外徑Φ273鋼管矯直機(jī)主傳動(dòng)系統(tǒng)設(shè)計(jì)【含CAD圖紙和說(shuō)明書(shū)】
資源目錄里展示的全都有預(yù)覽可以查看的噢,,下載就有,,請(qǐng)放心下載,原稿可自行編輯修改=【QQ:11970985 可咨詢交流】====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=【QQ:197216396 可咨詢交流】====================
外文翻譯
新工具使新機(jī)器設(shè)計(jì)最優(yōu)
當(dāng)加工鋁時(shí),我們主要關(guān)心的是:鋁粘住加工切削邊緣的傾向;保證有好的碎片排屑形成切削邊緣;和保證工具有足夠的中心強(qiáng)度來(lái)承受切削力而不被破壞。
技術(shù)發(fā)展,比如:Makino MAG系列,已經(jīng)使工具商重新考慮任何工藝水平的機(jī)器技術(shù)。用正確的加工和編程思路是很重要的。
材料,涂料和幾何形狀是與減小我們所關(guān)注問(wèn)題相關(guān)系的工具設(shè)計(jì)的三個(gè)因素。如果這些因素不能一起很好的配合,成功的調(diào)整磨削是不可能的。為了成功進(jìn)行高速鋁加工,理解這三個(gè)因素是很必要的。
使組合邊緣最小化
當(dāng)加工鋁時(shí),一個(gè)失敗的切削工具模式是,被加工的材料粘住工具切削邊緣。這種情況會(huì)很快削弱工具的切削能力。由粘著的鋁形成的組合邊緣會(huì)導(dǎo)致工具變鈍,以至不能切削材料。工具材料選擇和工具涂料選擇是被工具設(shè)計(jì)者用來(lái)減小組合邊緣出現(xiàn)的主要工藝。
亞微米微粒碳化物材料要求很高的鈷濃度來(lái)獲得良好的微粒結(jié)構(gòu)和材料強(qiáng)度屬性。隨著溫度的升高,鈷與鋁發(fā)生反應(yīng),鈷使鋁與暴露的工具材料碳化物相粘合。一旦鋁開(kāi)始粘住工具,鋁會(huì)在快速的在工具上形成組合邊緣,使工具不可用。
在切削的進(jìn)程中,減小鋁粘合著的工具的暴露碳化物的秘訣就是找到正確的碳化物的平衡來(lái)提供足夠的材料強(qiáng)度。在加工鋁時(shí),為了減小粘附,使用能提供足夠硬度的紋理粗糙的碳化物來(lái)獲得平衡,來(lái)使變鈍變慢。
工具涂料
當(dāng)嘗試減小組合邊緣時(shí),第二個(gè)應(yīng)該考慮的工具設(shè)計(jì)因素是工具涂料。工具涂料的選擇包括:TiN, TiAIN, AITiN,鉻氮化物,鋯氮化物,鉆石和鉆石般的涂料(DLC)。擁有這么多的選擇,航空航天磨削商店需要知道在鋁的高速加工應(yīng)用中哪一種工作最有效。TiN, TiCN, TiAIN, 和 AITiN工具的PVD涂裝應(yīng)用進(jìn)程使這些選項(xiàng)不合適鋁的應(yīng)用。PVD涂裝進(jìn)程建立了兩個(gè)使鋁粘住工具的模式---表面的粗糙程度和鋁與工具涂料之間的化學(xué)反應(yīng)。PVD進(jìn)程形成了一個(gè)表面,這表面是比底層材料更粗糙的。由這個(gè)進(jìn)程形成的表面“凹凸”使工具中的鋁在凹處快速集結(jié)。由于涂料有金屬晶體和鐵晶體特征,PVD涂料是可以和鋁發(fā)生化學(xué)反應(yīng)的。一種TiAIN涂料通常是包含鋁的,這鋁很容易和相同材料的切削表面粘合。表面粗糙度和化學(xué)反應(yīng)特性將會(huì)導(dǎo)致工具和工作片體粘在一起,以致形成組合表面。
OSG Tap and Die主導(dǎo)的試驗(yàn)中,人們發(fā)現(xiàn)在高速加工鋁時(shí),一個(gè)沒(méi)有涂染過(guò)紋理粗糙的碳化物的工具的表面優(yōu)于用TiN, Ticn, TiAIN, 或者ALTiN涂染過(guò)的工具。這個(gè)試驗(yàn)不意味著所有工具涂料將減小工具的表現(xiàn)。鉆石和DLC涂料可生成一個(gè)非常光滑的化學(xué)惰性的表面。在切削鋁材料時(shí),這些涂料很認(rèn)為是能非常有效的提高工具的壽命。
鉆石涂料被認(rèn)為是表現(xiàn)最佳的涂料,但這種涂料要一個(gè)很可觀的成本。對(duì)于表現(xiàn)價(jià)值,DLC涂料提供最佳成本,增加大約20%-25%的總工具成本,而壽命相對(duì)于未涂染過(guò)紋理粗糙的碳化物的工具來(lái)是,是增長(zhǎng)得很明顯的。
幾何形狀
高速鋁加工工具設(shè)計(jì)的拇指定律就是使微粒排屑空間最大化。這是因?yàn)殇X是一種非常柔軟的材料。Federate通常是可以增長(zhǎng)的,它生成更多更大的微粒。
Makino MAG-Series航空航天磨削機(jī)器,比如MAG4,要求額外關(guān)注工具幾何休和工具強(qiáng)度。擁有強(qiáng)大的80-hp的心軸的 MAG-Series機(jī)器將折斷工具如果他們不是用足夠的中心強(qiáng)度設(shè)計(jì)的。
總的來(lái)說(shuō),鋒利的切削邊緣一直都可以用來(lái)避免鋁的延伸。一個(gè)鋒利的切削邊緣將形成高剪切和高表面清潔,形成一個(gè)更好的表面和使表面振動(dòng)最小化。結(jié)果是用優(yōu)良的紋理碳化物材料比紋理粗糙的碳化物材料更有可能獲得一個(gè)鋒利的切削邊緣。但由于鋁能粘住紋理好的材料,長(zhǎng)久保持這各邊緣是不太可能的。
粗略的折衷方案
紋理粗糙的材料是最好的折衷。那是一種很強(qiáng)大的材料,它能擁有一個(gè)可觀的切削邊緣。試驗(yàn)結(jié)果表明;在獲得長(zhǎng)的工具壽命的同時(shí)擁有好的表面的可以的。通過(guò)工具來(lái)進(jìn)行油霧冷卻是可以改進(jìn)切削邊緣的保持的。霧化逐漸使工具冷卻,消除溫度急增的問(wèn)題。
螺旋角度是一個(gè)額外的工具幾何考慮因素。傳統(tǒng)上來(lái)說(shuō),當(dāng)加工鋁時(shí),帶有高螺旋角度的工具已經(jīng)被運(yùn)用。高螺旋角度可以使微粒更快地從部分脫離,但卻增加力和熱,這是由切削運(yùn)動(dòng)導(dǎo)致的。一個(gè)高螺旋角被用在工具上,并且很大數(shù)量的凹槽可以使微粒排泄。
當(dāng)以非常高的速度加工鋁時(shí),由增加的力形成的熱量可能會(huì)引起微粒與工具焊接在一起。此外,一個(gè)有很高螺旋角的切削表面將比低角度的更快產(chǎn)生微粒。僅僅利用兩個(gè)凹槽工具設(shè)計(jì)使低螺旋角和足夠微粒排泄區(qū)域成為可能。由OSG主導(dǎo)的延伸性試驗(yàn)中,當(dāng)發(fā)展新工具流水線時(shí),這被證明是最成功的方法。
New tools maximize new machine designs
The primary tooling concerns when machining aluminum are: minimizing the tendency of aluminum to stick to the tool cutting edges; ensuring there is good chip evacuation form the cutting edge; and ensuring the core strength of the tools is sufficient to withstand the cutting forces without breaking.
Technological developments such as the Makino MAG-Series machines have made tooling vendors rethink the any state-of-the-art machine technology. It is vital to apply the right tooling and programming concepts.
Materials coatings and geometry are the three elements in tool design that interrelate to minimize these concerns. If these three elements do not work together, successful high-speed milling is not possible. It is imperative to understand all three of these elements in order to be successful in the high-speed machining of aluminum.
Minimize Built-Up Edge
When machining aluminum, one of the major failure modes of cutting tools the material being machined adheres to the tool cutting edge. This condition rapidly degrades the cutting ability of the tool. The built-up edge that is generated by the adhering aluminum dulls the tool so it can no longer cut through the material. Tool material selection and tool coating selection are the two primary techniques used by tool designers to reduce occurrence of the built-up edge.
The sub-micron grain carbide material requires a high cobalt concentration to achieve the fine grain structure and the material’s strength properties. Cobalt reacts with aluminum at elevated temperatures, which causes the aluminum to chemically bond to the exposed cobalt of the tool material. Once the aluminum starts to adhere to the tool, it quickly forms a built-up edge on the tool rendering it ineffective.
The secret is to find the right balance of cobalt to provide adequate material strength, while minimizing the exposed cobalt in the tools for aluminum adherence during the cutting process. This balance is achieved using coarse-grained carbide that provides a tool of sufficient hardness so as to not dull quickly when machining aluminum while minimizing adherence.
Tool coatings
The second tool design element that must be considered when trying to minimize the built-up edge is the tool coating. Tool coating choices include TiN, TiAIN, AITiN, chrome nitrides, zirconium nitrides, diamond, and diamond-like coatings(DLC). With so many choices, aerospace milling shops need to know which one works best in an aluminum high-speed machining application.
The Physical Vapor Deposition (PVD) coating application process on TiN, TiCN, TiAIN, and AITiN tools makes them unsuitable for an aluminum application. The PVD coating process creates two modes for aluminum to bond to the tools――the surface roughness and the chemical reactivity between the aluminum and the tool coating.
The PVD process results in surface that is rougher that the substrate material to which it is applied. The surface”peaks and valleys” created by this process causes aluminum to rapidly collect in the valleys on the tool. In addition, the PVD coating is chemically reactive to the aluminum due to its metallic crystal and ionic crystal features. A TiAIN coating actually contains aluminum, which easily bonds with a cutting surface of the same material. The surface roughness and chemical reactivity attributes will cause the tool and work piece to stick together, thus creating the built-up edge.
In testing performed by OSG Tap and Die, it was discovered that when machining aluminum at very high speeds, the performance of an uncoated coarse-grained carbide tool was superior to that of one coated with TiN, Ticn, TiAIN, or ALTiN. This testing does not mean that all tool coatings will reduce the tool performance. The diamond and DLC coatings result in a very smooth chemically inert surface. These coatings have been found to significantly improve tool life when cutting aluminum materials.
The diamond coatings were found to be the best performing coatings, but there is a considerable cost related to this type of coating. The DLC coatings provide the best cost for performance value, adding about 20%-25%to the total tool cost. But, this coating extends the tool life significantly as compared to an uncoated coarse-grained carbide tool.
Geometry
The rule of thumb for high-speed aluminum machining tooling designs is to maximize space for chip evacuation. This is because aluminum is a very soft material, and the federate is usually increased which creates more and bigger chips.
The Makino MAG-Series aerospace milling machines, such as the MAG4, require an additional consideration for tool geometry-tool strength. The MAG-Series machines with their powerful 80-hp spindles will snap the tools if they are not designed with sufficient core strength.
In general, sharp cutting edges should always be used to avoid aluminum elongation. A sharp cutting edge will create high shearing and also high surface clearance, creating a better surface finish and finish and minimizing chatter or surface vibration. The issue is that it is possible to achieve a sharper cutting edge with the fine-grained carbide material than the coarse grained material. But due to aluminum adherence to the fine-grained material, it is not possible to maintain that edge for very long.
