《2022年高考數(shù)學(xué) 課時(shí)31 幾何概型單元滾動(dòng)精準(zhǔn)測試卷 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué) 課時(shí)31 幾何概型單元滾動(dòng)精準(zhǔn)測試卷 文(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué) 課時(shí)31 幾何概型單元滾動(dòng)精準(zhǔn)測試卷 文
模擬訓(xùn)練(分值:60分 建議用時(shí):30分鐘)
1.(2018?上海市虹口區(qū)質(zhì)量測試,5分)已點(diǎn)P在邊長為1的正方形ABCD內(nèi)運(yùn)動(dòng),則動(dòng)點(diǎn)P到定點(diǎn)A的距離|PA|<1的概率為( )
A. B. C. D.π
【答案】:C
【解析】:由題意可知,當(dāng)動(dòng)點(diǎn)P位于扇形ABD內(nèi)時(shí),動(dòng)點(diǎn)P到定點(diǎn)A的距離|PA|<1,根據(jù)幾何概型可知,動(dòng)點(diǎn)P到定點(diǎn)A的距離|PA|<1的概率為=,故選C.
2. (2018?遼寧實(shí)驗(yàn)中學(xué)月考,5分)如圖,A是圓上固定的一點(diǎn),在圓上其他位置任取一點(diǎn)A′,連接AA′,它是一條弦,它
2、的長度小于或等于半徑長度的概率為 ( )
A. B. C. D.
【答案】:C
【解析】:當(dāng)AA′的長度等于半徑長度時(shí),∠AOA′=
,由圓的對稱性 及幾何概型得P=
3.(2018?廣東北江中學(xué)測試,5分)在長為12 cm的線段AB上任取一點(diǎn)M,并以線段AM為一邊作正方形,則此正方形的面積介于36 cm2與81 cm2之間的概率為( )
A. B. C.
3、 D.
【答案】:C
【解析】:正方形的面積介于36 cm2與81 cm2之間,所以正方形的邊長介于6 cm到9 cm之間.線段AB的長度為12 cm,則所求概率為=
4.(2018?陜西西安八校期中聯(lián)考,5分)在長為1的線段上任取兩點(diǎn),則這兩點(diǎn)之間的距離小于的概率為( )
A. B.
C. D.
【答案】:C
【解析】:設(shè)任取兩點(diǎn)所表示的數(shù)分別為x,y,則0≤x≤1且0≤y≤1.
由題意知|x-y|<,所以所求概率為P=
5. (2018·聊城東阿實(shí)高月考,5分)方程
4、x2+x+n=0(n∈(0,1))有實(shí)根的概率為( )
A. B. C. D.
【答案】:C
【解析】:由Δ=1-4n≥0得n≤,又n∈(0,1),故所求事件的概率為P=.
6.(2018·湖南十二所聯(lián)考,5分)已知平面區(qū)域U={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|x≤4,y≥0,x-2y≥0},若向區(qū)域U內(nèi)隨機(jī)投一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域A的概率為________.
【答案】:
【解析】:依題意可在平面直角坐標(biāo)系中作出集合U與A所表示的平面區(qū)域(如圖),由圖可知SU=18,SA=4,則點(diǎn)P落入?yún)^(qū)域A的概率為.
7.(2018·廣
5、東恩平測試,5分)向面積為9的△ABC內(nèi)任投一點(diǎn)P,那么△PBC的面積小于3的概率是__________.
【答案】:
【解析】:如圖,由題意,△PBC的面積小于3,則點(diǎn)P應(yīng)落在梯形BCED 內(nèi),
∵,
∴S△ADE=4,∴S梯形BCED=5,∴P=.
8.(2018·撫順二模,5分)《廣告法》對插播廣告的時(shí)間有一定的規(guī)定,某人對某臺(tái)的電視節(jié)目做了長期的統(tǒng)計(jì)后得出結(jié)論,他任意時(shí)間打開電視機(jī)看該臺(tái)節(jié)目,看不到廣告的概率為,那么該臺(tái)每小時(shí)約有________分鐘的廣告.
【答案】:6
【解析】:60×(1-)=6分鐘.
9.(2018·皖南八校聯(lián)考,10分)設(shè)不等式組表示
6、的區(qū)域?yàn)锳,不等式組表示的區(qū)域?yàn)锽.
(1)在區(qū)域A中任取一點(diǎn)(x,y),求點(diǎn)(x,y)∈B的概率;
(2)若x,y分別表示甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù),求點(diǎn)(x,y)在區(qū)域B中的概率.
10.(2018·濰坊質(zhì)檢,10分)已知關(guān)于x的一次函數(shù)y=mx+n.
(1)設(shè)集合P={-2,-1,1,2,3}和Q={-2,3},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為m和n,求函數(shù)y=mx+n是增函數(shù)的概率;
(2)實(shí)數(shù)m,n滿足條件,求函數(shù)y=mx+n的圖象經(jīng)過一、二、三象限的概率.
【解析】:(1)抽取的全部結(jié)果的基本事件有:
(-2,-2),(-2,3),(-1,-2),(-1,3
7、),(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3),共10個(gè)基本事件,設(shè)使函數(shù)為增函數(shù)的事件為A,則A包含的基本事件有:(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3),共6個(gè)基本事件,所以,P(A)==.
(2)m、n滿足條件的區(qū)域如圖所示:
要使函數(shù)的圖象過一、二、三象限,則m>0,n>0,故使函數(shù)圖象過一、二、三象限的(m,n)的區(qū)域?yàn)榈谝幌笙薜年幱安糠郑?
∴所求事件的概率為P=.
[新題訓(xùn)練] (分值:15分 建議用時(shí):10分鐘)
11(5分).一只小蜜蜂在一個(gè)棱長為3的正方體內(nèi)自由飛行,若蜜蜂在飛行過程中始終
8、保持與正方體6個(gè)面的距離均大于1,稱其為“安全飛行”,則蜜蜂“安全飛行”的概率為( )
A. B. C. D.
【答案】:C
【解析】:一個(gè)棱長為3的正方體由27個(gè)單位正方體組成,由題意知,蜜蜂“安全飛行”的區(qū)域即為27個(gè)單位正方體中最中心的1個(gè)單位正方體區(qū)域,則所求概率P=,應(yīng)選C.
12.(5分)若a是從區(qū)間[0,3]內(nèi)任取的一個(gè)實(shí)數(shù),b是從區(qū)間[0,2]內(nèi)任取的一個(gè)實(shí)數(shù),則關(guān)于x的一元二次方程x2-2ax+b2=0有實(shí)根的概率為( )
A. B. C. D.
【答案】:A
【解析】:方程有實(shí)根,則Δ=4a2-4b2≥0,則a≥b≥0,不等式組所滿足的可行域如圖中陰影部分所示,則根據(jù)幾何概型概率公式可得,所求概率P===,故選A.