《2022年新課標(biāo)魯科版3-1 選修三1.2《靜電力 庫(kù)倫定律》 WORD教案4》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年新課標(biāo)魯科版3-1 選修三1.2《靜電力 庫(kù)倫定律》 WORD教案4(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年新課標(biāo)魯科版3-1 選修三1.2《靜電力 庫(kù)倫定律》 WORD教案4
【教學(xué)目的】
(1)知道點(diǎn)電荷,體會(huì)科學(xué)研究中的理想模型方法。
(2)了解兩種電荷間的作用規(guī)律,掌握庫(kù)侖定律的內(nèi)容及其應(yīng)用。
【教學(xué)重點(diǎn)】
掌握真空中點(diǎn)電荷間作用力大小的計(jì)算及方向的判定——庫(kù)侖定律
【教學(xué)難點(diǎn)】
真空中點(diǎn)電荷間作用力為一對(duì)相互作用力,遵從牛頓第三定律
【教學(xué)媒體】
1、 演示實(shí)驗(yàn):有機(jī)玻璃棒、絲綢、碎紙片、毛皮、橡膠棒、鋁箔包好的草球、表面光滑潔凈的絕緣導(dǎo)體、絕緣性好的絲線、絕緣性好的支架、鐵架臺(tái)。
2、 課件:庫(kù)侖扭秤實(shí)驗(yàn)?zāi)M動(dòng)畫。
【教學(xué)安排】
【新課導(dǎo)入】
從上節(jié)課
2、我們學(xué)習(xí)到同種電荷相吸引,異種電荷相排斥,這種靜電荷之間的相互作用叫做靜電力。力有大小、方向和作用點(diǎn)三要素,我們今天就來(lái)具體學(xué)習(xí)一下靜電力的特點(diǎn)。
【新課內(nèi)容】
1. 靜電力的三要素的探究/點(diǎn)電荷模型
圖1
(1) 靜電力的作用點(diǎn)——作用在電荷上,如果電荷相對(duì)于物體不能自由移動(dòng),則所有電荷受力的合力就是帶電體的受力(可視為作用在物體的電荷中心上,怎么找電荷的中心呢?——如果形狀規(guī)則的物體所帶電荷又是均勻分布的話,電荷中心可看作在物體的幾何中心上。如:右圖1為一均勻帶電的環(huán)性物體,其電荷可看集中在圓心處)
(2) 靜電力的方向——沿著兩電荷的連線。
(3) 靜電力的大?。姾葾對(duì)B與
3、B對(duì)A的力等大反向,與所帶電荷多少無(wú)關(guān))
i. 猜想:可能與哪些因素有關(guān),說(shuō)出猜測(cè)的理由?(與電荷所帶電量有關(guān),電量越大,力越大,理由——放電導(dǎo)致電量減小后,驗(yàn)電器的金箔張角減小說(shuō)明斥力減?。灰才c電荷間的距離有關(guān),帶電物體靠近時(shí)才能吸引輕小物體,離的遠(yuǎn)時(shí)吸不起來(lái))
ii. 定性實(shí)驗(yàn):
如圖2,先把表面光滑潔凈的絕緣導(dǎo)體放在A處,然后把鋁箔包好的草球系在絲線下,分別用絲綢摩擦過(guò)的玻璃棒給導(dǎo)體和草球帶上正電,把草球先后掛在P1、P2、P3的位置,帶電小球受到A 的作用力的大小可以通過(guò)絲線對(duì)豎直方向的偏角大小顯示出來(lái)。觀察實(shí)驗(yàn)發(fā)現(xiàn)帶電小球在P1、P2、P3 各點(diǎn)受到的A的作用力依次減??;再增大
4、絲線下端帶電小球的電量,觀察實(shí)驗(yàn)發(fā)現(xiàn),在同一位置小球受到的A的作用力增大了。
