高中數(shù)學(xué)競賽教材講義 第十一章 圓錐曲線講義

上傳人:仙*** 文檔編號:77538503 上傳時(shí)間:2022-04-20 格式:DOC 頁數(shù):24 大?。?.09MB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué)競賽教材講義 第十一章 圓錐曲線講義_第1頁
第1頁 / 共24頁
高中數(shù)學(xué)競賽教材講義 第十一章 圓錐曲線講義_第2頁
第2頁 / 共24頁
高中數(shù)學(xué)競賽教材講義 第十一章 圓錐曲線講義_第3頁
第3頁 / 共24頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué)競賽教材講義 第十一章 圓錐曲線講義》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)競賽教材講義 第十一章 圓錐曲線講義(24頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 第十一章 圓錐曲線 一、基礎(chǔ)知識 1.橢圓的定義,第一定義:平面上到兩個(gè)定點(diǎn)的距離之和等于定長(大于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的軌跡,即|PF1|+|PF2|=2a (2a>|F1F2|=2c). 第二定義:平面上到一個(gè)定點(diǎn)的距離與到一條定直線的距離之比為同一個(gè)常數(shù)e(0

2、程,如果以橢圓的中心為原點(diǎn),焦點(diǎn)所在的直線為坐標(biāo)軸建立坐標(biāo)系,由定義可求得它的標(biāo)準(zhǔn)方程,若焦點(diǎn)在x軸上,列標(biāo)準(zhǔn)方程為 (a>b>0), 參數(shù)方程為(為參數(shù))。 若焦點(diǎn)在y軸上,列標(biāo)準(zhǔn)方程為 (a>b>0)。 3.橢圓中的相關(guān)概念,對于中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓 , a稱半長軸長,b稱半短軸長,c稱為半焦距,長軸端點(diǎn)、短軸端點(diǎn)、兩個(gè)焦點(diǎn)的坐標(biāo)分別為(±a, 0), (0, ±b), (±c, 0);與左焦點(diǎn)對應(yīng)的準(zhǔn)線(即第二定義中的定直線)為,與右焦點(diǎn)對應(yīng)的準(zhǔn)線為;定義中的比e稱為離心率,且,由c2+b2=a2知0

3、.橢圓的焦半徑公式:對于橢圓1(a>b>0), F1(-c, 0), F2(c, 0)是它的兩焦點(diǎn)。若P(x, y)是橢圓上的任意一點(diǎn),則|PF1|=a+ex, |PF2|=a-ex. 5.幾個(gè)常用結(jié)論:1)過橢圓上一點(diǎn)P(x0, y0)的切線方程為 ; 2)斜率為k的切線方程為; 3)過焦點(diǎn)F2(c, 0)傾斜角為θ的弦的長為 。 6.雙曲線的定義,第一定義: 滿足||PF1|-|PF2||=2a(2a<2c=|F1F2|, a>0)的點(diǎn)P的軌跡; 第二定義:到定點(diǎn)的距離與到定直線距離之比為常數(shù)e(>1)的點(diǎn)的軌跡。 7.雙曲線的方程:中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線方程為

4、 , 參數(shù)方程為(為參數(shù))。 焦點(diǎn)在y軸上的雙曲線的標(biāo)準(zhǔn)方程為 。 8.雙曲線的相關(guān)概念,中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線 (a, b>0), a稱半實(shí)軸長,b稱為半虛軸長,c為半焦距,實(shí)軸的兩個(gè)端點(diǎn)為(-a, 0), (a, 0). 左、右焦點(diǎn)為F1(-c,0), F2(c, 0),對應(yīng)的左、右準(zhǔn)線方程分別為離心率,由a2+b2=c2知e>1。兩條漸近線方程為,雙曲線與有相同的漸近線,它們的四個(gè)焦點(diǎn)在同一個(gè)圓上。若a=b,則稱為等軸雙曲線。 9.雙曲線的常用結(jié)論,1)焦半徑公式,對于雙曲線,F(xiàn)1(-c,0), F2(c, 0)是它的兩個(gè)焦點(diǎn)。設(shè)P(x,y)是雙曲線上的任一點(diǎn),

5、若P在右支上,則|PF1|=ex+a, |PF2|=ex-a;若P(x,y)在左支上,則|PF1|=-ex-a,|PF2|=-ex+a. 2) 過焦點(diǎn)的傾斜角為θ的弦長是。 10.拋物線:平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線,點(diǎn)F叫焦點(diǎn),直線l叫做拋物線的準(zhǔn)線。若取經(jīng)過焦點(diǎn)F且垂直于準(zhǔn)線l的直線為x軸,x軸與l相交于K,以線段KF的垂直平分線為y軸,建立直角坐標(biāo)系,設(shè)|KF|=p,則焦點(diǎn)F坐標(biāo)為,準(zhǔn)線方程為,標(biāo)準(zhǔn)方程為y2=2px(p>0),離心率e=1. 11.拋物線常用結(jié)論:若P(x0, y0)為拋物線上任一點(diǎn), 1)焦半徑|PF|=; 2)過點(diǎn)P的切線