Coarse compromise
The coarse grained material appears to be the best compromise. It is a strong material that can have a reasonable cutting edge. Test results show it is able to achieve a very long tool life with good surface finish. The maintenance of the cutting edge is improved using an oil mist coolant through the tool. Misting gradually cools down the tools, eliminating thermal shock problems.
The helix angle is an additional tool geometry consideration. Traditionally when machining aluminum a fool with a high helix angle has been used. A high helix angle lifts the chip away from the part more quickly, but increases the friction and heat generated as result of the cutting action. A high helix angle is typically used on a tool with a higher number of flutes to quickly evacuate the chip from the part.
When machining aluminum at very high speeds the heat created by the increased friction may cause the chips to weld to the tool. In addition, a cutting surface with a high helix angle will chip more rapidly that a tool with a low helix angle. A tool design that utilizes only two flutes enables both a low helix angle and sufficient chip evacuation area. This is the approach that has proven to be the most successful in extensive testing performed by OSG when developing the new tooling line, the MAX AL.
第1頁(yè)273 鋼管矯直機(jī)主傳動(dòng)系統(tǒng)設(shè)計(jì)摘要在鋼管生產(chǎn)中,為了提高鋼管的質(zhì)量,鋼管需要被矯直。目前,國(guó)內(nèi)外的矯直技術(shù)發(fā)展速度較快,涌現(xiàn)出很多鋼管矯直方法和與其相應(yīng)的矯直設(shè)備,其中多輥矯直機(jī)是矯直領(lǐng)域內(nèi)應(yīng)用最為廣泛的矯直設(shè)備。鋼管矯直機(jī)的矯直輥為斜輥,上下兩排矯直輥交錯(cuò)布置,其特點(diǎn)是矯直速度快,生產(chǎn)率高,易于實(shí)現(xiàn)自動(dòng)化,適應(yīng)矯直各種管材和棒材。根據(jù)生產(chǎn)的需要,參考了鞍鋼無(wú)縫鋼管廠的矯直機(jī)和大量相關(guān)的機(jī)械設(shè)計(jì)資料,對(duì) 273 七輥鋼管矯直機(jī)的主傳動(dòng)系統(tǒng)進(jìn)行了設(shè)計(jì),根據(jù)傳動(dòng)功率,對(duì)傳動(dòng)系統(tǒng)中的電機(jī)、聯(lián)軸器和萬(wàn)向接軸進(jìn)行了選擇,設(shè)計(jì)了三級(jí)齒輪減速器傳動(dòng),其與減速分配箱相連,采用三根軸輸出,每根軸通過(guò)一個(gè)萬(wàn)向接軸帶動(dòng)矯直輥的傳動(dòng)方式,六個(gè)工作輥,一個(gè)被動(dòng)輥起導(dǎo)向作用;對(duì)于傳動(dòng)系統(tǒng)中的主要零件進(jìn)行了設(shè)計(jì);對(duì) 273七輥鋼管矯直機(jī)的力能參數(shù)進(jìn)行了計(jì)算,并確定了矯直機(jī)的基本參數(shù)。關(guān)鍵詞:矯直機(jī);鋼管;傳動(dòng)裝置;力能參數(shù) 第2頁(yè)The Main Driving System Design Of 273 Roll Tube StraightenerAbstractIn the process of the steeltubes production ,for the sake of improving steeltubes quality, the steeltubes need to be straighten .At present, the development of the Straightening technology is fast at home and abroad ,and a variety of pipe straightening method and the corresponding equipment , and Multi-roll straightening machine is a straightening equipment which is used widely. Straightening Rollers roll is oblique roll ,which is staggered arrangement of the straightening s up and down two rows of roll ,the characteristic of which is the fast straightening speed, and high productivity and easy to realize automation ,so it suitable for various pipe and bar. On the basis of the production of requirement ,designing refers to the AISC Seamless Steel Tube Plants seven roll straightening machine and related mechanical design information ,then design the main driving system of 273 Roll Tube Straightener .On the basis of driving power consumption ,making the choice of the driving systems eletromotor ,coupling ,and designing how the three gear decelerator to drive ,which connects with the Decelerates distributor case .and Uses three axis outputs which driven a Straightening Roller under the condition of which connect the coupling .The system has six working rolls ,and a passively roll which is guiding .It contains: Designing the main machine parts of the driving system ,Calculating force and power mechanical parameter of 273 Roll Tube Straightener .Then the basic design parameter of Straightening machine is ascertained.Keywords: Straightening machine ;Steel tubes ;Driving system ;Force paramenta 第3頁(yè)目錄摘要.IABSTRACT.II1 緒論.11.1 畢業(yè)設(shè)計(jì)的選題背景及目的 .11.1.1 畢業(yè)設(shè)計(jì)的選題背景.11.1.2 畢業(yè)設(shè)計(jì)目的.11.2 矯直技術(shù)的發(fā)展.21.2.1 國(guó)內(nèi)矯直技術(shù)的發(fā)展情況.21.2.2 國(guó)外矯直技術(shù)的發(fā)展.31.3 課題的研究方法及研究?jī)?nèi)容 .32 矯直機(jī)主傳動(dòng)系統(tǒng)設(shè)計(jì)方案確定.52.1 矯直機(jī)的分類及特點(diǎn).52.1.1 反復(fù)彎曲式矯直機(jī).52.1.2 旋轉(zhuǎn)彎曲式矯直機(jī).72.1.3 拉伸矯直機(jī).72.1.4 拉彎矯直機(jī).82.1.5 拉坯矯直設(shè)備.82.2 鋼管矯直機(jī)結(jié)構(gòu)組成.82.2.1 矯直輥.92.2.2 矯直輥調(diào)節(jié)裝置.92.2.3 傳動(dòng)裝置.102.3 矯直方案和矯直工藝.102.4 矯直機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)方案 .112.5 矯直機(jī)傳動(dòng)系統(tǒng)的工作原理 .123 鋼管矯直機(jī)力能參數(shù)計(jì)算.133.1 原始數(shù)據(jù).13 第4頁(yè)3.2 輥式矯直機(jī)的基本參數(shù).133.2.1 輥徑和輥長(zhǎng)的確定.133.2.2 輥端圓角和輥距的確定.143.3 斜輥式鋼管矯直機(jī)力能參數(shù)的計(jì)算 .143.3.1 矯直質(zhì)量要求.143.3.2 矯直力的計(jì)算.153.4 矯直功率的計(jì)算.183.4.1.軸承摩擦功率.183.4.2.輥面與工件的滑動(dòng)摩擦功率.193.4.3.工件在滾面上的滾動(dòng)摩擦功率.193.4.4.