教師總結(jié):該實(shí)驗(yàn)說(shuō)明了電荷之間的相互作用力大小與電量的大小、電荷間距離的大小有關(guān),電量越大,距離越近,作用力就越大;反之電量越小,距離越遠(yuǎn),作用力就越小。作用力的方向,可用同種電荷相斥,異種電荷相吸的規(guī)律確定。教師補(bǔ)充說(shuō)明,考慮到帶電體的受力是所帶電荷受力的合力的問(wèn)題,這個(gè)靜電力大小其實(shí)還會(huì)與物體的體積、形狀、電荷分布有關(guān)。因此,我們今天只研究一個(gè)簡(jiǎn)化的模型——點(diǎn)電荷。(回顧:質(zhì)點(diǎn)的概念,當(dāng)物體的形狀與兩物體間的距離相比可以忽略的時(shí)候,可以忽略物體的形狀和大小,將物體看做質(zhì)點(diǎn)。)
板書:1、當(dāng)帶電體的尺寸與它們之
5、間的距離相比可以忽略的時(shí)候,可以將帶電體看作點(diǎn)電荷。
什么是點(diǎn)電荷?簡(jiǎn)而言之,帶電的質(zhì)點(diǎn)就是點(diǎn)電荷。點(diǎn)電荷的電量、位置可以準(zhǔn)確地確定下來(lái)。正像質(zhì)點(diǎn)是理想的模型一樣,點(diǎn)電荷也是理想化模型。真正的點(diǎn)電荷是不存在的,但是,如果帶電體間的距離比它們的大小大得多,以致帶電體的形狀和大小對(duì)相互作用力的影響可以忽略不計(jì)時(shí),這樣的帶電體就可以看成點(diǎn)電荷。均勻帶電球體或均勻帶電球殼也可看成一個(gè)處于該球球心,帶電量與該球相同的點(diǎn)電荷。
iii. 如何設(shè)計(jì)實(shí)驗(yàn)來(lái)尋找關(guān)系式?(方法——控制變量)
先要保持帶電物體的電荷大小不變,改變其距離,探究靜電力與距離的關(guān)系,然后再保持兩物體間距不變,改變電量,探究靜電力與
6、電量大小的關(guān)系。
問(wèn)題1——如何測(cè)量靜電力的大???(可參考前面定性實(shí)驗(yàn)的方法,將帶電體用細(xì)絲線吊起來(lái),就可從偏角的大小和重力的大小計(jì)算出電場(chǎng)力的大小。)
問(wèn)題2——如何改變電量?(可反復(fù)用與A完全相同的不帶電金屬球來(lái)接觸A,使A的電量不斷減為原來(lái)的1/2,1/4……。
iv. 庫(kù)侖扭秤實(shí)驗(yàn):(參考人教社的課本內(nèi)容)
我國(guó)東漢時(shí)期就發(fā)現(xiàn)了電荷,并已定性掌握了電荷間的相互作用的規(guī)律。而進(jìn)一步將電荷間作用的規(guī)律具體化、數(shù)量化的工作,則是兩千年之后的法國(guó)物理學(xué)家?guī)靵?,他用精確實(shí)驗(yàn)研究了靜止的點(diǎn)電荷間的相互作用力。于1785年發(fā)現(xiàn)了后來(lái)用他的名字命名的庫(kù)侖定律。
試參照卡文笛許扭秤,說(shuō)出庫(kù)侖扭
7、秤的實(shí)驗(yàn)原理。
2. 庫(kù)侖定律
(1) 庫(kù)侖定律的內(nèi)容和意義:
庫(kù)侖實(shí)驗(yàn)的結(jié)果是:在真空中兩個(gè)電荷間作用力跟它們的電量的乘積成正比,跟它們間的距離的平方成反比,作用力的方向在它們的連線上,這就是庫(kù)侖定律。若兩個(gè)點(diǎn)電荷q1,q2靜止于真空中,距離為r,如圖3所示,則q1受到q2的作用力F12為
板書:2、庫(kù)侖定律
(1)真空中兩個(gè)點(diǎn)電荷的庫(kù)侖力(靜電力)
q2受到q1 的作用力F21與F12互為作用力與反作用力,它們大小相等,方向相反,統(tǒng)稱靜電力,又叫庫(kù)侖力。
若點(diǎn)電荷不是靜止的,而是存在相對(duì)運(yùn)動(dòng),那么它們之間的作用力除了仍存在靜電力之外,還存在相互作用的磁場(chǎng)力。關(guān)于磁場(chǎng)力的知識(shí),
8、今后將會(huì)學(xué)到。
(2) 庫(kù)侖定律適用于真空中兩個(gè)點(diǎn)電荷之間的相互作用力。
板書:(2)庫(kù)侖定律的適用條件:真空中,兩個(gè)點(diǎn)電荷之間的相互作用。
