《2022年高考數(shù)學(xué)分項(xiàng)匯編 專題9 圓錐曲線(含解析)理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)分項(xiàng)匯編 專題9 圓錐曲線(含解析)理(20頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)分項(xiàng)匯編 專題9 圓錐曲線(含解析)理
一.基礎(chǔ)題組
1. 【xx課標(biāo)Ⅰ,理4】已知為雙曲線:的一個(gè)焦點(diǎn),則點(diǎn)到的一條漸近線的距離為( )
A. B. 3 C. D.
【答案】A
2. 【xx課標(biāo)全國(guó)Ⅰ,理4】已知雙曲線C:(a>0,b>0)的離心率為,則C的漸近線方程為( ).
A.y= B.y= C.y= D.y=±x
【答案】:C
3. 【xx全國(guó),理4】設(shè)F1,F(xiàn)2是橢圓E:(a>b>0)的左、右焦點(diǎn),P為直線上一點(diǎn),△F2PF1是底角為30°的等腰三角形,則E的離心率為(
2、 )
A. B. C. D.
【答案】C
4. 【xx全國(guó)新課標(biāo),理7】設(shè)直線l過(guò)雙曲線C的一個(gè)焦點(diǎn),且與C的一條對(duì)稱軸垂直,l與C交于A,B兩點(diǎn),|AB|為C的實(shí)軸長(zhǎng)的2倍,則C的離心率為( )
A. B. C. 2 D. 3
【答案】B
5. 【xx全國(guó)卷Ⅰ,理4】設(shè)雙曲線(a>0,b>0)的漸近線與拋物線y=x2+1相切,則該雙曲線的離心率等于( )
A. B.2 C. D.
【答案】:C
6. 【xx
3、全國(guó),理3】雙曲線mx2+y2=1的虛軸長(zhǎng)是實(shí)軸長(zhǎng)的2倍,則m=( )
(A) (B)-4 (C)4 (D)
【答案】A
7. 【xx全國(guó)1,理5】已知雙曲線的一條準(zhǔn)線與拋物線的準(zhǔn)線重合,則該雙曲線的離心率為( )
A. B. C. D.
【答案】D
8. 【xx全國(guó)1,理14】已知拋物線的焦點(diǎn)是坐標(biāo)原點(diǎn),則以拋物線與兩坐標(biāo)軸的三個(gè)交點(diǎn)為頂點(diǎn)的三角形面積為 .
【答案】:2.
9. 【xx課標(biāo)Ⅰ,理20】(本小題滿分12分)
已知點(diǎn)A,橢圓E:的離心率為;F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn)
(I)
4、求E的方程;
(II)設(shè)過(guò)點(diǎn)A的動(dòng)直線與E 相交于P,Q兩點(diǎn)。當(dāng)?shù)拿娣e最大時(shí),求的直線方程.
【答案】(I);(II)或.
10. 【xx全國(guó)1,理21】
已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,斜率為1且過(guò)橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),與共線.
(1)求橢圓的離心率;
(2)設(shè)M為橢圓上任意一點(diǎn),且,證明為定值.
11. 【xx高考新課標(biāo)1,理5】已知M()是雙曲線C:上的一點(diǎn),是C上的兩個(gè)焦點(diǎn),若,則的取值范圍是( )
(A)(-,) (B)(-,)
(C)(,) (D)(,)
【答案】A
【考點(diǎn)定位】
5、雙曲線的標(biāo)準(zhǔn)方程;向量數(shù)量積坐標(biāo)表示;一元二次不等式解法.
12. 【xx高考新課標(biāo)1,理14】一個(gè)圓經(jīng)過(guò)橢圓的三個(gè)頂點(diǎn),且圓心在x軸的正半軸上,則該圓的標(biāo)準(zhǔn)方程為 .
【答案】
【考點(diǎn)定位】橢圓的幾何性質(zhì);圓的標(biāo)準(zhǔn)方程
二.能力題組
1. 【xx課標(biāo)Ⅰ,理10】已知拋物線C:的焦點(diǎn)為F,準(zhǔn)線為,P是上一點(diǎn),Q是直線PF與C得一個(gè)焦點(diǎn),若,則( )
A. B. C. D.
【答案】B
2. 【xx課標(biāo)全國(guó)Ⅰ,理10】已知橢圓E:(a>b>0)的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交E于A,B兩點(diǎn).
6、若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( ).