矯直變形功率.204273 鋼管矯直機(jī)驅(qū)動(dòng)系統(tǒng)的確定.214.1 電機(jī)的選擇.214.2 減速器傳動(dòng)比分配.214.2.1 減速器的輸出轉(zhuǎn)數(shù).214.2.2 傳動(dòng)比及其分配.214.3 減速器一級(jí)齒輪傳動(dòng)設(shè)計(jì) .224.3.1 選擇精度等級(jí),材料及齒數(shù).224.3.2 按齒面接觸強(qiáng)度設(shè)計(jì).224.3.3 按齒根彎曲強(qiáng)度校核.254.3.4 幾何尺寸的計(jì)算.284.4 減速器二級(jí)齒輪傳動(dòng)設(shè)計(jì) .294.4.1 選擇精度等級(jí),材料及齒數(shù).294.4.2 按齒面接觸強(qiáng)度設(shè)計(jì).294.4.3 按齒根彎曲強(qiáng)度校核.324.4.4 幾何尺寸的計(jì)算.344.5 減速器三級(jí)齒輪傳動(dòng)設(shè)計(jì) .355 聯(lián)軸器、軸承及萬(wàn)向接軸的選擇.36 第5頁(yè)5.1 聯(lián)軸器的選擇.365.2 矯直輥的軸承選擇.375.2.1 矯直輥的基本參數(shù).375.2.2 矯直輥軸承的校核.385.3 萬(wàn)向聯(lián)軸器的選擇.395.3.1 萬(wàn)向聯(lián)軸器的功能特點(diǎn)及其選擇方法 .395.3.2 萬(wàn)向聯(lián)軸器的選擇及其校核:.406 傳動(dòng)系統(tǒng)主要零件設(shè)計(jì).426.1 矯直輥的結(jié)構(gòu)特點(diǎn).426.2 輥型曲線的設(shè)計(jì).436.3 矯直輥的輥軸校核.456.3.1 輥系的受力分析.456.2.2 中下輥的校核計(jì)算.467 傳動(dòng)系統(tǒng)的潤(rùn)滑.497.1 潤(rùn)滑方法:.497.2 潤(rùn)滑的分類.497.3 潤(rùn)滑劑的種類:.507.4 潤(rùn)滑系統(tǒng)的選擇原則.527.5 潤(rùn)滑方式的選擇.527.5.1 減速器的潤(rùn)滑.527.5.2 軸承的潤(rùn)滑.527.5.3 萬(wàn)向聯(lián)軸器的潤(rùn)滑.537.5.4 其余零部件的潤(rùn)滑.538 設(shè)備的環(huán)保、可靠性和經(jīng)濟(jì)技術(shù)評(píng)價(jià).548.1 設(shè)備的環(huán)保措施.548.2 設(shè)備的可靠性.548.3 設(shè)備的經(jīng)濟(jì)評(píng)價(jià).568.4 設(shè)備合理的更新期.57 第6頁(yè)結(jié)束語(yǔ).58致謝.59參考文獻(xiàn).60 第 頁(yè)273 鋼管矯直機(jī)主傳動(dòng)系統(tǒng)設(shè)計(jì)摘要在鋼管生產(chǎn)中,為了提高鋼管的質(zhì)量,鋼管需要被矯直。目前,國(guó)內(nèi)外的矯直技術(shù)發(fā)展速度較快,涌現(xiàn)出很多鋼管矯直方法和與其相應(yīng)的矯直設(shè)備,其中多輥矯直機(jī)是矯直領(lǐng)域內(nèi)應(yīng)用最為廣泛的矯直設(shè)備。鋼管矯直機(jī)的矯直輥為斜輥,上下兩排矯直輥交錯(cuò)布置,其特點(diǎn)是矯直速度快,生產(chǎn)率高,易于實(shí)現(xiàn)自動(dòng)化,適應(yīng)矯直各種管材和棒材。根據(jù)生產(chǎn)的需要,參考了鞍鋼無(wú)縫鋼管廠的矯直機(jī)和大量相關(guān)的機(jī)械設(shè)計(jì)資料,對(duì) 273 七輥鋼管矯直機(jī)的主傳動(dòng)系統(tǒng)進(jìn)行了設(shè)計(jì),根據(jù)傳動(dòng)功率,對(duì)傳動(dòng)系統(tǒng)中的電機(jī)、聯(lián)軸器和萬(wàn)向接軸進(jìn)行了選擇,設(shè)計(jì)了三級(jí)齒輪減速器傳動(dòng),其與減速分配箱相連,采用三根軸輸出,每根軸通過(guò)一個(gè)萬(wàn)向接軸帶動(dòng)矯直輥的傳動(dòng)方式,六個(gè)工作輥,一個(gè)被動(dòng)輥起導(dǎo)向作用;對(duì)于傳動(dòng)系統(tǒng)中的主要零件進(jìn)行了設(shè)計(jì);對(duì) 273七輥鋼管矯直機(jī)的力能參數(shù)進(jìn)行了計(jì)算,并確定了矯直機(jī)的基本參數(shù)。關(guān)鍵詞:矯直機(jī);鋼管;傳動(dòng)裝置;力能參數(shù) 第I頁(yè)The Main Driving System Design Of 273 Roll Tube StraightenerAbstractIn the process of the steeltubes production ,for the sake of improving steeltubes quality, the steeltubes need to be straighten .At present, the development of the Straightening technology is fast at home and abroad ,and a variety of pipe straightening method and the corresponding equipment , and Multi-roll straightening machine is a straightening equipment which is used widely. Straightening Rollers roll is oblique roll ,which is staggered arrangement of the straightening s up and down two rows of roll ,the characteristic of which is the fast straightening speed, and high productivity and easy to realize automation ,so it suitable for various pipe and bar. On the basis of the production of requirement ,designing refers to the AISC Seamless Steel Tube Plants seven roll straightening machine and related mechanical design information ,then design the main driving system of 273 Roll Tube Straightener .On the basis of driving power consumption ,making the choice of the driving systems eletromotor ,coupling ,and designing how the three gear decelerator to drive ,which connects with the Decelerates distributor case .and Uses three axis outputs which driven a Straightening Roller under the condition of which connect the coupling .The system has six working rolls ,and a passively roll which is guiding .It contains: Designing the main machine parts of the driving system ,Calculating force and power mechanical parameter of 273 Roll Tube Straightener .Then the basic design parameter of Straightening machine is ascertained.Keywords: Straightening machine ;Steel tubes ;Driving system ;Force paramenta 第II頁(yè)目錄摘要.IABSTRACT.II1 緒論.11.1 畢業(yè)設(shè)計(jì)的選題背景及目的 .11.1.1 畢業(yè)設(shè)計(jì)的選題背景.11.1.2 畢業(yè)設(shè)計(jì)目的.11.2 矯直技術(shù)的發(fā)展.21.2.1 國(guó)內(nèi)矯直技術(shù)的發(fā)展情況.21.2.2 國(guó)外矯直技術(shù)的發(fā)展.31.3 課題的研究方法及研究?jī)?nèi)容 .32 矯直機(jī)主傳動(dòng)系統(tǒng)設(shè)計(jì)方案確定.52.1 矯直機(jī)的分類及特點(diǎn).52.1.1 反復(fù)彎曲式矯直機(jī).52.1.2 旋轉(zhuǎn)彎曲式矯直機(jī).72.1.3 拉伸矯直機(jī).72.1.4 拉彎矯直機(jī).82.1.5 拉坯矯直設(shè)備.82.2 鋼管矯直機(jī)結(jié)構(gòu)組成.82.2.1 矯直輥.92.2.2 矯直輥調(diào)節(jié)裝置.92.2.3 傳動(dòng)裝置.102.3 矯直方案和矯直工藝.102.4 矯直機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)方案 .112.5 矯直機(jī)傳動(dòng)系統(tǒng)的工作原理 .123 鋼管矯直機(jī)力能參數(shù)計(jì)算.133.1 原始數(shù)據(jù).13 第III頁(yè)3.2 輥式矯直機(jī)的基本參數(shù).133.2.1 輥徑和輥長(zhǎng)的確定.133.2.2 輥端圓角和輥距的確定.143.3 斜輥式鋼管矯直機(jī)力能參數(shù)的計(jì)算 .143.3.1 矯直質(zhì)量要求.143.3.2 矯直力的計(jì)算.153.4 矯直功率的計(jì)算.183.4.1.軸承摩擦功率.183.4.2.輥面與工件的滑動(dòng)摩擦功率.193.4.3.工件在滾面上的滾動(dòng)摩擦功率.193.4.4.矯直變形功率.204273 鋼管矯直機(jī)驅(qū)動(dòng)系統(tǒng)的確定.214.1 電機(jī)的選擇.214.2 減速器傳動(dòng)比分配.214.2.1 減速器的輸出轉(zhuǎn)數(shù).214.2.2 傳動(dòng)比及其分配.214.3 減速器一級(jí)齒輪傳動(dòng)設(shè)計(jì) .224.3.1 選擇精度等級(jí),材料及齒數(shù).224.3.2 按齒面接觸強(qiáng)度設(shè)計(jì).224.3.3 按齒根彎曲強(qiáng)度校核.254.3.4 幾何尺寸的計(jì)算.284.4 減速器二級(jí)齒輪傳動(dòng)設(shè)計(jì) .294.4.1 選擇精度等級(jí),材料及齒數(shù).294.4.2 按齒面接觸強(qiáng)度設(shè)計(jì).294.4.3 按齒根彎曲強(qiáng)度校核.324.4.4 幾何尺寸的計(jì)算.344.5 減速器三級(jí)齒輪傳動(dòng)設(shè)計(jì) .355 聯(lián)軸器、軸承及萬(wàn)向接軸的選擇.36 第IV頁(yè)5.1 聯(lián)軸器的選擇.365.2 矯直輥的軸承選擇.375.2.1 矯直輥的基本參數(shù).375.2.2 矯直輥軸承的校核.385.3 萬(wàn)向聯(lián)軸器的選擇.395.3.1 萬(wàn)向聯(lián)軸器的功能特點(diǎn)及其選擇方法 .395.3.2 萬(wàn)向聯(lián)軸器的選擇及其校核:.406 傳動(dòng)系統(tǒng)主要零件設(shè)計(jì).426.1 矯直輥的結(jié)構(gòu)特點(diǎn).426.2 輥型曲線的設(shè)計(jì).436.3 矯直輥的輥軸校核.456.3.1 輥系的受力分析.456.2.2 中下輥的校核計(jì)算.467 傳動(dòng)系統(tǒng)的潤(rùn)滑.497.1 潤(rùn)滑方法:.497.2 潤(rùn)滑的分類.497.3 潤(rùn)滑劑的種類:.507.4 潤(rùn)滑系統(tǒng)的選擇原則.527.5 潤(rùn)滑方式的選擇.527.5.1 減速器的潤(rùn)滑.527.5.2 軸承的潤(rùn)滑.527.5.3 萬(wàn)向聯(lián)軸器的潤(rùn)滑.537.5.4 其余零部件的潤(rùn)滑.538 設(shè)備的環(huán)保、可靠性和經(jīng)濟(jì)技術(shù)評(píng)價(jià).548.1 設(shè)備的環(huán)保措施.548.2 設(shè)備的可靠性.548.3 設(shè)備的經(jīng)濟(jì)評(píng)價(jià).568.4 設(shè)備合理的更新期.57 第V頁(yè)結(jié)束語(yǔ).58致謝.59參考文獻(xiàn).60 第0頁(yè)1 緒論1.1 畢業(yè)設(shè)計(jì)的選題背景及目的1.1.1 畢業(yè)設(shè)計(jì)的選題背景 近年來(lái),由于管材的用途涉及到所有的工業(yè)部門(mén),各國(guó)對(duì)它的生產(chǎn)和發(fā)展都十分重視,各主要工業(yè)國(guó)家的鋼管產(chǎn)量,一般約占鋼材總產(chǎn)量的 10%15%,我國(guó)約占8%10%。