6、方程為y0y=p(x+x0); 3)過焦點(diǎn)傾斜角為θ的弦長為。 12.極坐標(biāo)系,在平面內(nèi)取一個(gè)定點(diǎn)為極點(diǎn)記為O,從O出發(fā)的射線為極軸記為Ox軸,這樣就建立了極坐標(biāo)系,對于平面內(nèi)任意一點(diǎn)P,記|OP|=ρ,∠xOP=θ,則由(ρ,θ)唯一確定點(diǎn)P的位置,(ρ,θ)稱為極坐標(biāo)。 13.圓錐曲線的統(tǒng)一定義:到定點(diǎn)的距離與到定直線的距離的比為常數(shù)e的點(diǎn)P,若01,則點(diǎn)P的軌跡為雙曲線的一支;若e=1,則點(diǎn)P的軌跡為拋物線。這三種圓錐曲線統(tǒng)一的極坐標(biāo)方程為。 二、方法與例題 1.與定義有關(guān)的問題。 例1 已知定點(diǎn)A(2,1),F(xiàn)是橢圓的左焦點(diǎn),點(diǎn)P為橢圓

7、上的動(dòng)點(diǎn),當(dāng)3|PA|+5|PF|取最小值時(shí),求點(diǎn)P的坐標(biāo)。 [解] 見圖11-1,由題設(shè)a=5, b=4, c==3,.橢圓左準(zhǔn)線的方程為,又因?yàn)?,所以點(diǎn)A在橢圓內(nèi)部,又點(diǎn)F坐標(biāo)為(-3,0),過P作PQ垂直于左準(zhǔn)線,垂足為Q。由定義知,則|PF|=|PQ|。 所以3|PA|+5|PF|=3(|PA|+|PF|)=3(|PA|+|PQ|)≥3|AM|(AM左準(zhǔn)線于M)。 所以當(dāng)且僅當(dāng)P為AM與橢圓的交點(diǎn)時(shí),3|PA|+5|PF|取最小值,把y=1代入橢圓方程得,又x<0,所以點(diǎn)P坐標(biāo)為 例2 已知P,為雙曲線C:右支上兩點(diǎn),延長線交右準(zhǔn)線于K,PF1延長線交雙曲線于Q,(F1為右

8、焦點(diǎn))。求證:∠F1K=∠KF1Q. [證明] 記右準(zhǔn)線為l,作PDl于D,于E,因?yàn)?/PD,則,又由定義,所以,由三角形外角平分線定理知,F(xiàn)1K為∠PF1P的外角平分線,所以∠=∠KF1Q。 2.求軌跡問題。 例3 已知一橢圓及焦點(diǎn)F,點(diǎn)A為橢圓上一動(dòng)點(diǎn),求線段FA中點(diǎn)P的軌跡方程。 [解法一] 利用定義,以橢圓的中心為原點(diǎn)O,焦點(diǎn)所在的直線為x軸,建立直角坐標(biāo)系,設(shè)橢圓方程:=1(a>b>0).F坐標(biāo)為(-c, 0).設(shè)另一焦點(diǎn)為。連結(jié),OP,則。所以|FP|+|PO|=(|FA|+|A|)=a. 所以點(diǎn)P的軌跡是以F,O為兩焦點(diǎn)的橢圓(因?yàn)閍>|FO|=c),將此橢圓

9、按向量m=(,0)平移,得到中心在原點(diǎn)的橢圓:。由平移公式知,所求橢圓的方程為 [解法二] 相關(guān)點(diǎn)法。設(shè)點(diǎn)P(x,y), A(x1, y1),則,即x1=2x+c, y1=2y. 又因?yàn)辄c(diǎn)A在橢圓上,所以代入得關(guān)于點(diǎn)P的方程為。它表示中心為,焦點(diǎn)分別為F和O的橢圓。 例4 長為a, b的線段AB,CD分別在x軸,y軸上滑動(dòng),且A,B,C,D四點(diǎn)共圓,求此動(dòng)圓圓心P的軌跡。 [解] 設(shè)P(x, y)為軌跡上任意一點(diǎn),A,B,C,D的坐標(biāo)分別為A(x-,0), B(x+,0), C(0, y-), D(0, y+), 記O為原點(diǎn),由圓冪定理知|OA|?|OB|=|OC|?|OD|,用

10、坐標(biāo)表示為,即 當(dāng)a=b時(shí),軌跡為兩條直線y=x與y=-x; 當(dāng)a>b時(shí),軌跡為焦點(diǎn)在x軸上的兩條等軸雙曲線; 當(dāng)a

11、兩邊平方,再將①,②代入得。即為所求。 3.定值問題。 例6 過雙曲線(a>0, b>0)的右焦點(diǎn)F作B1B2軸,交雙曲線于B1,B2兩點(diǎn),B2與左焦點(diǎn)F1連線交雙曲線于B點(diǎn),連結(jié)B1B交x軸于H點(diǎn)。求證:H的橫坐標(biāo)為定值。 [證明] 設(shè)點(diǎn)B,H,F(xiàn)的坐標(biāo)分別為(asecα,btanα), (x0, 0), (c, 0),則F1,B1,B2的坐標(biāo)分別為(-c, 0), (c, ), (c, ),因?yàn)镕1,H分別是直線B2F,BB1與x軸的交點(diǎn),所以 ① 所以 。 由①得 代入上式得 即 (定值)。 注:本例也可借助梅涅勞斯定理證明,讀者不妨一試。 例

12、7 設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),點(diǎn)C在準(zhǔn)線上,且BC//x軸。證明:直線AC經(jīng)過定點(diǎn)。 [證明] 設(shè),則,焦點(diǎn)為,所以,,,。由于,所以?y2-y1=0,即=0。因?yàn)?,所以。所以,即。所以,即直線AC經(jīng)過原點(diǎn)。 例8 橢圓上有兩點(diǎn)A,B,滿足OAOB,O為原點(diǎn),求證:為定值。 [證明] 設(shè)|OA|=r1,|OB|=r2,且∠xOA=θ,∠xOB=,則點(diǎn)A,B的坐標(biāo)分別為A(r1cosθ, r1sinθ),B(-r2sinθ,r2cosθ)。由A,B在橢圓上有 即 ① ② ①+②得(定值)。 4.

