新編全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專(zhuān)題強(qiáng)化練 專(zhuān)題14 直線與圓含解析
《新編全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專(zhuān)題強(qiáng)化練 專(zhuān)題14 直線與圓含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專(zhuān)題強(qiáng)化練 專(zhuān)題14 直線與圓含解析(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 【走向高考】(全國(guó)通用)20xx高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專(zhuān)題強(qiáng)化練 專(zhuān)題14 直線與圓 一、選擇題 1.(文)若直線l1:x+ay+6=0與l2:(a-2)x+3y+2a=0平行,則l1與l2間的距離為( ) A. B. C. D. [答案] B [解析] 由l1∥l2知3=a(a-2)且2a≠6(a-2), 2a2≠18,求得a=-1, ∴l(xiāng)1:x-y+6=0,l2:x-y+=0,兩條平行直線l1與l2間的距離為d==.故選B. (理)已知直線l過(guò)圓x2+(y-3)2=4的圓心,且與直線x+y+1=0垂直,則l的方程是( ) A.x
2、+y-2=0 B.x-y+2=0 C.x+y-3=0 D.x-y+3=0 [答案] D [解析] 圓心(0,3),又知所求直線斜率為1,∴直線方程為x-y+3=0. [方法點(diǎn)撥] 1.兩直線的位置關(guān)系 方程 約束條件 位置關(guān)系 l1:y=k1x+b1 l2:y=k2x+b2 l1:A1x+B1y+C1=0 l2:A2x+B2y+C2=0 平行 k1=k2,且b1≠b2 A1B2-A2B1=0,且B1C2-B2C1≠0 相交 k1≠k2 特別地, l1⊥l2?k1k2=-1 A1B2≠A2B1 特別地,l1⊥l2?A1A2+B1B2=0 重合 k1=k
3、2且b1=b2 A1B2-A2B1=0且B1C2-B2C1=0 2.與直線y=kx+b平行的直線設(shè)為y=kx+b1,垂直的直線設(shè)為y=-x+m(k≠0);與直線Ax+By+C=0平行的直線設(shè)為Ax+By+C1=0,垂直的直線設(shè)為Bx-Ay+C1=0.求兩平行直線之間的距離可直接代入距離公式,也可在其中一條直線上取一點(diǎn),求其到另一條直線的距離. 2.(文)(20xx·安徽文,8)直線3x+4y=b與圓x2+y2-2x-2y+1=0相切,則b的值是( ) A.-2或12 B.2或-12 C.-2或-12 D.2或12 [答案] D [解析] 考查1.直線與圓的位置關(guān)系;2.點(diǎn)到直線
4、的距離公式. ∵直線3x+4y=b與圓心為(1,1),半徑為1的圓相切, ∴=1?b=2或12,故選D. (理)(20xx·遼寧葫蘆島市一模)已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為( ) A.(x+1)2+(y-1)2=2 B.(x-1)2+(y+1)2=2 C.(x-1)2+(y-1)2=2 D.(x+1)2+(y+1)2=2 [答案] B [解析] 由題意知,圓心C既在與兩直線x-y=0與x-y-4=0平行且距離相等的直線上,又在直線x+y=0上,設(shè)圓心C(a,-a),半徑為r,則由已知得=,解得a=1,∴r=,故選B.
5、
[方法點(diǎn)撥] 1.點(diǎn)與圓的位置關(guān)系
①幾何法:利用點(diǎn)到圓心的距離d與半徑r的關(guān)系判斷:d>r?點(diǎn)在圓外,d=r?點(diǎn)在圓上;d
6、交
d
7、易知PO=2,OM=1,∴∠OPM=,∠OPA=, ∴∠MPA=,∵直線l傾斜角的范圍是[0,]. [方法點(diǎn)撥] 本題還可以設(shè)出直線l的方程y=kx+b,將P點(diǎn)代入得出k與b的關(guān)系,消去未知數(shù)b,再將直線代入圓方程,利用Δ>0求出k的范圍,再求傾斜角的范圍. 1.求直線的方程常用待定系數(shù)法. 2.兩條直線平行與垂直的判定可用一般式進(jìn)行判定,也可以用斜率判定. (理)(20xx·山東理,9)一條光線從點(diǎn)(-2,-3)射出,經(jīng)y軸反射后與圓(x+3)2+(y-2)2=1相切,則反射光線所在直線的斜率為( ) A.-或- B.-或- C.-或- D.-或- [答案] D [解
8、析] 由光的反射原理知,反射光線的反向延長(zhǎng)線必過(guò)點(diǎn)(2,-3),設(shè)反射光線所在直線的斜率為k,則其直線方程為y+3=k(x-2),即kx-y-2k-3=0,∵光線與圓(x+3)2+(y-2)2=1相切,∴=1,∴12k2+25k+12=0,解得k=-或k=-.故選D. 4.(文)(20xx·湖南文,6)若圓C1:x2+y2=1與圓C2:x2+y2-6x-8y+m=0外切,則m=( ) A.21 B.19 C.9 D.-11 [答案] C [解析] 本題考查了兩圓的位置關(guān)系. 由條件知C1:x2+y2=1,C2:(x-3)2+(y-4)2=25-m,圓心與半徑分別為(0,0),(3
9、,4),r1=1,r2=,由兩圓外切的性質(zhì)知,5=1+,∴m=9.