隨著國(guó)民經(jīng)濟(jì)的發(fā)展,我國(guó)鋼鐵行業(yè)得到了突飛猛進(jìn)的發(fā)展,因此也加強(qiáng)了對(duì)鋼管發(fā)展的力度。管材的生產(chǎn)無(wú)論在數(shù)量上還是品種上都有相當(dāng)大的增長(zhǎng)。新型高效率的管材精整設(shè)備,尤其是管材矯直機(jī),是保證管材質(zhì)量的重要關(guān)鍵,國(guó)內(nèi)外對(duì)管材矯直機(jī)均做了大量的研究工作。矯直技術(shù)多用于金屬條材加工的后部工序,同其他金屬加工技術(shù)一樣在 20 世紀(jì)取得了長(zhǎng)足的進(jìn)展,相應(yīng)的矯直理論也取得了很大的進(jìn)步。已經(jīng)廣泛應(yīng)用于日用金屬加工業(yè),儀器儀表制造業(yè),汽車(chē)、船舶和飛機(jī)制造業(yè),石油化工業(yè),冶金工業(yè),建筑材料業(yè),機(jī)械裝備制造業(yè),以及精密加工制造業(yè)。隨著工業(yè)水平的不斷提高,要求工業(yè)生產(chǎn)全面自動(dòng)化,矯直技術(shù)也要跟上時(shí)代的潮流。因此力爭(zhēng)在矯直機(jī)設(shè)計(jì),制造,矯直過(guò)程分析、矯直參數(shù)設(shè)定及矯直質(zhì)量預(yù)測(cè)等方面搞好軟件開(kāi)發(fā);其次要進(jìn)行數(shù)字化矯直設(shè)備的研制和使用,擴(kuò)充矯直技術(shù)的發(fā)展,使矯直技術(shù)的發(fā)展走上現(xiàn)代化的道路。 隨著時(shí)代的進(jìn)步,國(guó)家綜合實(shí)力的增強(qiáng),作為二十一世紀(jì)機(jī)械專業(yè)的本科畢業(yè)生,有責(zé)任也有義務(wù)為國(guó)家的發(fā)展付出自己的一份力量。通過(guò)對(duì)鞍鋼無(wú)縫鋼管廠 273 鋼管生產(chǎn)線的參觀實(shí)習(xí),對(duì)鋼管產(chǎn)品的生產(chǎn)有了初步了解,同時(shí)對(duì)其也產(chǎn)生了濃厚的興趣。由于矯直機(jī)在管材的精整過(guò)程中起著重要的作用,于是我選擇了 273 鋼管矯直機(jī)的主傳動(dòng)系統(tǒng)的設(shè)計(jì)這個(gè)題目。1.1.2 畢業(yè)設(shè)計(jì)目的畢業(yè)設(shè)計(jì)是教學(xué)計(jì)劃的最后一個(gè)教學(xué)環(huán)節(jié),也是最重要的教學(xué)環(huán)節(jié)之一,是學(xué)生獲得學(xué)士學(xué)位的必要條件。學(xué)生在教師的指導(dǎo)下,通過(guò)畢業(yè)設(shè)計(jì)受到一次綜合運(yùn)用所學(xué)理論和技能的訓(xùn)練,進(jìn)一步提高分析問(wèn)題和解決問(wèn)題的能力;是從事科學(xué)研究工作 第1頁(yè)和專業(yè)工程技術(shù)工作地基本訓(xùn)練。通過(guò)畢業(yè)設(shè)計(jì)鞏固和發(fā)展了四年來(lái)所學(xué)的專業(yè)基礎(chǔ)知識(shí),學(xué)會(huì)閱讀參考文獻(xiàn),收集、運(yùn)用原始資料的方法以及如何使用規(guī)范、手冊(cè)、產(chǎn)品目錄,選用標(biāo)準(zhǔn)圖的技能,從而提高設(shè)計(jì)計(jì)算及繪圖的能力。1.2 矯直技術(shù)的發(fā)展1.2.1 國(guó)內(nèi)矯直技術(shù)的發(fā)展情況20 世紀(jì) 3040 年代國(guó)外技術(shù)發(fā)達(dá)國(guó)家的型材矯正機(jī)及板材矯正機(jī)得到迅速發(fā)展,而且相繼進(jìn)入到中國(guó)的鋼鐵工業(yè)及金屬制品業(yè),新中國(guó)成立前在太原、鞍山、大冶、天津及上海等地的一些工廠里可以見(jiàn)到德、英、日等國(guó)家制造的矯正機(jī)。我國(guó)科技界一直在努力提高自己的科研設(shè)計(jì)和創(chuàng)新能力。從 20 世紀(jì) 50 年代起就有劉天明提出的雙曲線輥形設(shè)計(jì)的精確計(jì)算法及文獻(xiàn)提出的矯正曲率方程式。6080 年代在輟輥形理論方面有許多學(xué)者進(jìn)行了深人的研究并取得了十分可喜的成果還召開(kāi)了全國(guó)性的輥形理論討論會(huì);產(chǎn)生了等曲率反彎輥形計(jì)算法。與此同時(shí),以西安重型機(jī)械研究所為代表的科研單位和以太原重塑機(jī)器廠為代表的設(shè)計(jì)制造部門(mén)完成了大量的矯正機(jī)設(shè)計(jì)研制工作。不僅為我國(guó)生產(chǎn)提供了設(shè)備保證,還培養(yǎng)了一大批設(shè)計(jì)研究人員。進(jìn)人 99 年代我國(guó)在趕超世界先進(jìn)水平方面又邁出了一大步,一些新研制的矯正機(jī)獲得了國(guó)家的發(fā)明專利;一些新成果獲得了市、省及部級(jí)科技成果進(jìn)步獎(jiǎng);有的獲得了國(guó)家發(fā)明獎(jiǎng)。近年來(lái)我國(guó)在反彎輥形七斜輥矯正機(jī),多斜輥薄壁管矯正機(jī)、3 斜輥薄銅管矯正機(jī)、雙向反彎輥形 2 輥矯正機(jī)、復(fù)合轉(zhuǎn)轂式矯正機(jī),平行輥異輥距矯正機(jī)及矯正液壓自動(dòng)切料機(jī)等研制方面相繼取得成功。在矯正高強(qiáng)度合金鋼方面也已獲得很好的矯正質(zhì)量。其矯后的殘留撓度為 0.20.5mm/m。此外,從 20 世紀(jì) 60 年代以后拉伸與拉彎矯正設(shè)備得到很大發(fā)展,對(duì)帶材生產(chǎn)起到重要作用。近年來(lái),隨著我國(guó)工業(yè)水平的不斷發(fā)展,矯直技術(shù)也得到了不斷地提高和發(fā)展,在矯直過(guò)程的變形機(jī)理方面取得了一定得成就:如拉力對(duì)矯直的作用,在斜輥矯直機(jī)上壓緊力對(duì)矯直的作用,殘留應(yīng)力對(duì)矯直尺寸精度的影響等;在解決高難度矯直技術(shù)方面,如高強(qiáng)度薄板帶的液壓拉彎矯直、高強(qiáng)度易裂紋耐熱合金鋼幫的旋轉(zhuǎn)矯直、薄板的行星矯直及扎拉矯直等;在新產(chǎn)品和新要求方面,如石油鉆挺管的矯直,邊斷面板材的矯直,變機(jī)械性能和變厚度方鋼的矯直等;在改善矯直工藝及改善矯直設(shè)備方面,如采用壓下方案,采用恒功率工作制度,用振動(dòng)矯直代替旋轉(zhuǎn)矯直等;在改革矯 第2頁(yè)直過(guò)程的控制方法方面,由人工控制向計(jì)算機(jī)控制過(guò)度,有單機(jī)計(jì)算機(jī)控制箱全線計(jì)算機(jī)控制發(fā)展;在矯直結(jié)構(gòu)設(shè)計(jì)方面,正向精密化,大型化發(fā)展,老設(shè)備也將日漸被淘汰和改造。隨著機(jī)電一體化技術(shù)的廣泛應(yīng)用,鋼管矯直機(jī)的技術(shù)水平將會(huì)不斷提高。結(jié)構(gòu)更加合理、可靠,功能更加完善.以滿足各種工藝要求。1.2.2 國(guó)外矯直技術(shù)的發(fā)展18 世紀(jì)末葉到 19 世紀(jì)初葉,歐洲進(jìn)行了產(chǎn)業(yè)革命,逐步實(shí)現(xiàn)了用蒸汽動(dòng)力代替人力,機(jī)械化生產(chǎn)代替了手工作坊。19 世紀(jì) 30 年代冶鐵技術(shù)發(fā)展起來(lái)。當(dāng)時(shí)英國(guó)的生鐵產(chǎn)量已由 7 萬(wàn) t 增長(zhǎng)到 19 萬(wàn) t/a,增加了 2.7 倍。19 世紀(jì) 50 年代開(kāi)辟了煉鋼技術(shù)發(fā)展的新紀(jì)元。隨著平爐煉鋼技術(shù)的發(fā)明,鋼產(chǎn)量增長(zhǎng)迅速。到 19 世紀(jì)末時(shí),鋼產(chǎn)量增加50 多倍。鋼材產(chǎn)量占鋼產(chǎn)量的比重也顯著增加。這時(shí)已經(jīng)出現(xiàn)了鍛造機(jī)械、軋鋼機(jī)械和矯直機(jī)械。進(jìn)人 20 世紀(jì),以電力驅(qū)動(dòng)代替蒸汽動(dòng)力為標(biāo)志,推動(dòng)了機(jī)械工業(yè)的發(fā)展。英國(guó)在 1905 年制造的輥式板材矯正機(jī)大概是我國(guó)見(jiàn)到的最早的 1 臺(tái)矯正機(jī)。20 世紀(jì)初已經(jīng)有矯正圓材的二輥式矯正機(jī)。到 1914 年英國(guó)發(fā)明了 212 型五輥式矯正機(jī)(阿布拉姆遜式-Abramsen) ,解決了鋼管矯正間題,同時(shí)提高了棒材矯正速度。20 世紀(jì) 20 年代日本已能制造多斜輥矯正機(jī)。20 世紀(jì) 30 年代中期發(fā)明了 222 型六輥式矯正機(jī),顯著提高了管材矯正質(zhì)量 20 世紀(jì) 60 年代中期,為了解決大直徑管材的矯正問(wèn)題,美國(guó)薩頓(Sutton)公司研制成功 313 型七輥式矯正機(jī)(KTF 型矯正機(jī))。社會(huì)的不斷進(jìn)步,工業(yè)水平的不斷提高,自動(dòng)化程度不斷地更新,這使國(guó)內(nèi)外的矯直技術(shù)得到突飛猛進(jìn)的發(fā)展,不斷地開(kāi)發(fā)新產(chǎn)品,對(duì)本國(guó)經(jīng)濟(jì)的繁榮奠定了基礎(chǔ)。1.3 課題的研究方法及研究?jī)?nèi)容本次課題主要是對(duì) 273 鋼管矯直機(jī)主傳動(dòng)系統(tǒng)的設(shè)計(jì),其中主要包括:矯直力的計(jì)算,矯直功率的計(jì)算,主傳動(dòng)系統(tǒng)中減速器各級(jí)齒輪的傳動(dòng)設(shè)計(jì),電機(jī)功率的計(jì)算和電機(jī)的選擇,聯(lián)軸器的計(jì)算選擇,萬(wàn)向聯(lián)軸器的校核與選擇,輥型的設(shè)計(jì),及矯直輥的校核等。電機(jī)是整個(gè)矯直系統(tǒng)的主要傳動(dòng)裝置,根據(jù)電動(dòng)機(jī)工作電源的不同,可分為直流電動(dòng)機(jī)和交流電動(dòng)機(jī)。其中交流電動(dòng)機(jī)還分為 單相電動(dòng)機(jī)和三相電動(dòng)機(jī)。 矯直系統(tǒng)的電動(dòng)機(jī)通常由車(chē)間的電網(wǎng)或者單獨(dú)的交流機(jī)組供電。因此電機(jī)常選用三相交流 第3頁(yè)電機(jī)。矯直速度的調(diào)節(jié)常通過(guò)改變電機(jī)的極對(duì)數(shù)或者借助減速器來(lái)實(shí)現(xiàn)。