13、最值問題。 例9 設(shè)A,B是橢圓x2+3y2=1上的兩個(gè)動(dòng)點(diǎn),且OAOB(O為原點(diǎn)),求|AB|的最大值與最小值。 [解] 由題設(shè)a=1,b=,記|OA|=r1,|OB|=r2,,參考例8可得=4。設(shè)m=|AB|2=, 因?yàn)?,且a2>b2,所以,所以b≤r1≤a,同理b≤r2≤a.所以。又函數(shù)f(x)=x+在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)t=1即|OA|=|OB|時(shí),|AB|取最小值1;當(dāng)或時(shí),|AB|取最大值。 例10 設(shè)一橢圓中心為原點(diǎn),長軸在x軸上,離心率為,若圓C:1上點(diǎn)與這橢圓上點(diǎn)的最大距離為,試求這個(gè)橢圓的方程。 [解] 設(shè)A,B分別為圓C和橢圓上動(dòng)點(diǎn)。由題設(shè)圓

14、心C坐標(biāo)為,半徑|CA|=1,因?yàn)閨AB|≤|BC|+|CA|=|BC|+1,所以當(dāng)且僅當(dāng)A,B,C共線,且|BC|取最大值時(shí),|AB|取最大值,所以|BC|最大值為 因?yàn)?;所以可設(shè)橢圓半長軸、半焦距、半短軸長分別為2t,,t,橢圓方程為,并設(shè)點(diǎn)B坐標(biāo)為B(2tcosθ,tsinθ),則|BC|2=(2tcosθ)2+=3t2sin2θ-3tsinθ++4t2=-3(tsinθ+)2+3+4t2. 若,則當(dāng)sinθ=-1時(shí),|BC|2取最大值t2+3t+,與題設(shè)不符。 若t>,則當(dāng)sinθ=時(shí),|BC|2取最大值3+4t2,由3+4t2=7得t=1. 所以橢圓方程為。 5.直線與二次

15、曲線。 例11 若拋物線y=ax2-1上存在關(guān)于直線x+y=0成軸對稱的兩點(diǎn),試求a的取值范圍。 [解] 拋物線y=ax2-1的頂點(diǎn)為(0,-1),對稱軸為y軸,存在關(guān)于直線x+y=0對稱兩點(diǎn)的條件是存在一對點(diǎn)P(x1,y1),(-y1,-x1),滿足y1=a且-x1=a(-y1)2-1,相減得x1+y1=a(),因?yàn)镻不在直線x+y=0上,所以x1+y1≠0,所以1=a(x1-y1),即x1=y1+ 所以此方程有不等實(shí)根,所以,求得,即為所求。 例12 若直線y=2x+b與橢圓相交,(1)求b的范圍;(2)當(dāng)截得弦長最大時(shí),求b的值。 [解] 二方程聯(lián)立得17x2+16bx+

16、4(b2-1)=0.由Δ>0,得0),則動(dòng)點(diǎn)的軌跡是________. 3.橢圓上有一點(diǎn)P,它到左準(zhǔn)線的距離是10,它到右焦點(diǎn)的距離是________. 4.雙曲線方程,則k的取值范圍是________. 5.橢圓,焦點(diǎn)為F1,F(xiàn)2,橢圓上的點(diǎn)P滿足∠F1PF2=600,則ΔF1PF2的面積是___

17、_____. 6.直線l被雙曲線所截的線段MN恰被點(diǎn)A(3,-1)平分,則l的方程為________. 7.ΔABC的三個(gè)頂點(diǎn)都在拋物線y2=32x上,點(diǎn)A(2,8),且ΔABC的重心與這條拋物線的焦點(diǎn)重合,則直線BC的斜率為________. 8.已知雙曲線的兩條漸近線方程為3x-4y-2=0和3x+4y-10=0,一條準(zhǔn)線方程為5y+4=0,則雙曲線方程為________. 9.已知曲線y2=ax,與其關(guān)于點(diǎn)(1,1)對稱的曲線有兩個(gè)不同的交點(diǎn),如果過這兩個(gè)交點(diǎn)的直線的傾斜角為450,那么a=________. 10.P為等軸雙曲線x2-y2=a2上一點(diǎn),的取值范圍是______

18、__. 11.已知橢圓與雙曲線有公共的焦點(diǎn)F1,F(xiàn)2,設(shè)P是它們的一個(gè)焦點(diǎn),求∠F1PF2和ΔPF1F2的面積。 12.已知(i)半圓的直徑AB長為2r;(ii)半圓外的直線l與BA的延長線垂直,垂足為T,設(shè)|AT|=2a(2a<);(iii)半圓上有相異兩點(diǎn)M,N,它們與直線l的距離|MP|,|NQ|滿足求證:|AM|+|AN|=|AB|。 13.給定雙曲線過點(diǎn)A(2,1)的直線l與所給的雙曲線交于點(diǎn)P1和P2,求線段P1P2的中點(diǎn)的軌跡方程。 四、高考水平測試題 1.雙曲線與橢圓x2+4y2=64共焦點(diǎn),它的一條漸近線方程是=0,則此雙曲線的標(biāo)準(zhǔn)方程是_________. 2.