當(dāng)帶電體大小和它們之間的距離相比可以忽略時(shí),可理解為帶電體只為一點(diǎn),電荷集中于該點(diǎn),,r即為兩個(gè)帶電體之間距離。這時(shí)可用庫(kù)侖定率。當(dāng)帶電體是均勻帶電的球體時(shí)也可使用庫(kù)侖定律,r可視為球心連線距離。不均勻就不能使用。
當(dāng)帶電體大小與它們距離相比不可忽略時(shí),電荷不能視為集中一點(diǎn),r不能確定,不適用庫(kù)侖定律。這時(shí)要求兩帶電體間的相互作用,就要用到力的合成的辦法。
例1:手冊(cè)P9/3:半徑為R的兩個(gè)較大金屬球放在絕緣桌面上,若兩球都帶等量同種電荷Q時(shí)相
9、互之間的靜電力為F1,兩球帶等量異種電荷Q和-Q時(shí)相互作用的靜電力為F2,則比較F1和F2的大小為:F1 ∠ F2。
(3) 式中的K是非常重要的物理常數(shù),叫做靜電力恒量,數(shù)值為
板書:(3),
這個(gè)大小是用實(shí)驗(yàn)方法確定的。其單位是由公式中的F、Q、r的單位確定的,使用庫(kù)侖定律計(jì)算時(shí),各物理量的單位必須是:F:N、Q:C、r:m。如果兩個(gè)1C的點(diǎn)電荷在真空中相距1m時(shí)產(chǎn)生的庫(kù)侖力是(大約一百萬(wàn)噸的物體的重)。(可見(jiàn),一方面庫(kù)侖是很大的單位,梳子和頭發(fā)摩擦的帶電量只有不到10-6C,但云層閃電前的電量可達(dá)幾百庫(kù)侖,另一方面也說(shuō)明靜電力比引力強(qiáng)大的多。)
(4) 公式計(jì)算時(shí)不要代入電量
10、的符號(hào),因?yàn)橛?jì)算出的正負(fù)只能代表靜電力是吸引還是排斥,而不能揭示力的真正方向。而且公式, F是Q1對(duì)Q2的作用力,也是Q2對(duì)Q1的作用力的大小,是一對(duì)作用力和反作用力,即大小相等方向相反。不能理解為Q11Q2,受的力也不等。
例2:已知點(diǎn)電荷A電量是B點(diǎn)電荷的2倍,則A對(duì)B作用力大小跟B對(duì)A作用力的比值為( C )
A.2:1 B.1:2 C.1:1 D.不一定
例3:兩個(gè)質(zhì)量都是m的小球,都用細(xì)線拴在同一點(diǎn),兩細(xì)線長(zhǎng)度相等,兩球都帶上正電荷,但甲球電量比乙球多,平衡時(shí)兩細(xì)線分別與豎直方向夾角為θ1和θ2,則二者相比,θ1_____θ2。(答:=)
(5) 庫(kù)侖力也稱為靜
11、電力,它具有力的共性。它與高一時(shí)學(xué)過(guò)的重力,彈力,摩擦力是并列的。它具有力的一切性質(zhì),它是矢量,合成分解時(shí)遵從平行四邊形法則,與其它的力平衡,使物體發(fā)生形變,產(chǎn)生加速度。
3. 庫(kù)侖定律與萬(wàn)有引力定律的比較:
庫(kù)侖定律是電磁學(xué)的基本定律之一。它的建立既是實(shí)驗(yàn)經(jīng)驗(yàn)的總結(jié),也是理論研究的成果。特別是力學(xué)中引力理論的發(fā)展,為靜電學(xué)和靜磁學(xué)提供了理論武器,使電磁學(xué)少走了許多彎路,直接形成了嚴(yán)密的定量規(guī)律。但是如果不是先有萬(wàn)有引力定律的發(fā)現(xiàn),單靠實(shí)驗(yàn)具體數(shù)據(jù)的積累,不知要到何年才能得到嚴(yán)格的庫(kù)侖定律的表達(dá)式。實(shí)際上,整個(gè)靜電學(xué)的發(fā)展,都是在借鑒和利用引力理論的已有成果的基礎(chǔ)上取得的。
我們將從下表
12、中來(lái)系統(tǒng)的認(rèn)識(shí)這兩大定律的關(guān)系,增強(qiáng)我們對(duì)這兩大定律的認(rèn)識(shí)與記憶,以便我們?cè)诮窈蟮膶W(xué)習(xí)當(dāng)中更好的運(yùn)用。
?