大直徑的鋼管采用低速矯直,小直徑的鋼管采用高速矯直。選擇電機(jī)時(shí)應(yīng)按照計(jì)算的矯直功率來(lái)選擇,以保證矯直系統(tǒng)的正常運(yùn)轉(zhuǎn)。減速器是用于原動(dòng)機(jī)和工作機(jī)之間的獨(dú)立的封閉傳動(dòng)裝置。用于降低轉(zhuǎn)速和增大扭矩。常用的減速器形式有:?jiǎn)渭?jí)圓柱齒輪減速器、兩級(jí)圓柱齒輪減速器(其又包括展開(kāi)式和同軸式兩種形式) 、單級(jí)錐齒輪減速器、錐圓柱齒輪減速器、蝸桿減速器(其包括蝸桿下置式和蝸桿上置式兩種形式) 。本次設(shè)計(jì)中選用的是三級(jí)圓柱減速器。聯(lián)軸器的功能是 用來(lái)把兩軸聯(lián)接在一起,機(jī)器運(yùn)轉(zhuǎn)時(shí)兩軸不能分離,只有機(jī)器停車(chē)并將聯(lián)接拆開(kāi)后,兩軸才能分離。 根據(jù)聯(lián)軸器對(duì)各種相對(duì)位移有無(wú)補(bǔ)償能力(即能否在發(fā)生相對(duì)位移條件下保持連接的功能) ,聯(lián)軸器可以分為剛性聯(lián)軸器(無(wú)補(bǔ)償能力)和撓性聯(lián)軸器(有補(bǔ)償能力)兩大類。撓性聯(lián)軸器又可按是否具有彈性元件分為無(wú)彈性元件的撓性聯(lián)軸器和有彈性元件的撓性聯(lián)軸器兩個(gè)類別。本次課題中的聯(lián)軸器的選擇可以根據(jù)電機(jī)輸出軸頸的大小來(lái)確定,再根據(jù)設(shè)計(jì)中的具體情況來(lái)選擇聯(lián)軸器的具體型號(hào)。矯直輥是管材矯直機(jī)中的主要零件,其作用是使管材在矯直過(guò)程中變形。矯直輥是在大的動(dòng)載荷和大的相對(duì)滑動(dòng)速度連續(xù)研磨的條件下進(jìn)行工作的。其通過(guò)萬(wàn)向接軸與齒輪分配箱相連。萬(wàn)向接軸的結(jié)構(gòu)緊湊,工作可靠,其可以分為以下幾種形式:標(biāo)準(zhǔn)伸縮焊接式萬(wàn)向聯(lián)軸器、短伸縮焊接式萬(wàn)向聯(lián)軸器、無(wú)伸縮焊接式萬(wàn)向聯(lián)軸器、無(wú)伸縮短式萬(wàn)向聯(lián)軸器。萬(wàn)向接軸的選擇與聯(lián)軸器有很大關(guān)系,因?yàn)楸驹O(shè)計(jì)中聯(lián)軸器是連接減速器與萬(wàn)向接軸的中間部件。它的選擇可以通過(guò)聯(lián)軸器的尺寸進(jìn)行選擇,之后進(jìn)行強(qiáng)度的校核。本次課題設(shè)計(jì)的是七輥鋼管矯直機(jī),其布置形式是 2-2-2-1 型,上排三個(gè)工作輥,下排三個(gè)工作輥外加一個(gè)起導(dǎo)向作用的被動(dòng)輥。上下三對(duì)工作輥相對(duì)配置,六輥全部為工作輥。設(shè)計(jì)內(nèi)容如下: (1) 對(duì)七輥鋼管矯直機(jī)進(jìn)行整體結(jié)構(gòu)設(shè)計(jì);(2) 對(duì)于整個(gè)主傳動(dòng)系統(tǒng)進(jìn)行設(shè)計(jì);(3) 對(duì)電機(jī)、聯(lián)軸器和軸承的選擇;(4) 對(duì)三級(jí)齒輪減速器進(jìn)行設(shè)計(jì); 第4頁(yè)(5) 對(duì)傳動(dòng)系統(tǒng)中主要零件進(jìn)行設(shè)計(jì);(6) 對(duì)主要技術(shù)參數(shù)進(jìn)行研究。2 矯直機(jī)主傳動(dòng)系統(tǒng)設(shè)計(jì)方案確定2.1 矯直機(jī)的分類及特點(diǎn)軋件在軋制、冷卻和運(yùn)輸過(guò)程中,由于各種因素的影響,往往產(chǎn)生形狀缺陷。如鋼軌、型鋼和鋼管經(jīng)常出現(xiàn)弧形彎曲;某些型鋼(如工字鋼等)的斷面會(huì)產(chǎn)生翼緣內(nèi)并、外擴(kuò)和扭轉(zhuǎn);板材和帶材則會(huì)產(chǎn)生縱向彎曲(波浪形)、橫向彎曲、邊緣浪形、中間瓢曲和鐮刀彎等。為了獲得子直的板材和具有正確幾何形狀的鋼材,軋件需要在矯直機(jī)上進(jìn)行矯直。所以矯直機(jī)是軋鋼生產(chǎn)中的重要機(jī)械設(shè)備,而且也廣泛用于以軋材作坯料的各種車(chē)間(如汽車(chē)、船舶制造廠等)。 由于軋材品種規(guī)格的多樣化和對(duì)其形狀精度要求的提高,促進(jìn)了矯直理論和矯直機(jī)結(jié)構(gòu)的研究工作的快速發(fā)展以及矯直技術(shù)水平的不斷提高,矯直不同品種規(guī)格的軋件,采用不同結(jié)構(gòu)形式和不同規(guī)格的矯直機(jī)。所以矯直機(jī)的結(jié)構(gòu)形式繁多,矯直方式也不大相同, 按照工作原理不同劃分為五大類:2.1.1 反復(fù)彎曲式矯直機(jī)它們是靠壓頭或輥?zhàn)釉谕黄矫鎯?nèi)對(duì)上件進(jìn)行反復(fù)壓彎并逐漸減.小壓彎量,直到壓彎量與彈復(fù)量相等而變直。如壓力矯直機(jī)及輥式矯直機(jī)。1壓力矯直機(jī)壓力矯直機(jī)是最簡(jiǎn)單的矯直設(shè)備,它屬于利用反復(fù)彎曲并逐漸減小壓彎撓度方法達(dá)到矯直目的的設(shè)備。壓力矯直機(jī)的工作原理是將帶有原始彎曲的工件支承在工作臺(tái)的兩個(gè)活動(dòng)支點(diǎn)之間用壓頭對(duì)準(zhǔn)最彎部位進(jìn)行反向壓彎的。當(dāng)壓彎量與工件彈復(fù)量相等時(shí),壓頭撤回后工件的彎曲部位變直。如此進(jìn)行,工件各彎曲部位必將全部變直從而達(dá)到矯直的目的。其包括機(jī)動(dòng)壓力矯直機(jī)和液壓壓力矯直機(jī)兩種。(1)機(jī)動(dòng)壓力矯直機(jī)是利用曲軸(或曲柄)、連桿和滑塊機(jī)構(gòu)把旋轉(zhuǎn)運(yùn)動(dòng)變成直線運(yùn)動(dòng)。機(jī)架一般是采用 C 形開(kāi)式結(jié)構(gòu)和門(mén)形閉式結(jié)構(gòu)。在 C 形開(kāi)式結(jié)構(gòu)中還有主軸為簡(jiǎn)支梁型與懸臂梁型之分。這些結(jié)構(gòu)形式及規(guī)格的選擇上要根據(jù)加工對(duì)象的特點(diǎn)(如工件的斷面形狀及其尺寸大小、工件長(zhǎng)度和重量等)、加下精度要求及產(chǎn)量大小等因素來(lái)確 第5頁(yè)定。C 形開(kāi)式結(jié)構(gòu)的機(jī)架具有較大的操作空間,調(diào)節(jié)支點(diǎn)距、開(kāi)距、觀側(cè)壓彎位置、更換壓彎墊塊、移送上件、翻轉(zhuǎn)一件及更換壓頭等下作都較方便。但機(jī)架剛性較低,不適于大斷面工件的矯直工作。(2)液壓壓力矯直機(jī)普通液壓壓力矯直機(jī)已經(jīng)逐步代替了一些機(jī)動(dòng)壓力矯直機(jī),并從 20 世紀(jì)下半葉以來(lái)發(fā)展很快。在大型材及大鍛件的矯直生產(chǎn)中幾乎全部采用液壓矯直機(jī)。液壓矯直機(jī)具有壓力大、結(jié)構(gòu)緊湊重量輕、效率高、易控制、好調(diào)整等一系列優(yōu)點(diǎn),很適合于壓力矯直的工作要求。其又包括立式和臥式兩種:立式壓力矯直機(jī)采用曲柄沖床的工作原理進(jìn)行工作的,將軋件的彎曲部分放在兩個(gè)固定的支點(diǎn)上,矯直過(guò)程比較簡(jiǎn)單,工作時(shí)間段,空轉(zhuǎn)時(shí)間長(zhǎng)。為了在空轉(zhuǎn)是儲(chǔ)藏能量,以降低工作時(shí)發(fā)出的劍鋒負(fù)荷,從而減低電動(dòng)機(jī)容量,因此在傳動(dòng)系統(tǒng)中裝有飛輪。臥式壓力矯直機(jī)是一個(gè)水平放置的曲柄滑塊機(jī)構(gòu),它不需要翻鋼,故改善了操作條件。它的主要特點(diǎn)絲毫生產(chǎn)效率低,一般在型鋼和鋼管車(chē)間作為輔助的矯直機(jī)裝置或矯直彎曲度大及壁厚超過(guò)斜輥式矯直機(jī)允許范圍的鋼管。2輥式矯直機(jī) 輥式矯直機(jī)與壓力矯直機(jī)的矯直原理相似,都是利用反復(fù)彎曲并逐漸減小壓彎撓度的方法來(lái)達(dá)到矯直目的的設(shè)備。但從壓力矯直機(jī)到輥式矯直機(jī)在技術(shù)上完成一次較大的跨越,這個(gè)跨越的理論基礎(chǔ)就是金屬材料在較大彈塑性彎曲條件下,不管其原始彎曲程度有多大區(qū)別在彈復(fù)后所殘留的彎曲程度差別會(huì)顯著減小。甚至?xí)呌谝恢?。隨著壓彎程度的減小其彈復(fù)后的殘留彎曲必然會(huì)一致趨近于零值而達(dá)到矯直仔的。因此平行輥矯直機(jī)必須具備兩個(gè)基本特征,第一是具有相當(dāng)數(shù)量交錯(cuò)配置的矯直輥以實(shí)現(xiàn)多次的反復(fù)彎曲;第二是壓彎量可以調(diào)整,能實(shí)現(xiàn)矯直所需要的壓彎方案。其可以分為兩種形式:平行輥矯直機(jī)和斜輥矯直機(jī)。(1)平行輥矯直機(jī)是目前應(yīng)用范圍最廣的矯直機(jī),其門(mén)類、品種和規(guī)格是最多的。輥式矯直機(jī)具有兩排交叉布置得工作輥,彎曲的軋件在旋轉(zhuǎn)著餓工作輥之間做直線運(yùn)動(dòng),經(jīng)過(guò)工作輥的多次彎曲而得到矯直,生產(chǎn)率較高,且易于實(shí)現(xiàn)機(jī)械化和流水生產(chǎn),按用途分為板材與型材兩大類。板寬及板厚與矯直機(jī)的能力及結(jié)構(gòu)復(fù)雜程度有密切關(guān)系。首先是板厚決定輥徑尺寸;其次是板寬決定輥長(zhǎng)尺寸;第三,是輥數(shù)決定矯直質(zhì)量,第四,是輥?zhàn)又丿B數(shù)決定著矯直質(zhì)量及表面粗糙度,第五,是矯直溫度決定矯直機(jī)的結(jié)構(gòu)恃點(diǎn)。型材矯直機(jī)多用輥距及輥數(shù),以及用途等項(xiàng)來(lái)標(biāo)稱機(jī)器種類、規(guī)格及型號(hào)。 第6頁(yè)(2)斜輥矯直機(jī)對(duì)于鋼管和矯直質(zhì)量要求較高的圓管坯,在軋制、焊接或者熱處理后,具有一系列的缺陷。其中主要的是縱向彎曲和橫斷面的橢圓度。為了保證矯直質(zhì)量,矯直輥應(yīng)和軋件表面成線接觸。因此,要求對(duì)不同直徑的軋件采用不同形狀的矯直輥。由于軋件的尺寸規(guī)格較多,在實(shí)際生產(chǎn)中很難滿足上述要求。實(shí)踐證明,采用一種矯直輥輥型曲線,當(dāng)軋件尺寸改變時(shí),適當(dāng)改變矯直輥的傾斜角度,即可改變軋件與矯直輥的接觸情況,也能滿足生產(chǎn)上的要求。因此,矯直輥傾斜角要求可調(diào),同時(shí),工藝上還要求隨著軋件直徑的變化,沒(méi)對(duì)矯直輥之間的距離也要相應(yīng)的改變。 根據(jù)上述的要求,斜輥式矯直機(jī)通常由機(jī)架、矯直輥、矯直輥升降裝置、矯直輥傾角調(diào)整裝置等組成。2.1.2 旋轉(zhuǎn)彎曲式矯直機(jī)旋轉(zhuǎn)彎曲式矯直機(jī)是指工件在塑性彎曲狀態(tài)下以旋轉(zhuǎn)變形方一式從大的等彎矩區(qū)向小的等彎矩萬(wàn)過(guò)渡,在走出塑性區(qū)時(shí)彈復(fù)變直。旋轉(zhuǎn)者可以是工件,可以是矯直工具,也可以是變形方位。旋轉(zhuǎn)反彎矯直機(jī)根據(jù)工作原理、用途及運(yùn)轉(zhuǎn)方式不同分為兩大類。第一類是矯直工具在繞一工件軸線旋轉(zhuǎn)中利用工具與工件的相對(duì)運(yùn)動(dòng)來(lái)達(dá)到反彎矯直目的,主要用于圓材矯直。