A. B. C. D.
【答案】:D
3. 【xx全國(guó),理8】等軸雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,C與拋物線y2=16x的準(zhǔn)線交于A,B兩點(diǎn),,則C的實(shí)軸長(zhǎng)為( )
A. B. C.4 D.8
【答案】C
4. 【xx全國(guó),理8】拋物線y=-x2上的點(diǎn)到直線的距離的最小值是( )
(A) (B) (C) (D)3
【答案】B
5. 【xx全國(guó)新課標(biāo),理14】在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)F
7、1,F(xiàn)2在x軸上,離心率為.過(guò)F1的直線l交C于A,B兩點(diǎn),且△ABF2的周長(zhǎng)為16,那么C的方程為_(kāi)_________.
【答案】
6. 【xx全國(guó)1,理15】在中,,.若以為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn),則該橢圓的離心率 .
【答案】:.
7. 【xx全國(guó),理20】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn).
(1)若∠BFD=90°,△ABD的面積為,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.
8、
8. 【xx新課標(biāo),理20】(12分)(理)設(shè)F1,F(xiàn)2分別是橢圓E:+=1(a>b>0)的左、右焦點(diǎn),過(guò)F1斜率為1的直線l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求E的離心率;
(2)設(shè)點(diǎn)P(0,-1)滿足|PA|=|PB|,求E的方程.
9. 【xx全國(guó)卷Ⅰ,理21】
如圖,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個(gè)點(diǎn).
(Ⅰ)求r的取值范圍;
(Ⅱ)當(dāng)四邊形ABCD的面積最大時(shí),求對(duì)角線AC、BD的交點(diǎn)P的坐標(biāo).
三.拔高題組
1. 【xx全國(guó),理10】已知拋
9、物線C:y2=4x的焦點(diǎn)為F,直線y=2x-4與C交于A,B兩點(diǎn),則cos∠AFB=( )
A. B. C. D.
【答案】:D
2. 【xx新課標(biāo),理12】已知雙曲線E的中心為原點(diǎn),F(xiàn)(3,0)是E 的焦點(diǎn),過(guò)F的直線l與E相交于A,B兩點(diǎn),且AB的中點(diǎn)為N(-12,-15),則E的方程為( )
A.-=1 B.-=1 C.-=1 D.-=1
【答案】:B
3. 【xx全國(guó)卷Ⅰ,理12】已知橢圓C:的右焦點(diǎn)為F,右準(zhǔn)線為l,點(diǎn)A∈l,線段AF交C于點(diǎn)B.若,則||=( )
A.
10、 B.2 C. D.3
【答案】:A
【解析】:(方法一)
4. 【xx全國(guó)新課標(biāo),理20】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線y=-3上,M點(diǎn)滿足∥,,M點(diǎn)的軌跡為曲線C.
(1)求C的方程;
(2)P為C上的動(dòng)點(diǎn),l為C在P點(diǎn)處的切線,求O點(diǎn)到l距離的最小值.
5. 【xx全國(guó),理21】已知O為坐標(biāo)原點(diǎn),F(xiàn)為橢圓C:在y軸正半軸上的焦點(diǎn),過(guò)F且斜率為的直線l與C交于A,B兩點(diǎn),點(diǎn)P滿足
(1)證明:點(diǎn)P在C上;
(2)設(shè)點(diǎn)P關(guān)于點(diǎn)O的對(duì)稱點(diǎn)為Q,證明:A
11、,P,B,Q四點(diǎn)在同一圓上.
6. 【xx全國(guó)1,理21】(本小題滿分12分)
雙曲線的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線分別為,經(jīng)過(guò)右焦點(diǎn)垂直于的直線分別交于兩點(diǎn).已知成等差數(shù)列,且與同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè)被雙曲線所截得的線段的長(zhǎng)為4,求雙曲線的方程.
7. 【xx全國(guó),理20】
在平面直角坐標(biāo)系xOy中,有一個(gè)以和為焦點(diǎn)、離心率為的橢圓,設(shè)橢圓在第一象限的部分為曲線C,動(dòng)點(diǎn)P在C上,C在點(diǎn)P處的切線與x、y軸的交點(diǎn)分別為A、B,且向量,求:
(Ⅰ)點(diǎn)M的軌跡方程;
(Ⅱ)的最小值。
8. 【xx高考新課標(biāo)1,理20】在直角坐標(biāo)系中,曲線C:y=與直線(>0)交與M,N兩點(diǎn),
(Ⅰ)當(dāng)k=0時(shí),分別求C在點(diǎn)M和N處的切線方程;
(Ⅱ)y軸上是否存在點(diǎn)P,使得當(dāng)k變動(dòng)時(shí),總有∠OPM=∠OPN?說(shuō)明理由.
【答案】(Ⅰ)或(Ⅱ)存在