19、過拋物線焦點(diǎn)F的直線與拋物線相交于A,B兩點(diǎn),若A,B在拋物線準(zhǔn)線上的射影分別是A1,B1,則∠A1FB1=_________. 3.雙曲線的一個(gè)焦點(diǎn)為F1,頂點(diǎn)為A1,A2,P是雙曲線上任一點(diǎn),以|PF1|為直徑的圓與以|A1A2|為直徑的圓的位置關(guān)系為_________. 4.橢圓的中心在原點(diǎn),離心率,一條準(zhǔn)線方程為x=11,橢圓上有一點(diǎn)M橫坐標(biāo)為-1,M到此準(zhǔn)線異側(cè)的焦點(diǎn)F1的距離為_________. 5.4a2+b2=1是直線y=2x+1與橢圓恰有一個(gè)公共點(diǎn)的_________條件. 6.若參數(shù)方程(t為參數(shù))表示的拋物線焦點(diǎn)總在一條定直線上,這條直線的方程是________

20、_. 7.如果直線y=kx+1與焦點(diǎn)在x軸上的橢圓總有公共點(diǎn),則m的范圍是_________. 8.過雙曲線的左焦點(diǎn),且被雙曲線截得線段長為6的直線有_________條. 9.過坐標(biāo)原點(diǎn)的直線l與橢圓相交于A,B兩點(diǎn),若以AB為直徑的圓恰好通過橢圓的右焦點(diǎn)F,則直線l的傾斜角為_________. 10.以橢圓x2+a2y2=a2(a>1)的一個(gè)頂點(diǎn)C(0,1)為直角頂點(diǎn)作此橢圓的內(nèi)接等腰直角三角形ABC,這樣的三角形最多可作_________個(gè). 11.求橢圓上任一點(diǎn)的兩條焦半徑夾角θ的正弦的最大值。 12.設(shè)F,O分別為橢圓的左焦點(diǎn)和中心,對于過點(diǎn)F的橢圓的任意弦AB,點(diǎn)O都

21、在以AB為直徑的圓內(nèi),求橢圓離心率e的取值范圍。 13.已知雙曲線C1:(a>0),拋物線C2的頂點(diǎn)在原點(diǎn)O,C2的焦點(diǎn)是C1的左焦點(diǎn)F1。 (1)求證:C1,C2總有兩個(gè)不同的交點(diǎn)。 (2)問:是否存在過C2的焦點(diǎn)F1的弦AB,使ΔAOB的面積有最大值或最小值?若存在,求直線AB的方程與SΔAOB的最值,若不存在,說明理由。 五、聯(lián)賽一試水平訓(xùn)練題 1.在平面直角坐標(biāo)系中,若方程m(x2+y2+2y+1)=(x-2y+3)2表示的曲線為橢圓,則m的取值范圍是_________. 2.設(shè)O為拋物線的頂點(diǎn),F(xiàn)為焦點(diǎn),且PQ為過F的弦,已知|OF|=a,|PQ|=b,ΔOPQ面積為__

22、_______. 3.給定橢圓,如果存在過左焦點(diǎn)F的直線交橢圓于P,Q兩點(diǎn),且OPOQ,則離心率e的取值范圍是_________. 4.設(shè)F1,F(xiàn)2分別是雙曲線(a>b>0)的左、右焦點(diǎn),P為雙曲線上的動(dòng)點(diǎn),過F1作∠F1PF2平分線的垂線,垂足為M,則M的軌跡為_________. 5.ΔABC一邊的兩頂點(diǎn)坐標(biāo)為B(0,)和C(0,),另兩邊斜率的乘積為,若點(diǎn)T坐標(biāo)為(t,0)(t∈R+),則|AT|的最小值為_________. 6.長為l(l<1)的線段AB的兩端點(diǎn)在拋物線y=x2上滑動(dòng),則線段AB的中點(diǎn)M到x軸的最短距離等于_________. 7.已知拋物線y2=2px及定

23、點(diǎn)A(a,b),B(-a,0),ab≠0,b2≠2pa,M是拋物線上的點(diǎn),設(shè)直線AM,BM與拋物線的另一個(gè)交點(diǎn)分別為M1,M2,當(dāng)M變動(dòng)時(shí),直線M1M2恒過一個(gè)定點(diǎn),此定點(diǎn)坐標(biāo)為_________. 8.已知點(diǎn)P(1,2)既在橢圓內(nèi)部(含邊界),又在圓x2+y2=外部(含邊界),若a,b∈R+,則a+b的最小值為_________. 9.已知橢圓的內(nèi)接ΔABC的邊AB,AC分別過左、右焦點(diǎn)F1,F(xiàn)2,橢圓的左、右頂點(diǎn)分別為D,E,直線DB與直線CE交于點(diǎn)P,當(dāng)點(diǎn)A在橢圓上變動(dòng)時(shí),試求點(diǎn)P的軌跡。 10.設(shè)曲線C1:(a為正常數(shù))與C2:y2=2(x+m)在x軸上方有一個(gè)公共點(diǎn)P。(1)求