矯直機(jī)的工作主體在轉(zhuǎn)動(dòng)中運(yùn)行。第二類是矯直工具處在工件的固定方向上做上下左右的平行移動(dòng),而與工件之間沒(méi)有相對(duì)運(yùn)動(dòng),只靠全方位的平移產(chǎn)生全方位的反彎而達(dá)到矯直目的,主要用于非圓斷面薄壁型材的矯直。其工作主體在平動(dòng)中運(yùn)行。2.1.3 拉伸矯直機(jī)拉伸矯直機(jī)是依靠拉伸變形把原來(lái)長(zhǎng)短不一的縱向纖維拉成等長(zhǎng)度并進(jìn)入塑性變形后經(jīng)卸載及彈復(fù)而變直,如鉗式拉伸矯直機(jī)及連續(xù)拉伸矯直機(jī)。此種矯直機(jī)主要用來(lái)矯直厚度小于 0.30.6 毫米的薄鋼板和一些有色板材,這些軋件在輥式矯直機(jī)上往往難于矯直。通常,輥式板帶材矯直機(jī)只能有效地矯正軋件的縱向和橫向彎曲。至于板帶材的中間瓢曲或邊緣浪形則是由于板材沿長(zhǎng)度方向各纖維變形量不等造成的。為了矯正這種缺陷,需要使軋件產(chǎn)生適當(dāng)?shù)乃苄匝由?。在普通輥式矯直機(jī)上,雖能使這種缺陷有所改善,但矯正效果不理想。這時(shí)需采用拉伸矯直法。拉伸矯正的主要特點(diǎn)上一對(duì)軋件施加超過(guò)材料屈服極限的張力,使之產(chǎn)生彈塑性變形,從而將軋件矯直。 第7頁(yè)例如矯正單張板材的嵌式拉伸矯直機(jī)和連續(xù)拉伸機(jī)組。鉗式拉伸機(jī)生產(chǎn)率低切夾鉗住的部分要切除,造成的金屬損耗較大;連續(xù)拉伸機(jī)組由兩個(gè)張力輥組組成,拉伸所需的張力由張力輥對(duì)帶材的摩擦力產(chǎn)生。2.1.4 拉彎矯直機(jī)拉彎矯直機(jī)是把拉伸與彎曲變形合成起來(lái)使工件兩個(gè)表層的較大拉伸及全截面的拉伸變形三者不在同一時(shí)間發(fā)生,全斷面各層纖維的彈復(fù)變形也不是同時(shí)發(fā)生的。既防止了板帶的斷裂,又提高了矯直質(zhì)量。在平整矯直生產(chǎn)線及退火生產(chǎn)線上使用拉彎矯直機(jī)可以獲得比連續(xù)拉伸矯直機(jī)明顯的節(jié)能和安全效果。而且矯直質(zhì)量同樣良好。尤其在極簿帶的矯直方面更顯其優(yōu)越性。此外,在酸洗線上及鍍鋅線上使用拉彎矯直機(jī).的優(yōu)越性更為突出。酸洗前的拉彎矯直具有良好破鱗效果,可以節(jié)約大量酸液及時(shí)間,鍍鋅前的拉彎矯直還可使鋅花細(xì)膩。2.1.5 拉坯矯直設(shè)備拉坯矯直設(shè)備是在拉動(dòng)連鑄坯下行的同時(shí)使鑄坯的弧形彎曲漸伸變直,其拉力主要用于克服外部阻力,而鑄坯本身在高溫狀態(tài)下所需的矯直拉力是較小的。連鑄坯矯直屬于高溫矯直,與其他矯直法有著本質(zhì)性區(qū)別。它的反彎矯直是單向的而不是反復(fù)的.它的反彎量是逐漸加大的,而不是反復(fù)遞減的,它的彈復(fù)影響是可以忽略不計(jì)的。它的變形完全按塑性變形來(lái)考慮,它的變形量主要受熱裂紋限制,尤其在有液芯狀態(tài)下要保證不漏鋼。2.2 鋼管矯直機(jī)結(jié)構(gòu)組成以七輥鋼管矯直機(jī)為例說(shuō)明其結(jié)構(gòu)組成。 第8頁(yè)圖 1.1 七輥矯直機(jī)2.2.1 矯直輥管材矯直機(jī)的矯直輥,使管材在矯直過(guò)程中變形。矯直輥是在大的動(dòng)載荷和大的相對(duì)滑動(dòng)速度連續(xù)研磨的條件下進(jìn)行工作的。七輥矯直機(jī)矯直輥的布置形式:2-2-2-1,上下兩排矯直輥尺寸相同,三個(gè)在矯直中心線之上,四個(gè)在矯直中心線之下。其輥身長(zhǎng)度和腰部直徑,是管材矯直機(jī)矯直輥的基本結(jié)構(gòu)尺寸,近似于旋轉(zhuǎn)雙曲面的矯直輥工作表面,必須是光滑的。當(dāng)矯直表面質(zhì)量要求高的管材時(shí),輥身應(yīng)進(jìn)行拋光。為了保證工作表面磨損均勻和較好的矯直質(zhì)量,矯直輥應(yīng)準(zhǔn)確地相對(duì)被矯管材的軸線進(jìn)行布置。為了確定矯直輥相對(duì)矯直軸線的安裝精度,輥身中間有一環(huán)形檢查堆線,其相對(duì)于矯直輥托盤(pán)軸線的偏移,不應(yīng)超過(guò)士 0.2 毫米。導(dǎo)向輥起支撐導(dǎo)向作用。矯直輥兩端裝有兩列圓錐滾子軸承,并固定在回轉(zhuǎn)圓盤(pán)上。矯直輥的輥型曲線直接影響鋼管的矯直質(zhì)量,其關(guān)鍵在于輥?zhàn)优c鋼管是否在空間保持全部接觸。同時(shí),各組矯直輥的安裝精度低矯直質(zhì)量也有直接影響。因此采用新的矯直輥輥型曲線的計(jì)算方法,提高鋼管的矯直質(zhì)量。2.2.2 矯直輥調(diào)節(jié)裝置 1矯直輥的徑向調(diào)節(jié)機(jī)構(gòu)為了在輥?zhàn)袏A緊管材,并使管材在輥?zhàn)g彎曲,矯直機(jī)的矯直輥相對(duì)管材作徑向調(diào)節(jié)。徑向調(diào)節(jié)機(jī)構(gòu)根據(jù)結(jié)構(gòu)特點(diǎn),可分為導(dǎo)向滑塊式、擺桿式和復(fù)合式三種。導(dǎo)向滑塊式機(jī)構(gòu)的優(yōu)點(diǎn)是結(jié)構(gòu)緊湊簡(jiǎn)單,便于安裝,并具有消除間隙和定位的裝置。這 第9頁(yè)對(duì)矯直速度超過(guò) 1.5 米/秒的矯直機(jī)是非常重要的。圓柱形滑塊式的徑向調(diào)節(jié)機(jī)構(gòu),可以是單獨(dú)傳動(dòng)或集體傳動(dòng)。擺桿式其優(yōu)點(diǎn)是可以同時(shí)進(jìn)行兩個(gè)矯直輥的徑向調(diào)節(jié),并大大簡(jiǎn)化角度調(diào)節(jié)自動(dòng)化問(wèn)題。而復(fù)合式則同時(shí)具備滑塊式、擺桿式的優(yōu)點(diǎn)。2矯直輥的角度調(diào)節(jié)機(jī)構(gòu)為了使管材與矯直輥間的接觸達(dá)到最大接觸(即和輥身全長(zhǎng)相接觸,且接觸線不間斷)必須調(diào)節(jié)矯直機(jī)矯直輥的角度。角度調(diào)節(jié)機(jī)構(gòu)可分為非自動(dòng)和自動(dòng)的兩種。非自動(dòng)的角度調(diào)節(jié)機(jī)構(gòu)分成單螺桿與雙螺桿的兩種。單螺桿機(jī)構(gòu)的優(yōu)點(diǎn)是結(jié)構(gòu)簡(jiǎn)單和可實(shí)現(xiàn)遠(yuǎn)距離操作,便于調(diào)節(jié)螺桿,可以較快地調(diào)節(jié)輥?zhàn)拥慕嵌?;缺點(diǎn)是鉸接處有間隙,這破壞了高速運(yùn)轉(zhuǎn)時(shí)的調(diào)節(jié)穩(wěn)定性。單螺桿的角度單獨(dú)調(diào)節(jié)機(jī)構(gòu),可用于矯直速度不超過(guò) 1.5 米/秒的低速矯直機(jī)中。雙螺桿的結(jié)構(gòu)對(duì)于消除間隙和輥?zhàn)诱{(diào)節(jié)角度的定位是有很重要的作用,但是用它來(lái)調(diào)節(jié)傳動(dòng)輥時(shí),不能在工作機(jī)架的同一側(cè)安裝轉(zhuǎn)動(dòng)手輪。因此建議在矯直速度超過(guò) 1.5米/秒的高速嬌直機(jī)中,采用雙螺桿的角度調(diào)節(jié)機(jī)構(gòu)。自動(dòng)調(diào)節(jié)機(jī)構(gòu)可以再?gòu)较蛘{(diào)節(jié)的過(guò)程中,根據(jù)被矯直管材的直徑,自動(dòng)矯正輥?zhàn)拥恼{(diào)節(jié)角度。自動(dòng)調(diào)節(jié)機(jī)構(gòu)通常用于三輥?zhàn)匠C直機(jī),因?yàn)檫@類矯直機(jī)在一個(gè)三輥?zhàn)鶅?nèi),要調(diào)節(jié)的輥?zhàn)硬皇莾蓚€(gè)而是三個(gè),而三輥?zhàn)目梢?jiàn)度要比兩輥?zhàn)牟畹枚唷?.2.3 傳動(dòng)裝置矯直成卷管材時(shí),矯直機(jī)以固定負(fù)載長(zhǎng)期工作制度進(jìn)行工作,而矯直單根管材時(shí),負(fù)載是斷續(xù)的,間斷時(shí)間取決于管材送人的節(jié)拍。如果送人節(jié)拍很快,每根管材間的間隔時(shí)間很短,則負(fù)載也可看作是連續(xù)的。因此,在選擇矯直機(jī)電氣傳動(dòng)裝置時(shí),通常是按長(zhǎng)期工作制考慮的。一般情況下,管材矯直機(jī)的傳動(dòng)是不可逆式的,但在發(fā)生事故時(shí)可以逆轉(zhuǎn),以便將因各種原因卡在軋輥和導(dǎo)衛(wèi)裝置中的管材拉出來(lái)。裝在精整作業(yè)線上的矯直機(jī)的矯直速度,和管材從軋機(jī)出來(lái)的速度是一致的。軋機(jī)的設(shè)計(jì)通常是以最小的傳動(dòng)功率和最少的能耗取得最佳生產(chǎn)率的原則進(jìn)行的。因此,大直徑的管材用低的速度軋制,而小直徑管材則用高的軋制速度。矯直速度的調(diào)節(jié)仍維持功率恒定的原則。管材矯直機(jī)通常有兩種傳動(dòng):主傳動(dòng)和徑向調(diào)節(jié)機(jī)構(gòu)的傳動(dòng)。矯直管徑大于 300 毫米以上的重型矯直機(jī),矯直輥的角度調(diào)節(jié)機(jī)構(gòu)也用電氣傳動(dòng)。主傳動(dòng)用直流和交流電動(dòng)機(jī)。矯直所需的靜態(tài)力矩和被矯管材的半徑幾乎成拋物線關(guān)系。因此,傳動(dòng)電動(dòng)機(jī) 第10頁(yè)的調(diào)速在恒功率條件下,以改變勵(lì)磁電流最為合理。矯直速度調(diào)節(jié)范圍通常達(dá)到 3:1。但斜輥式矯直機(jī)主傳動(dòng)速度的調(diào)節(jié)范圍要比此值大 2030%。有二個(gè)理由:1)當(dāng)根據(jù)管徑調(diào)速時(shí),也要改變矯直輥的角度,而此角度又影響著管材送進(jìn)的分速度,2)矯直輥磨損時(shí),接觸直徑變化 510%。2.3 矯直方案和矯直工藝軋制、焊接及熱處理后管材的主要缺陷是縱向彎曲,橫斷面的橢圓度,以及非圓管材的扭曲。為了消除這些缺陷,采用鋼管矯直機(jī)。本次 273 鋼管矯直機(jī)采用的是壓力矯直法,其具體的矯直方案是將條材的彎曲部位放置在兩個(gè)支點(diǎn)之間用壓頭對(duì)彎曲部位進(jìn)行反向壓彎。當(dāng)壓彎量選定合適時(shí),壓頭抬起后條材彈復(fù)變直,完成一維彎曲的矯直任務(wù)。當(dāng)條材有側(cè)彎時(shí)再將其彎曲部位移至壓頭處進(jìn)行反向壓彎完成第二次的一維矯直任務(wù)。當(dāng)一根條材具有多處的不同程度和不同方位的彎曲時(shí),則需要進(jìn)行多部位、多方向和多次的一維反彎矯直工作,即用一維反彎完成多部位二維彎曲的矯直任務(wù)。管材的矯直可以分為粗矯和精矯兩個(gè)部分。在軋制、拉拔和熱處理后直接進(jìn)行粗矯,以保證制品運(yùn)輸(有輥道,運(yùn)輸機(jī)和其他裝置)的可能,這對(duì)完成其他精整工序是必要的。在軋材冷卻的過(guò)程中,進(jìn)行這種矯直最為合理。為了進(jìn)行粗矯,一般采用鏈?zhǔn)匠C直機(jī)、花輥式和槽型輥式矯直機(jī),以及管材橫向移動(dòng)的螺旋輥式矯直機(jī)。管材的精矯和其他精整工序,往往一起進(jìn)行,其目的在于使制品最總達(dá)到所要求的條件。