[方法點(diǎn)撥] 圓與圓的位置關(guān)系
表現(xiàn)形式
位置關(guān)系
幾何表現(xiàn):圓心距d與r1、r2的關(guān)系
代數(shù)表現(xiàn):兩圓方程聯(lián)立組成的方程組的解的情況
相離
d>r1+r2
無(wú)解
外切
d=r1+r2
一組實(shí)數(shù)解
相交
|r1-r2| 10、 D.y=-1
[答案] D
[解析] ∵A(0,1)是拋物線x2=4y的焦點(diǎn),又拋物線的準(zhǔn)線為y=-1,∴動(dòng)圓過(guò)點(diǎn)A,圓心C在拋物線上,由拋物線的定義知|CA|等于C到準(zhǔn)線的距離,等于⊙C的半徑,∴⊙C與定直線l:y=-1總相切.
5.(文)(20xx·哈三中一模)直線x+y+=0截圓x2+y2=4所得劣弧所對(duì)圓心角為( )
A. B.
C. D.
[答案] D
[解析] 弦心距d==1,半徑r=2,
∴劣弧所對(duì)的圓心角為.
(理)(20xx·福建理,6)直線l:y=kx+1與圓O:x2+y2=1相交于A,B兩點(diǎn),則“k=1”是“△OAB的面積為”的( )
A 11、.充分而不必要條件 B.必要而不充分條件
C.充分必要條件 D.既不充分又不必要條件
[答案] A
[解析] 圓心O(0,0)到直線l:kx-y+10=0的距離d=,弦長(zhǎng)為|AB|=2=,
∴S△OAB=×|AB|·d==,∴k=±1,
因此當(dāng)“k=1”時(shí),“S△OAB=”,故充分性成立.
“S△OAB=”時(shí),k也有可能為-1,
∴必要性不成立,故選A.
[方法點(diǎn)撥] 1.直線與圓相交時(shí)主要利用半弦、半徑、弦心距組成的直角三角形求解.
2.直線與圓相切時(shí),一般用幾何法體現(xiàn),即使用d=r,而不使用Δ=0.
6.(20xx·太原市一模)已知在圓x2+y2-4x+2y=0內(nèi),過(guò)點(diǎn) 12、E(1,0)的最長(zhǎng)弦和最短弦分別是AC和BD,則四邊形ABCD的面積為( )
A.3 B.6
C.4 D.2
[答案] D
[解析] 圓的方程為(x-2)2+(y+1)2=5,圓的最長(zhǎng)弦AC為直徑2;設(shè)圓心M(2,-1),圓的最短弦BD⊥ME,∵M(jìn)E==,∴BD=2=2,故S四邊形ABCD=AC·BD=×2×2=2.
7.(20xx·重慶理,8)已知直線l:x+ay-1=0(a∈R)是圓C:x2+y2-4x-2y+1=0的對(duì)稱(chēng)軸.過(guò)點(diǎn)A(-4,a)作圓C的一條切線,切點(diǎn)為B,則|AB|=( )
A.2 B.4
C.6 D.2
[答案] C
[解析] 易知圓的標(biāo)準(zhǔn)方程C:( 13、x-2)2+(y-1)2=4,圓心O(2,1),又因?yàn)橹本€l:x+ay-1=0是圓的對(duì)稱(chēng)軸,則該直線一定經(jīng)過(guò)圓心,得知a=-1,A(-4,-1),又因?yàn)橹本€AB與圓相切,則△OAB為直角三角形,|OA|==2,|OB|=2,|AB|==6.
8.過(guò)點(diǎn)P(-2,3)且與兩坐標(biāo)軸圍成的三角形面積為24的直線共有( )
A.1條 B.2條
C.3條 D.4條
[答案] D
[解析] 過(guò)P(-2,3)與x軸負(fù)半軸和y軸正半軸圍成的三角形面積的最小值是12,所以過(guò)一、二、三象限可作2條,過(guò)一、二、四象限可作一條,過(guò)二、三、四象限可作一條,共4條.
9.(文)(20xx·江西理,9)在平面直 14、角坐標(biāo)系中,A、B分別是x軸和y軸上的動(dòng)點(diǎn),若以AB為直徑的圓C與直線2x+y-4=0相切,則圓C面積的最小值為( )
A.π B.π
C.(6-2)π D.π
[答案] A
[解析] 本題考查直線與圓的位置關(guān)系、拋物線的定義及數(shù)形結(jié)合求最值的數(shù)學(xué)思想.
依題意,∠AOB=90°,∴原點(diǎn)O在⊙C上,又∵⊙C與直線2x+y-4=0相切,設(shè)切點(diǎn)為D,則|OC|=|CD|,∴圓C的圓心C的軌跡是拋物線,其中焦點(diǎn)為原點(diǎn)O,準(zhǔn)線為直線2x+y-4=0.要使圓C的面積有最小值,當(dāng)且僅當(dāng)O、C、D三點(diǎn)共線,即圓C的直徑等于O點(diǎn)到直線的距離,∴2R=,∴R=.S=πR2=π.選A.
(理
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《我與集體共成長(zhǎng)》-部編版ppt課件道德與法治
- 《遼宋夏金元的經(jīng)濟(jì)與社會(huì)》教學(xué)ppt課件
- 咽喉與臟腑經(jīng)絡(luò)關(guān)系課件
- 高考物理 2彈力課件
- 高中語(yǔ)文 李商隱詩(shī)兩首課件 新人教版必修3
- 室內(nèi)設(shè)計(jì)課程簡(jiǎn)介課件
- 安恒明御WAF防火墻基本部署配置指南課件
- 安全投入課件
- 公園調(diào)研匯報(bào)課件
- 幾何拼接商務(wù)ppt課件
- 績(jī)效管理KPI加BSC培訓(xùn)ppt課件
- 教科版八年級(jí)下冊(cè)物理:3.-力改變物體的運(yùn)動(dòng)狀態(tài)課件
- 第一章第二節(jié)探究靜電力課件
- 晚風(fēng)課件
- 管理科學(xué)與現(xiàn)代企業(yè)管理