24、實(shí)數(shù)m的取值范圍(用a表示); (2)O為原點(diǎn),若C1與x軸的負(fù)半軸交于點(diǎn)A,當(dāng)0

25、i交于Ci(i=0,1),在AB0的延長線上任取點(diǎn)P0,以B0為圓心,B0P0為半徑作圓弧交C1B0的延長線于Q0;以C1為圓心,C1Q0為半徑作圓弧Q0P1交B1A的延長線于P1;B1為圓心,B1P1為半徑作圓弧P1Q1交B1C0的延長線于Q1;以C0為圓心,C0Q1為半徑作圓弧Q1,交AB0的延長線于。求證:(1)點(diǎn)與點(diǎn)P0重合,且圓弧P0Q0與P0Q1相內(nèi)切于P0;(2)P0,Q0,P1,Q1共圓。 4.在坐標(biāo)平面內(nèi),從原點(diǎn)出發(fā)以同一初速度v0和不同發(fā)射角(即發(fā)射方向與x軸正向之間 的夾角)α(α∈[0,π],α≠)射出的質(zhì)點(diǎn),在重力的作用下運(yùn)動(dòng)軌跡是拋物線,所有這些拋物線組成一個(gè)拋物

26、線族,若兩條拋物線在同一個(gè)交點(diǎn)處的切線互相垂直,則稱這個(gè)交點(diǎn)為正交點(diǎn)。證明:此拋物線族的所有正交點(diǎn)的集合是一段橢圓弧,并求此橢圓弧的方程(確定變量取值范圍)。 5.直角ΔABC斜邊為AB,內(nèi)切圓切BC,CA,AB分別于D,E,F(xiàn)點(diǎn),AD交內(nèi)切圓于P點(diǎn)。若CPBP,求證:PD=AE+AP。 6.已知BCCD,點(diǎn)A為BD中點(diǎn),點(diǎn)Q在BC上,AC=CQ,又在BQ上找一點(diǎn)R,使BR=2RQ,CQ上找一點(diǎn)S,使QS=RQ,求證:∠ASB=2∠DRC。 答案: 基礎(chǔ)訓(xùn)練題 1.圓。設(shè)AO交圓于另一點(diǎn)是A關(guān)于的對稱點(diǎn)。則因?yàn)锳B,所以P在以為直徑的圓上。 2.圓或橢圓。設(shè)給定直線為y=±kx(k

27、>0),P(x,y)為軌跡上任一點(diǎn),則?;啚?k2x2+2y2=m2(1+k2). 當(dāng)k≠1時(shí),表示橢圓;當(dāng)k=1時(shí),表示圓。 3.12.由題設(shè)a=10,b=6,c=8,從而P到左焦點(diǎn)距離為10e=10×=8,所以P到右焦點(diǎn)的距離為20-8=12。 4.-25或-2

28、(y1-y2)=0.由,得。故方程y+1=(x-3). 7.-4.設(shè)B(x1,y1),C(x2,y2),則=0,所以y1+y2=-8,故直線BC的斜率為 8.=1。由漸近線交點(diǎn)為雙曲線中心,解方程組得中心為(2,1),又準(zhǔn)線為,知其實(shí)軸平行于y軸,設(shè)其方程為=1。其漸近線方程為=0。所以y-1=(x-1).由題設(shè),將雙曲線沿向量m=(-2,-1)平移后中心在原點(diǎn),其標(biāo)準(zhǔn)方程為=1。由平移公式平移后準(zhǔn)線為,再結(jié)合,解得a2=9,b2=16,故雙曲線為=1。 9.2.曲線y2=ax關(guān)于點(diǎn)(1,1)的對稱曲線為(2-y)2=a(2-x), 由得y2-2y+2-a=0,故y1+y2=2,從而=

29、 =1,所以a=2. 10.(2,]。設(shè)P(x1,y1)及,由|PF1|=ex1+a ,|PF2|=ex1-a,|PF1|+|PF2|=2ex1, 所以,即。因,所以,所以即2

30、得x2+(2a-2r)x+2ra+a2=0,設(shè)點(diǎn)M,N坐標(biāo)分別為(x1,y1),(x2,y2),則x1+x2=2r-2a.又|AM|=|MP|=x1+a,|AN|=|NP|=x2+a. |AB|=2r,所以 |AM|+|AN|=x1+x2+2a=2r=|AB|. 得證。 13.解:若直線l垂直于x軸,因其過點(diǎn)A(2,1),根據(jù)對稱性,P1P2的中點(diǎn)為(2,0)。 若l不垂直于x軸,設(shè)l的方程為y-1=k(x-2),即 y=kx+1-2k. ① 將①代入雙曲線方程消元y得 (2-k2)x2+2k(2k-1)x-(4k2-4k+3)=0. ② 這里且Δ=[2k(2k-1)]

31、2+4(2-k)2(4k2-4k+3)=8(3k2-4k+3)>0, 設(shè)x1,x2是方程②的兩根,由韋達(dá)定理 ③ 由①,③得 y1+y2=kx1+(1-2k)+kx2+(1-2k) =k(x1+x2)+2(1-2k)= ④ 設(shè)P1P2的中點(diǎn)P坐標(biāo)(x,y),由中點(diǎn)公式及③,④得 消去k得 點(diǎn)(2,0)滿足此方程,故這就是點(diǎn)P的軌跡方程。 高考水平測試題 1.由橢圓方程得焦點(diǎn)為,設(shè)雙曲線方程,漸近線為由題設(shè),所以a2=3b2,又,c2=a2+b2. 所以b2=12, a2=36. 2. 900。見圖1,由定義得|FA|=|AA1|,|FB|=|BB1|