為此,一般采用斜輥式,轉(zhuǎn)子式,螺旋式,扭轉(zhuǎn)拉伸式矯直機(jī)及管材縱移的螺旋輥式矯直機(jī)。2.4 矯直機(jī)傳動(dòng)系統(tǒng)設(shè)計(jì)方案通過(guò)進(jìn)入工廠 273 鋼管矯直機(jī)的參觀實(shí)習(xí)以及對(duì)矯直原理的深入學(xué)習(xí)和研究,對(duì)矯直機(jī)的主傳動(dòng)系統(tǒng)有了更深一步的了解。斜輥矯直機(jī)的傳動(dòng)方式主要有減速器的齒輪傳動(dòng)和萬(wàn)向接軸的傳動(dòng)兩種。萬(wàn)向聯(lián)軸器利用其機(jī)構(gòu)的特點(diǎn),使兩軸不在同一軸線,存在軸線夾角的情況下能實(shí)現(xiàn)所聯(lián)接的兩軸連續(xù)回轉(zhuǎn),并可靠地傳遞轉(zhuǎn)矩和運(yùn)動(dòng)。萬(wàn)向聯(lián)軸器最大的特點(diǎn)是具有較大的角向補(bǔ)償能力,結(jié)構(gòu)緊湊,傳動(dòng)效率高。在實(shí)際應(yīng)用中根據(jù)所傳遞轉(zhuǎn) 第11頁(yè)矩大小分為重型、中型 、輕型和小型 。在高速重載的動(dòng)力傳動(dòng)中,有些聯(lián)軸器還有緩沖、減振和提高軸系動(dòng)態(tài)性能的作用。聯(lián)軸器由兩半部分組成,分別與主動(dòng)軸和從動(dòng)軸聯(lián)接。一般動(dòng)力機(jī)大都借助于聯(lián)軸器與工作機(jī)相聯(lián)接。圖 1.2 萬(wàn)向接軸本次設(shè)計(jì)的是七輥矯直機(jī),其矯直輥的布置形式:2-2-2-1 這種輥系與其他輥系不同之處在于輥?zhàn)尤繛殚L(zhǎng)輥,輥予全部成對(duì)配置,輥?zhàn)尤繛轵?qū)動(dòng)輥。從發(fā)展的角度來(lái)看,增加斜輥矯直機(jī)的驅(qū)動(dòng)輥數(shù)有利于提高矯直質(zhì)量和矯直功率。由原始的兩輥驅(qū)動(dòng)到現(xiàn)在的六輥驅(qū)動(dòng),可以說(shuō),矯直工藝不斷地完善。斜輥矯直機(jī)的驅(qū)動(dòng)電機(jī)一般要求能調(diào)速,電動(dòng)機(jī)調(diào)速由發(fā)電機(jī)電動(dòng)機(jī)組改變?yōu)榭煽毓枵髡{(diào)速。近代已采用交流變頻調(diào)速,可以使傳動(dòng)簡(jiǎn)化且可節(jié)約能耗。基于對(duì)以上傳動(dòng)的研究,確定斜輥矯直機(jī)的傳動(dòng)參數(shù)包括矯直速度、傳動(dòng)力矩及傳動(dòng)速比。從而確定 273 鋼管矯直機(jī)主傳動(dòng)系統(tǒng)的傳動(dòng)設(shè)計(jì)方案。根據(jù)矯直參數(shù)的確定計(jì)算傳動(dòng)系統(tǒng)中的矯直功率,進(jìn)而選擇電機(jī);根據(jù)電機(jī)輸出軸端直徑選擇聯(lián)軸器;再根據(jù)電機(jī)的轉(zhuǎn)數(shù)計(jì)算減速器的傳動(dòng)功率,傳動(dòng)扭矩,由減速器的傳動(dòng)比分配可以確定減速器的各級(jí)傳動(dòng)情況,如:轉(zhuǎn)數(shù)、功率、扭矩等。再根據(jù)參考文獻(xiàn)選擇萬(wàn)向接軸,最后根據(jù)已知參數(shù)進(jìn)行輥的設(shè)計(jì)和校核。2.5 矯直機(jī)傳動(dòng)系統(tǒng)的工作原理 本次設(shè)計(jì)的是 273 鋼管矯直機(jī)主傳動(dòng)系統(tǒng),明確主傳動(dòng)系統(tǒng)的工作原理是非常重要的。其工作原理是電機(jī)通過(guò)聯(lián)軸器與減速機(jī)相連,減速機(jī)的輸出聯(lián)接萬(wàn)向接軸,從而將電機(jī)的輸出功率輸送給矯直輥,帶動(dòng)矯直輥傳動(dòng),達(dá)到矯直機(jī)的目的。 第12頁(yè)3 鋼管矯直機(jī)里能參數(shù)計(jì)算3.1 原始數(shù)據(jù)矯直鋼管的設(shè)計(jì)參數(shù):鋼管外徑:D=(159273)mm,壁厚:=(4.520)mm 取 =20mm軋件的屈服極限: =(539834)MPa,矯直速度:=1m/ss矯直輥 n:上矯直輥 3 個(gè),下矯直輥 4 個(gè) 3.2 輥式矯直機(jī)的基本參數(shù)輥式矯直機(jī)的基本參數(shù)包括:輥徑、輥距 P、輥數(shù) n、輥身長(zhǎng)度 L 和矯直速度 V。gD3.2.1 輥徑和輥長(zhǎng)的確定1.輥徑的確定:gD根據(jù)對(duì)九種規(guī)格斜輥矯直機(jī)的統(tǒng)計(jì)得知=(1.84.3)d,這說(shuō)明有一些特大規(guī)gD格的矯直機(jī)須盡量縮小結(jié)構(gòu)尺寸;而一些特小規(guī)格的矯直機(jī)須適當(dāng)加大結(jié)構(gòu)尺寸。此 第13頁(yè)外對(duì)于管材矯直機(jī),由于矯直力減小而采用=(1.24)d。這也是適應(yīng)特粗和恃細(xì)gD管材而采用的計(jì)算式。由于本設(shè)計(jì)中 d=273mm 屬于粗管材故: =(1.24)d=(1.24)273mmgD =(327.61092)mm 取=480mmgD2.輥長(zhǎng)的確定: 輥?zhàn)娱L(zhǎng)度主要應(yīng)考慮輥面與工件之間要有一定的接觸長(zhǎng)度和較大的包角以保證矯直和運(yùn)轉(zhuǎn)的穩(wěn)定性。一般情況下包角越大,工作越穩(wěn)定。包角與圓材的直徑有關(guān),因此輥?zhàn)娱L(zhǎng)度也由圓材的直徑有關(guān)。輥身的長(zhǎng)度可由下面的關(guān)系式確定:長(zhǎng)輥:,L=( ) 150mmd 23.5gD ,L= ()150mmd 1.32.5gD因?yàn)椋汗剩篸=273mm L= () ()()1.32.5gD=1.32.5480mm 6241200mm取:L= 660mm短棍:取dgDD400mmdD 取0.5dgLL560mmdL 3.2.2 輥端圓角和輥距的確定1.輥端圓角 R 的確定輥端圓角 R 是斜輥矯直機(jī)的一個(gè)重要的結(jié)構(gòu)參數(shù),從改善咬入條件和保證管材的表面質(zhì)量方面來(lái)說(shuō),輥角 R 應(yīng)該大些,但是從減小機(jī)器的結(jié)構(gòu)尺寸來(lái)說(shuō),R 的選值又不可以太大,故一般取: R=(0.1250.1)L R=(0.1250.1)L=(82.566)mm選取 R=60mm2.輥距的確定 第14頁(yè)斜輥的輥距為同側(cè) 2 輥間的距離。在此間距內(nèi)要容納輥?zhàn)又Ъ?、輥?zhàn)?、調(diào)角與鎖緊機(jī)構(gòu)等。在減小機(jī)器受力,保證輥?zhàn)D(zhuǎn)角方便來(lái)說(shuō),輥距要大些;從建校結(jié)構(gòu)尺寸,減小壓下量來(lái)說(shuō),輥距又不宜過(guò)大。但為了擺正輥?zhàn)D(zhuǎn)動(dòng)的條件,一般選?。?P=(22.5)L=(22.5)660mm =(13201650)mm為了減小結(jié)構(gòu)尺寸及改善要入條件,P 值要盡量采用較小的值 選?。篜=1300mm3.3 斜輥式鋼管矯直機(jī)力能參數(shù)的計(jì)算采用六輥全驅(qū)動(dòng)方式,輥系的輥距 P=1300mm,輥腰直徑=480mm,輥全長(zhǎng)gDL=660mm,輥?zhàn)有苯牵C直速度 =1m/s;o=3642o3.3.1 矯直質(zhì)量要求(1) 矯直前鋼管允許的最大強(qiáng)度應(yīng)小于 30mm/m;全長(zhǎng)小于 80mm。(2) 矯直后鋼管允許的最大彎度應(yīng)小于 1mm/1500mm,管端 1m 管內(nèi)為 0.8mm。3.3.2 矯直力的計(jì)算 此矯直輥系特點(diǎn)在于六個(gè)矯直輥全部為長(zhǎng)輥,輥?zhàn)尤砍蓪?duì)配置,輥?zhàn)尤繛轵?qū)動(dòng)輥。輥系中三對(duì)輥?zhàn)拥母魃陷伨缮嫡{(diào)整,中間部分的下輥也可升降調(diào)整,各輥斜角可調(diào)。當(dāng)輥?zhàn)有苯禽^小并將工件抱緊時(shí),在中間一對(duì)輥?zhàn)酉蛏咸鸷蠊ぜ?nèi)可產(chǎn)生如圖彎矩,此時(shí)的力學(xué)模型類似固端梁的彎矩圖。當(dāng)棍子斜角較大對(duì)工件抱得不緊時(shí),便可能產(chǎn)生所示的彎矩圖。為了達(dá)到矯直目的,這兩種彎曲的等彎矩區(qū)都不應(yīng)小于一個(gè)螺旋導(dǎo)程。輥系的受力模型如下所示: 第15頁(yè)圖 3.1 輥系受力模型輥?zhàn)尤L(zhǎng) L=660mm,去掉圓角部分,輥?zhàn)拥墓ぷ鏖L(zhǎng)度約為=620mm。為了滿足gL壓扁矯直的需要,最大管材的螺旋導(dǎo)程不應(yīng)超過(guò) 620mm,因此,其相應(yīng)的斜角為: 0620arctanarctan36273td(3.1)內(nèi)外徑之比: 273400.85273a故其: 3414ttRaM(3.2) 34136.51 0.855394 514.4KN m式中: ,。273136.5mm22DR 539MPats規(guī)定: 0.10.850.10.75a由文獻(xiàn)1,圖 1-22 ,故可知:;1.23M 第16頁(yè)由此可知管材最大矯直彎矩為: 1.23 514.4633KN mtMMM(3.3)按圖 3.1 計(jì)算矯直力: 1222gMMMFLtSPpp (3.4) 6331300310639.4KN第一組及第三組輥間壓扁力不必過(guò)大且有利于咬入,故按一般壓緊力計(jì)算:110.30.3 639.4191.82KNyFFKN第一組及第三組輥的上輥壓力為:111639.4191.82831.22KNyFFFKNKN于是按輥系對(duì)稱性可以寫(xiě)出: ; ;31FF31yyFF31FF再按文獻(xiàn)1,式 4-73算得中央二輥的壓扁力: 220. 65yttFR (3.5) 2620200.65539136.5636.53KN由圖 3.1 的彎矩圖可知,與(或)形成力偶(力偶距作用在即段2F1F3FSgL內(nèi)) ,故=(或) 。于是上輥受力分別為、及,下輥受力分別為、2F1F3F1F2yF3F1yF及。而:22F3yF 第17頁(yè) ; 111yFFF(3.6) ; 3111yFFFF(3.7); 2222122yyFFFFF(3.8)因此上下輥受力總和為: 112442yyFFFF (3.9)4 639.44 191.822 636.53 4597.94KN 最大矯直力在中下輥,其受力為: 22222yFFF (3.10)2 639.4636.531915.33KN其軸承受力為 ??捎晌墨I(xiàn)2,式 4-39即可求出:2cosF2arcsinsinarcsinsingggLSDD (3.11)620arcsinsin36480o49.4o此式中 為輥面法向壓力角。因此,單側(cè)軸承受力為: 2cos50zoFF (3.12) 第18頁(yè)957.671489KN0.643由此可知各輥軸承壓力總和為:211222cosyzzyFFFFF (3.13)636.532 14892 831.222 191.820.643 6014KN3.4 矯直功率的計(jì)算3.4.1.軸承摩擦功率選用軸承摩擦系數(shù) : 10.008軸頸直徑 : 1220mmd 輥面速度 : sing1=1.7m/ssin36o輥?zhàn)愚D(zhuǎn)數(shù) : 60gggnD60 1.70.4867.7r/min于是摩擦功率為: 111230gzndNF(3.14)0.2267.70.008601423037.5KW式中:各輥軸承壓力總和zF 第19頁(yè)3.4.2.