萬(wàn)有引力
庫(kù)侖力
公式
F=Gm1m2/r2
F=Kq1q2/r2
產(chǎn)生原因
只要有質(zhì)量就有引力,因此稱為萬(wàn)有引力
存在于電荷間,不光有吸引也可能有排斥
相互作用
吸引力與它們質(zhì)量積成正比
庫(kù)侖力與它們的電量積成正比
相似
遵從牛頓第三定律
與距離的關(guān)系為平方反比
4. 庫(kù)侖定律的應(yīng)用
例4:兩個(gè)完全相同的均勻帶電小球,分別帶電量q1=2C正電荷,q2=4C負(fù)電荷,在真空中相距為r且靜止,相互作用的靜電力為F。
(1)今將q1、q2、r都加倍
13、,相互作用力如何變?(作用力不變)
(2)只改變兩電荷電性,相互作用力如何變?(作用力不變)
(3)只將r 增大4倍,相互作用力如何變?(作用力變?yōu)?F/25,方向不變。)
(4)將兩個(gè)小球接觸一下后,仍放回原處,相互作用力如何變?(接觸后電量先中和,后多余電量等分,作用力大小變?yōu)?F/8,方向由原來(lái)的吸引變?yōu)橥瞥猓?
(5)接上題,為使接觸后,靜電力大小不變應(yīng)如何放置兩球?(將帶電體間距離變?yōu)椋?
例5:如圖所示,把質(zhì)量為0.2克的帶電小球A用絲線吊起,若將帶電量為4×10-8C的小球B靠近它,當(dāng)兩小球在同一高度時(shí)且相距3cm,絲線與豎直方向夾角為45°,此時(shí)小球B受到庫(kù)侖力F=__
14、_________。小球A帶的電量qA=____________。
解析:根據(jù)題給的條件,可知小球A處于平衡狀態(tài),分析小球A受力情況如下圖所示。小球重力mg。絲線拉力T和小球B對(duì)小球A的靜電力F的合力為零。(物體的平衡條件是關(guān)鍵)
題中小球A,B都視為點(diǎn)電荷,它們之間相互吸引,其作用力大小
∴ =>
小球B受到庫(kù)侖力與小球A受到庫(kù)侖力為作用力和反作用力,所以小球B受到的庫(kù)侖力大小為2×10-3N。小球A與小球B相互吸引,B帶正電,小球A帶負(fù)電,所以qA=-0.5×10-8C(負(fù)號(hào)不可缺少)
例6:兩個(gè)正電荷q1與q2電量都是3C,靜止于真空中,相距r=2m。
(1)在它們的連
15、線AB的中點(diǎn)O放入正電荷Q,求Q受的靜電力。
(2)在O點(diǎn)放入負(fù)電荷 Q,求Q受的靜電力。((1)(2)題電荷Q受力為零。)
(3)在連線上A點(diǎn)的左側(cè) C點(diǎn)放上負(fù)點(diǎn)電荷q3,q3=1C且AC=1m,求q3所受靜電力。
解 當(dāng)一個(gè)點(diǎn)電荷受到幾個(gè)點(diǎn)電荷的靜電力作用時(shí),可用力的獨(dú)立性原理求解,即用庫(kù)侖定律計(jì)算每一個(gè)電荷的作用力,就像其他電荷不存在一樣,再求各力的矢量和。
(3)q3受引力F31與引力F32,方向均向右,合力為:
例7:如上圖所示,等邊三角形ABC,邊長(zhǎng)為L(zhǎng),在頂點(diǎn)A、B處有等量異性點(diǎn)電荷QA,QB,,QA=+Q,QB=-Q,求在頂點(diǎn)C處的點(diǎn)電荷QC所受的靜電力。
16、解析:分析QC受幾個(gè)力,確定各力大小和方向。
因QB的存在QA對(duì)QC的作用力,還遵守庫(kù)侖定律嗎?