32、,有∠1=∠BFB1,∠2=∠AFA1,又∠1=∠3,∠2=∠4,所以∠3+∠4=∠BFB1+∠AFA1=900。 3.相切,若P(x,y)在左支上,設(shè)F1為左焦點(diǎn),F(xiàn)2為右焦點(diǎn),M為PF1中點(diǎn),則|MO|=|PF2|=(a-ex),又|PF1|=-a-ex,所以兩圓半徑之和(-a-ex)+a=(a-ex)=|MO|,所以兩圓外切。當(dāng)P(x,y)在右支上時(shí),同理得兩圓內(nèi)切。 4.與F1對應(yīng)的另一條準(zhǔn)線為x=-11,因|MF1|與M到直線x=-11距離d1之比為e,且d1=|xm+11|=10.所以,所以|MF1|= 5.充要。將y=2x+1代入橢圓方程得(b2+4a2)x2+4a2x+a

33、2 (1-b2)=0. ① 若Δ=(4a2) 2-4(b2+4a2)a2 (1-b2)=0,則直線與橢圓僅有一個(gè)公共點(diǎn),即b2+4a2=1;反之,4a2+b2=1,直線與橢圓有一個(gè)公共點(diǎn)。 6.y=2(x-1)。消去參數(shù)得(y-2m) 2=4(x-m),焦點(diǎn)為它在直線y=2(x-1)上。 7.1≤m<5。直線過定點(diǎn)(0,1),所以0≤1.又因?yàn)榻裹c(diǎn)在x軸上,所以5>m,所以1≤m<5。 8.3.雙曲線實(shí)軸長為6,通徑為4,故線段端點(diǎn)在異支上一條,在同支上有二條,一共有三條。 9.或。設(shè)直線l: y=kx與橢圓交于A(x1,y1),B(x2,y2),把y=kx代入橢圓方程得(1+3

34、k2)x2-6x+3=0,由韋達(dá)定理得 ① ② 因F(1,0),AFBF,所以(x1-1)(x2-1)+y1y2=0,即 x1x2-(x1+x2)+1+k2x1x2=0. ③ 把①,②代入③得,所以傾斜角為或 10.3.首先這樣的三角形一定存在,不妨設(shè)A,B分別位于y軸左、右兩側(cè),設(shè)CA斜率為k(k>0),CA的直線方程為y=kx+1,代入橢圓方程為(a2k2+1)x2+2a2kx=0,得x=0或,于是,|CA|= 由題設(shè),同理可得|CB|=,利用|CA|=|CB|可得 (k-1)[k2-(a2-1)k+1]=0, 解得 k=1或k2-(a2-

35、1)k+1]=0。① 對于①,當(dāng)1時(shí),①有兩個(gè)不等實(shí)根,故最多有3個(gè)。 11.解 設(shè)焦點(diǎn)為F1,F(xiàn)2,橢圓上任一點(diǎn)為P(x0,y0),∠F1PF2=θ,根據(jù)余弦定理得 |F1F2|2=|PF1|2+|PF2|2-2|PF1|?|PF2|cosθ, 又|PF1|+|PF2|=2a,則4c2=(2a)2-2|PF1|?|PF2|(1+cosθ),再將|PF1|=a+ex0,|PF2|=a-ex0及a2=b2+c2代入得4b2=2(a2-e2)(1+cosθ). 于是有 由0,得,所以。因θ∈[0,π],所以cosθ為減函數(shù),故0 當(dāng)2b2>a2

36、即時(shí),,arccos,sinθ為增函數(shù),sinθ取最大值;當(dāng)2b2≤a2時(shí),arccos,θ∈[0,π],則sinθ最大值為1。 12.解 設(shè)A(x1,y1),B(x2,y2),若AB斜率不為0,設(shè)為k,直線AB方程為y=k(x+c),代入橢圓方程并化簡得 (b2+a2k2)x2+2a2k2cx+a2 (k2c2-b2)=0. ① 則x1,x2為方程①的兩根,由韋達(dá)定理得 ② ③ 因?yàn)閥1y2=k2(x1+c)(x2+c),再由②,③得 所以=x1x2+y1y2=,O點(diǎn)在以AB為直徑的圓內(nèi),等價(jià)<0,即k2(a2c2-b4)-a2b2<0對任意k∈R成立,等價(jià)

37、于a2c2-b2≤0,即ac-b2≤0,即e2+e-1≤0.所以00,所以方程②必有兩個(gè)不同實(shí)根,設(shè)為x1,x2,由韋達(dá)定理得x1x2=-a2<0,所以②必有一個(gè)負(fù)根設(shè)為x1,把x1代入①得y2=,所以(因?yàn)閤1≠0),所以C1,C2總有兩個(gè)不同交點(diǎn)。 (2)設(shè)過F1(,0)的直線AB為my=(x+a),由得y2+4may-12a2=0,因?yàn)棣?48m2a2+48a2>0,設(shè)y1,y2分別

38、為A,B的縱坐標(biāo),則y1+y2=,y1y2=-12a2.所以(y1-y2)2=48a2(m2+1).所以SΔAOB=|y1-y2|?|OF1|=a?a?,當(dāng)且僅當(dāng)m=0時(shí),SΔAOB的面積取最小值;當(dāng)m→+∞時(shí),SΔAOB→+∞,無最大值。所以存在過F的直線x=使ΔAOB面積有最小值6a2. 聯(lián)賽一試水平訓(xùn)練題 1.m>5.由已知得,說明(x,y)到定點(diǎn)(0,-1)與到定直線x-2y+3=0的距離比為常數(shù),由橢圓定義<1,所以m>5. 2.因?yàn)閎=|PQ|=|PF|+|QF|=,所以。所以SΔOPQ=absinθ=. 3.。設(shè)點(diǎn)P坐標(biāo)為(r1cosθ,r1sinθ),點(diǎn)Q坐標(biāo)為(-r2