輥面與工件的滑動(dòng)摩擦功率 由于管材在中央輥縫內(nèi)呈彎曲狀態(tài),必有一輥腰和另一輥端接觸。而輥徑為gD,端徑約為,即可求出中央二輥滾面的法向壓力為480mmD550mm 222cosyNzFFF(3.15)636.532 1489cos49.4o3956KN設(shè)滑動(dòng)摩擦系數(shù)為:,則滑動(dòng)功率為:20.15 22260gNgDDNFn(3.16)0.550.480.15 395667.760147.2KW式中: 輥端直徑,單位:mD gD輥腰直徑,單位:m3.4.3.工件在滾面上的滾動(dòng)摩擦功率 工件在 6 個(gè)輥面上滾動(dòng),全部壓力為,設(shè)滾動(dòng)摩擦系數(shù)(因?yàn)楣懿谋粃F0.002f 壓扁時(shí)值偏大) ,計(jì)算輥?zhàn)悠骄睆?,管材外徑,因此滾動(dòng)功f0.5mpD 0.273md 率為:3cos30pgzD nNfFd (3.17)3.14 0.5 67.70.002 6014cos3630 0.273o126.3KW 第20頁(yè)式中: 平均直徑,單位:mmpD各輥軸承壓力總和,單位:KNzF輥?zhàn)愚D(zhuǎn)數(shù),單位 :gnr/min3.4.4.矯直變形功率工件在矯直過(guò)程中的塑性變形及殘余變形所耗功率按平均來(lái)考慮,由0.85a文獻(xiàn)2,1-47查知其旋轉(zhuǎn)矯直耗能比,以此計(jì)算直徑圓材的彈性極限變形0.83XJu為: tu 228tRE(3.18)225(136.5)(539)8 2.06 10 10.31KN m/m式中: E彈性模量,取,5E=2.06 102Kg/m R管材半徑,273136.5mm22dR 因此矯直變形功率為: 4cos60ggXJgtDnNLuud (3.19)0.4867.70.62 0.83 10.31cos360.27360o8.52KW矯直機(jī)的傳動(dòng)功率按計(jì)算,則矯直機(jī)的驅(qū)動(dòng)功率為:0.8512341NNNNN (3.20) 137.5 147.2 126.38.520.85 第21頁(yè)375.9KW4 273 鋼管矯直機(jī)驅(qū)動(dòng)系統(tǒng)的確定4.1 電機(jī)的選擇 六輥驅(qū)動(dòng)的鋼管矯直機(jī)易采用柔性驅(qū)動(dòng),以適應(yīng)各輥轉(zhuǎn)速的差異。矯直機(jī)總的驅(qū)動(dòng)功率為 375.9KW。為了使矯直輥的轉(zhuǎn)速平穩(wěn),上下兩排矯直輥的矯直參數(shù)一致,采用兩個(gè)轉(zhuǎn)數(shù)分配箱,通過(guò)它將由減速器輸出端得到的總矯直力矩按各矯直輥所需分配到每一根矯直輥上,根據(jù)文獻(xiàn)4,9092可選擇兩個(gè) Z4-280-31 型電動(dòng)機(jī);其單機(jī)功率為 220KW,其額定轉(zhuǎn)速:n=(10002000) ,效率???cè)萘縭/min89.7%為KW,完全可以滿足矯直機(jī)的正常工作。并且電機(jī)容量大概有 14.6%2 220440左右的余量,以滿足應(yīng)對(duì)磨損等額外能量的消耗。4.2 減速器傳動(dòng)比分配4.2.1 減速器的輸出轉(zhuǎn)數(shù)減速機(jī)的輸出轉(zhuǎn)數(shù)即為矯直機(jī)的轉(zhuǎn)數(shù) 根據(jù)文獻(xiàn)2,450-456有:gn 60gggnD(4.1)式中:矯直輥輥面速度,g1.7m sg 輥腰直徑,gD480mmgD 將數(shù)據(jù)代入(4.1)求得: 67.7r mingn 第22頁(yè)4.2.2 傳動(dòng)比及其分配 12nin(4.2)式中 減速器的輸入轉(zhuǎn)數(shù),1n11345r minn 矯直輥的速度,2n267.7r minn 將數(shù)據(jù)代入公式即可求得傳動(dòng)比: 19.88i 由參考文獻(xiàn)3.7-8可知傳動(dòng)比的分配原則為: 1 2 3iii i(4.3)() ni 1.31.41ni(4.4)式中: 1i減速器的一級(jí)傳動(dòng)比 減速器的二級(jí)傳動(dòng)比2i3i減速器的三級(jí)傳動(dòng)比取傳動(dòng)比:,121.35ii231.35ii由公式(4.3) , (4.4)可知:傳動(dòng)比分配為:,13.645i 22.7i 32i 4.3 減速器一級(jí)齒輪傳動(dòng)設(shè)計(jì)4.3.1 選擇精度等級(jí),材料及齒數(shù)1. 根據(jù)傳動(dòng)系統(tǒng)的需要,選擇 7 級(jí)精度2. 根據(jù)文獻(xiàn)3,表 10-1選擇齒輪軸的材料(調(diào)質(zhì))硬度為 280HBS,大齒40rC 第23頁(yè)輪材料為 45#(調(diào)質(zhì))硬度為 240HBS,二者材料的硬度差為 40HBS。3. 選擇齒輪軸齒數(shù),大齒輪齒數(shù),取131Z 23.645 31 112.9Z 2113Z 4. 初選螺旋角:12o5. 交涉電機(jī)壽命 15 年,全日制工作4.3.2 按齒面接觸強(qiáng)度設(shè)計(jì) 由文獻(xiàn)3,218219可知齒面強(qiáng)度設(shè)計(jì)公式: 213121tHEtdHK TZ Zudu (4.5)1.確定公式內(nèi)的各計(jì)算數(shù)值:(1)試選1.6tK (2)由文獻(xiàn)3,圖 10-30選取區(qū)域系數(shù)2.44HZ(3)由文獻(xiàn)3,圖 10-26查得,10.8120.86由公式: 12(4.6) 得:1.672.計(jì)算許用接觸應(yīng)力:根據(jù)文獻(xiàn)3,表 10-7選取齒寬系數(shù):1.0d根據(jù)文獻(xiàn)3,表 10-6查得材料的彈性影響系數(shù):12189.8MPaEZ 根據(jù)文獻(xiàn)3,圖 10-21d按齒面硬度查得小齒輪的接觸疲勞強(qiáng)度極限;大齒輪的接觸疲勞強(qiáng)度極限:。lim1600MPaHlim2550MPaH根據(jù)文獻(xiàn)3,式 10-13計(jì)算應(yīng)力循環(huán)次數(shù):60hNnjL (4.7) 第24頁(yè)式中: n齒輪的轉(zhuǎn)數(shù)(單位為)r min j齒輪每轉(zhuǎn)一圈時(shí),同一齒面嚙合的次數(shù),取1j 齒輪的工作壽命(單位為 )hLh將數(shù)據(jù)代入: 160hNnjL60 1345 24 300 1598.7 10 991218.7 102.39 103.645NNi(4.8)根據(jù)文獻(xiàn)3,圖 10-19取接觸疲勞壽命系數(shù): ,10.86HNK20.92HNK選取安全系數(shù),計(jì)算接觸疲勞需用應(yīng)力:1S 1lim110.86 600516MPa1HNHHKS(4.9) 2lim220.92 550506MPa1HNHHKS(4.10)則許用應(yīng)力為: 12516506511MPa22HHH (4.11)3.計(jì)算齒輪各部分參數(shù)(1)試算小齒輪分度圓直徑,由計(jì)算公式(4.5)得:1td111220 0.989.559.551.53KN m1345PTn (4.12) 第25頁(yè)2312 1.6 15300003.645 12.44 189.81 1.673.645511td145.3mm選取 : 1155mmtd (2)計(jì)算圓周速度: 11155 134510.91m s60 100060 1000td n(4.13)(3)計(jì)算齒寬 b 及模數(shù):ntm 11 155155mmdtbd (4.14) 11cos155 cos124.9mm31otntdmz(4.15) 2.252.25 4.911mmnthm(4.16) 1551411bh(4.17)(4)計(jì)算縱向重合度: 10.318tandZ0.318 1 31 tan12o 2.1(4.18)(5)計(jì)算載荷系數(shù) K:已知使用系數(shù): 1AK 根據(jù),7 級(jí)精度,由文獻(xiàn)3,圖 10-8查得動(dòng)載荷系數(shù)10.91m s1.18vK 根據(jù)文獻(xiàn)3,表 10-4查得:1.44HK根據(jù)文獻(xiàn)3,圖 10-13查得:1.37FK 第26頁(yè)根據(jù)文獻(xiàn)3,表 10-3查得:1.4HFKK故載荷系數(shù): 1 1.18 1.4 1.442.38AvHHKK K KK (4.19)(6)按實(shí)際的載荷系數(shù)校正所算得分度圓直徑:根據(jù)文獻(xiàn)3,式 10-10a得: 311ttKddK32.381551.6176.9mm(4.20)(7)計(jì)算模數(shù) nm 11cos176.9 cos125.58mm31ondmz(4.21)?。?mmnm 4.3.3 按齒根彎曲強(qiáng)度校核根據(jù)文獻(xiàn)3,式 10-16得斜齒輪輪齒的彎曲疲勞強(qiáng)度公式為: tFaSaFFnKFY Y Ybm (4.22)式中: 法向載荷在圓周方向的分力tFnF K載荷系數(shù)斜齒輪的齒形系數(shù)FaY斜齒輪的應(yīng)力校正系數(shù)SaY螺旋角影響系數(shù)Y斜齒輪傳動(dòng)的斷面重合度1.確定計(jì)算參數(shù) 第27頁(yè)(1)計(jì)算載荷系數(shù):根據(jù)參考文獻(xiàn)3,216 頁(yè)可知: 1 1.18 1.4 1.372.26AvFFKK K KK (4.23)(2) 確定法向載荷在圓周方向的分力:nFtF根據(jù)文獻(xiàn)3,式 10-14可知: 1122 1.5317.3KN176.9tTFd (4.24)(3)參數(shù)與的確定: FaYSaY 11333133.12coscos 12voZZ (4.25)2233113120.74coscos 12voZZ 由文獻(xiàn)3,表 10-5查得取齒形系數(shù): ,12.49FaY22.16FaY由文獻(xiàn)3,表 10-5查得應(yīng)力校正系數(shù): ,11.645SaY21.81SaY(4)確定螺旋角影響系數(shù):Y斜齒輪的縱向重合度可按下面的公式確定: sin0.318tandnbZm(4.26)由得: 131Z 12.095由得: 2113Z 27.64根據(jù)文獻(xiàn) 3,圖 10-28查得: 第28頁(yè) 120.9YY(5)斜齒輪傳動(dòng)的斷面重合度的確定:由公式(4.6)可知: 1.67由公式(4.22)得斜齒輪輪齒的彎曲疲勞強(qiáng)度:,193MPaF288.6MPaF2. 許用彎曲疲勞強(qiáng)度的確定:F根據(jù)文獻(xiàn) 3,式 10-12可知,其計(jì)算公式如下: limNFKS(4.27)式中: 疲勞強(qiáng)度安全系數(shù)。取 。S1.3S 考慮應(yīng)力循環(huán)次數(shù)影響的系數(shù),稱為壽命系數(shù)。NK齒輪的疲勞極限。lim(1)壽命系數(shù)的確定NK齒輪的工作應(yīng)力循環(huán)次數(shù)按下式計(jì)算:N160hNnjL60 1345 24 300 1598.7 10991218.7 102.39 103.645NNi根據(jù)文獻(xiàn) 3,圖 10-18可知:,10.89FNK20.91FN
收藏