)為減函數(shù)。 (Ⅱ)由(Ⅰ)知,當(dāng)a>0時(shí),f (x)在區(qū)間(0,3)上的單調(diào)遞增,在區(qū)間(3,4)上單調(diào)遞減,那么f (x)在區(qū)間[0,4]上的值域是[min(f (0),f (4) ),f (3)], 而f (0)=-(2a+3)e3<0,f

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!