39、sinθ,r2cosθ),因?yàn)镻,Q在橢圓上,可得,RtΔOPQ斜邊上的高為≤|OF|=c. 所以a2b2≤c2(a2+b2),解得≤e<1. 4.以O(shè)為圓心,a為半徑的圓。延長F1M交PF2延長線于N,則F2N,而|F2N|=|PN|-|PF2|=|PF1|-|PF2|=2a,所以|OM|=a. 5.t∈(0,1]時(shí)|AT|min=,t>1時(shí)|AT|min=|t-2|.由題設(shè)kAB?kAC=-,設(shè)A(x,y),則(x≠0),整理得=1(x≠0),所以|AT|2=(x-t)2+y2=(x-t)2+(x-2t)2+2-t2.因?yàn)閨x|≤2,所以當(dāng)t∈(0,1]時(shí)取x=2t,|AT|取最小值。

40、當(dāng)t>1時(shí),取x=2,|AT|取最小值|t-2|. 6.設(shè)點(diǎn)M(x0,y0) ,直線AB傾斜角為θ,并設(shè)A(x0-), B(x0+),因?yàn)锳,B在拋物線上,所以 ① ② 由①,②得 2x0cosθ=sinθ. ③ 所以 因?yàn)閘2<1,所以函數(shù)f(x)=.在(0,1]在遞減, 所以。當(dāng)cosθ=1即l平行于x軸時(shí),距離取最小值 7.設(shè),由A,M,M1共線得y1=,同理B,M,M2共線得,設(shè)(x,y)是直線M1M2上的點(diǎn),則y1y2=y(y1+y2)-2px,將以上三式中消去y1,y2得 y02(2px-by)+y0?2pb(a-x)+2pa(by-2

41、pa)=0. 當(dāng)x=a,y=時(shí)上式恒成立,即定點(diǎn)為 8.。由題設(shè)且a2+2b2≤15,解得5≤b2≤6. 所以a+b≥(t=b2-4∈[1,2]),而 ,又t≤2可得上式成立。 9.解 設(shè)A(2cosθ,), B(2cosα,sinα),C(2cosβ,sinβ),這里α≠β,則過A,B的直線為lAB:,由于直線AB過點(diǎn)F1(-1,0),代入有(sinθ-sinα)?(1+2cosθ)=2sinθ(cosθ-cosα),即2sin(α-θ)=sinθ-sinα=2?,故 ,即?。又lBD: ?(x+2)=,同理得。lCE: (x-2)= ?(x-2). 兩直線方程聯(lián)立,得P點(diǎn)坐

42、標(biāo)為,消去得點(diǎn)P(x,y)在橢圓上(除去點(diǎn)(-2,0),(2,0)). 10.解 (1)由消去y得x2+2a2x+2a2m-a2=0,①設(shè)f(x)=x2+2a2x+2a2m-a2,問題(1)轉(zhuǎn)化為方程①在x∈(-a,a)上有唯一解或等根。只需討論以下三種情況: 10.Δ=0,得,此時(shí)xp=-a2,當(dāng)且僅當(dāng)-a<-a2

43、當(dāng)00,從而時(shí)取值最大,此時(shí),故;當(dāng)時(shí),xp=-a2,yp=,此時(shí)以下比較與的大小。令,得,故當(dāng)0

44、B1坐標(biāo)代入并消去p得k2-k-1=0. 所以,由題設(shè)k>0,所以,從而 所以直線l的方程為,拋物線C的方程為 聯(lián)賽二試水平訓(xùn)練題 1.以A為原點(diǎn),直線AC為x軸,建立直角坐標(biāo)系,設(shè)C(c,0),F(f,0),D(xD,kxD),B(xB,-kxB),則直線DF的方程為 ① 直線BC的方程為 ② c×①-f×②得 (c-f)x+ ③ ③表示一條直線,它過原點(diǎn),也過DF與BC的交點(diǎn)G,因而③就是直線AG的方程。 同理 ,直線AE的方程為 (c-f)x+ ④ ③,④的斜率互為相反數(shù),所以∠GAC=∠EAC。 2.證明 假設(shè)這樣的閉折線存在,不

45、妨設(shè)坐標(biāo)原點(diǎn)是其中一個(gè)頂點(diǎn),記它為A0,其他頂點(diǎn)坐標(biāo)為:,…,,其中都是既約分?jǐn)?shù),并記An+1=A0.若p與q奇偶性相同,則記p≡q,否則記p≠q,下面用數(shù)學(xué)歸納法證明。 bk≡1,dk≡1(k=1,2,…,n),ak+ck≠ak-1+ck-1(k=1,2,…,n,n+1)。 當(dāng)k=1時(shí),由,得,因?yàn)閍1,b1互質(zhì),所以d1被b1整除,反之亦然(即b1被d1整除)。 因此b1=±d1,從而不可能都是偶數(shù)(否則b1也是偶數(shù),與互質(zhì)矛盾);不可能都是奇數(shù),因?yàn)閮蓚€(gè)奇數(shù)的平方和模8余2不是4的倍數(shù),也不可能是完全平方數(shù),因此,a1≠c1,b1≡d1≡1,并且a1+c1≠0=a0+c0. 設(shè)結(jié)