QC題目中沒(méi)有交待電性,解答時(shí)就需考慮兩種情況,即QC為正電,QC為負(fù)電。
當(dāng)QC為正電時(shí),受力情況如中圖所示,QA、QB對(duì)QC的作用力大小和方向都不因其它電荷的存在而改變,仍然遵守庫(kù)侖定律的規(guī)律。
QA對(duì)QC作用力:,同性電荷相斥。QB對(duì)QC作用力:,異性電荷相吸。 ∵QA=QB=Q ∴FA=FB
根據(jù)平行四邊形法則,QC受的力F1即為FA、FB的合力,根據(jù)幾何知識(shí)可知,QC受力的大小,F(xiàn)1=FA=FB=,方向?yàn)槠叫蠥B連線向右。
當(dāng)QC為負(fù)電時(shí),如圖3所示。方向平行AB連線向左。
17、
從本題解答可知:(1)靜電力合成分解時(shí)遵守平行四邊形法則。(2)題中不交待電性時(shí),需根據(jù)題給的條件判斷其電性,若不能判斷電性,應(yīng)按兩種情況處理。(3)求靜電力時(shí)要計(jì)算其大小還要回答力的方向。
例8:相距為L(zhǎng)的點(diǎn)電荷A、B的帶電量分為+4Q和-Q,要引進(jìn)第三個(gè)點(diǎn)電荷C,使三個(gè)點(diǎn)電荷在庫(kù)侖力作用下都能處于平衡狀態(tài),試求C電荷的電量和放置的位置?
解析:如圖所示,首先分析點(diǎn)電荷C可能放置的位置,三個(gè)點(diǎn)電荷都處于平衡,彼此之間作用力必須在一條直線上,C只能在AB決定的直線上,不能在直線之外。而可能的區(qū)域有3個(gè),一是AB間,A與B帶異性電荷互相吸引,C電荷必須與A、B均產(chǎn)生推斥力,這不可能。二是
18、在BA連線的延長(zhǎng)線上,此時(shí)C離A近,A帶電荷又多,不能同時(shí)使A、B處于平衡。三是AB延長(zhǎng)線,放B的右側(cè)能滿足A、B同時(shí)處于平衡,C同時(shí)也平衡。
設(shè):點(diǎn)電荷C置于B的右側(cè)且距離B為x,帶電荷為q,則
(A處于平衡)
(B處于平衡)
解方程:q=4Q,x=L
本題的解答過(guò)程,要求學(xué)生能熟練使用庫(kù)侖定律,物體的平衡條件。同時(shí)要求學(xué)生有比較強(qiáng)的分析問(wèn)題,解決問(wèn)題的能力。
【課堂練習(xí)】
庫(kù)侖定律的應(yīng)用
【課后作業(yè)】
1、 第一課時(shí):完成點(diǎn)電荷概念、庫(kù)侖定律的教學(xué),熟悉公式,初步應(yīng)用定律結(jié)合平衡條件解題
課本P14-12、3、,教材全練P3-4
2、 第二課時(shí):鞏固庫(kù)侖定律,會(huì)用疊加解靜電力的合成,進(jìn)一步應(yīng)用力學(xué)知識(shí)與定律綜合解題
課本P14 4、5,教材全練P5-6
【課后反思】