46、論對k=1,2,…,m-1≤n都成立,令 這里是既約分?jǐn)?shù),因?yàn)槊恳欢蔚拈L為1,所以=1,與k=1情況類似:a≡c,d≡b≡1,又因?yàn)?,分?jǐn)?shù)既約,所以bm是bbm-1的一個(gè)因子,bm≡1. 同理可知dm≡1,又am≡abm-1+bam-1(同理cm≡cdm-1+dcm-1). 因此(am+cm-am-1-cm-1)≡(abm-1+bam-1+cdm-1+dcm-1-am-1-cm-1)≡am-1(b-1)+abm-1+cm-1(d-1)+cdm-1≡a+c≡1. 所以am+cm≠am-1+cm-1,結(jié)論成立,于是在頂點(diǎn)數(shù)n+1為奇數(shù)時(shí),an+1+cn+1≠a0+c0,故折線不可能是閉的。

47、 3.證明 (1)由已知B0P0=B0Q0,并由圓弧P0Q0和Q0P0,Q0P1和P1Q1,P1Q1和Q1P1分別相內(nèi)切于點(diǎn)Q0,P1,Q1,得C1B0+B0Q0=C1P1,B1C1+C1P1=B1C0+C0Q1以及C0Q1=C0B0+,四式相加,利用B1C1+C1B0=B1C0+C0B0,以及。在B0P0或其延長線上,有B0P0=B0,從而可知點(diǎn)與點(diǎn)P0重合。由于圓弧Q1P0的圓心C0,圓弧P0Q0的圓心B0以及P0在同一直線上,所以圓弧Q1P0和P0Q0相內(nèi)切于點(diǎn)P0。 (2)現(xiàn)分別過點(diǎn)P0和P1引上述相應(yīng)相切圓弧的公切線P0T和P1T交于點(diǎn)T。又過點(diǎn)Q1引相應(yīng)相切圓弧的公切線R1S

48、1,分別交P0T和P1T于點(diǎn)R1和S1,連接P0Q1和P1Q1,得等腰ΔP0Q1R1和ΔP1Q1S1,由此得∠P0Q1P1=π-∠P0Q1P1-∠P1Q1S1=π-(∠P1P0T-∠Q1P0P)-(∠P0P1T-∠Q1P1P0),而π-∠P0Q1P1=∠Q1P0P1+∠Q1P1P0,代入上式后,即得∠P0Q1P1=π-(∠P0B0Q0+∠P1C1Q0). 同理得∠P0Q0P1=π-(∠P0B0Q0+∠P1C1Q0),所以P0,Q0,Q1,P1共圓。 4.證明 引理:拋物線y=ax2+bx+c(a≠0)在(x0,y0)處的切線斜率是2ax0+b. 引理的證明:設(shè)(x0,y0)處的切線方程

49、為y-y0=k(x-x0),代入拋物線方程得 ax2+(b-k)x+c+kx0-y0=0. ① 又 故①可化簡成 (x-x0)[a(x+x0)+b-k]=0, ② 因?yàn)棰谥挥幸粋€(gè)實(shí)根,所以k=2ax0+b.引理得證。 設(shè)P(x0,y0)為任一正交點(diǎn),則它是由線y=x?tan?x2與y=x?tan?x2的交點(diǎn),則兩條切線的斜率分別為(由引理) 又由題設(shè)k1k2=-1,所以 ③ 又因?yàn)镻(x0,y0)在兩條拋物線上,所以 代入③式得 (※) 又因?yàn)閠anα1,tanα2是方程?t2-t+=0的兩根,所以 tanα1+tanα2=

50、 ④ tanα1?tanα2=。 ⑤ 把④,⑤代入(※)式得 ,即 5.證明 以C為原點(diǎn),CB所在直線為x軸,建立直角坐標(biāo)系,設(shè)∠ADC=θ,|PD|=r.各點(diǎn)坐標(biāo)分別為D(x1,0),E(0,x1),A(0,x1tanθ),B(x0,0),P(x1-rcosθ,rsinθ). 則lAB方程為,即x1x+x0?cotθ?y-x1x0=0,因?yàn)閘AB與圓相切,可得x1?=x0x1?cotθ-x1x0|,約去x1,再兩邊平方得 ,所以?x1. ① 又因?yàn)辄c(diǎn)P在圓上,所以(rcos)2+(x1-rsin)2=,化簡得r=2x1sin. ② 要證DP=AP+AE2DP

51、=AD+AE2r=+x1tan-x11+sin-cos=4sincos. ③ 又因?yàn)椋? 因?yàn)?(x1-x0-rcosθ,rsinθ),=(x1-rcosθ,rsinθ), 所以 (x1-rcosθ)(x1-rcosθ-x0)+r2sin2θ=0. ④ 把②代入④化簡得 ⑤ 由①得x0=x1? 代入⑤并約去x1,化簡得4sin22-3sin2=0,因?yàn)閟in2≠0,所以sin2=,又因?yàn)閟in==cos,所以sin-cos>0. 所以sin-cos=,所以1+sin-cos==4sincos,即③成立。所以DP=AP+AE。 6.證明 設(shè)BC=d,CD=b,BD=c,則AC=CQ=,取BC中點(diǎn)M,則AMBC,以M為原點(diǎn),直線BC為x軸建立直角坐標(biāo)系,則各點(diǎn)坐標(biāo)分別為,,,,,因?yàn)?,所以點(diǎn),所以 因?yàn)?<∠DRC<,0<∠ASQ<π,所以只需證tan∠ASQ=tan2∠DRC,即,化簡得9d2-9c2-9b2=0即d2=b2+c2,顯然成立。所以命題得證。 高考資源網(wǎng)() 來源:高考資源網(wǎng) 版權(quán)所有:高考資源網(wǎng)(www.k s 5 )

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!