2013高考數(shù)學(xué) 解題方法攻略 圓錐曲線1 理

上傳人:xian****hua 文檔編號:147643981 上傳時間:2022-09-02 格式:DOC 頁數(shù):16 大?。?.56MB
收藏 版權(quán)申訴 舉報 下載
2013高考數(shù)學(xué) 解題方法攻略 圓錐曲線1 理_第1頁
第1頁 / 共16頁
2013高考數(shù)學(xué) 解題方法攻略 圓錐曲線1 理_第2頁
第2頁 / 共16頁
2013高考數(shù)學(xué) 解題方法攻略 圓錐曲線1 理_第3頁
第3頁 / 共16頁

下載文檔到電腦,查找使用更方便

11.8 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2013高考數(shù)學(xué) 解題方法攻略 圓錐曲線1 理》由會員分享,可在線閱讀,更多相關(guān)《2013高考數(shù)學(xué) 解題方法攻略 圓錐曲線1 理(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、橢圓與雙曲線的對偶性質(zhì)橢 圓1. 點P處的切線PT平分PF1F2在點P處的外角.2. PT平分PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3. 以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4. 以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5. 若在橢圓上,則過的橢圓的切線方程是.6. 若在橢圓外 ,則過Po作橢圓的兩條切線切點為P1、P2,則切點弦P1P2的直線方程是.7. 橢圓 (ab0)的左右焦點分別為F1,F(xiàn) 2,點P為橢圓上任意一點,則橢圓的焦點角形的面積為.8. 橢圓(ab0)的焦半徑公式:,( , ).9. 設(shè)過橢圓焦點F

2、作直線與橢圓相交 P、Q兩點,A為橢圓長軸上一個頂點,連結(jié)AP 和AQ分別交相應(yīng)于焦點F的橢圓準(zhǔn)線于M、N兩點,則MFNF.10. 過橢圓一個焦點F的直線與橢圓交于兩點P、Q, A1、A2為橢圓長軸上的頂點,A1P和A2Q交于點M,A2P和A1Q交于點N,則MFNF.11. AB是橢圓的不平行于對稱軸的弦,M為AB的中點,則,即。12. 若在橢圓內(nèi),則被Po所平分的中點弦的方程是.13. 若在橢圓內(nèi),則過Po的弦中點的軌跡方程是.雙曲線1. 點P處的切線PT平分PF1F2在點P處的內(nèi)角.2. PT平分PF1F2在點P處的內(nèi)角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個

3、端點.3. 以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相交.4. 以焦點半徑PF1為直徑的圓必與以實軸為直徑的圓相切.(內(nèi)切:P在右支;外切:P在左支)5. 若在雙曲線(a0,b0)上,則過的雙曲線的切線方程是.6. 若在雙曲線(a0,b0)外 ,則過Po作雙曲線的兩條切線切點為P1、P2,則切點弦P1P2的直線方程是.7. 雙曲線(a0,bo)的左右焦點分別為F1,F(xiàn) 2,點P為雙曲線上任意一點,則雙曲線的焦點角形的面積為.8. 雙曲線(a0,bo)的焦半徑公式:( , 當(dāng)在右支上時,,.當(dāng)在左支上時,,9. 設(shè)過雙曲線焦點F作直線與雙曲線相交 P、Q兩點,A為雙曲線長軸上一個頂點,連結(jié)AP 和AQ

4、分別交相應(yīng)于焦點F的雙曲線準(zhǔn)線于M、N兩點,則MFNF.10. 過雙曲線一個焦點F的直線與雙曲線交于兩點P、Q, A1、A2為雙曲線實軸上的頂點,A1P和A2Q交于點M,A2P和A1Q交于點N,則MFNF.11. AB是雙曲線(a0,b0)的不平行于對稱軸的弦,M為AB的中點,則,即。12. 若在雙曲線(a0,b0)內(nèi),則被Po所平分的中點弦的方程是.13. 若在雙曲線(a0,b0)內(nèi),則過Po的弦中點的軌跡方程是.橢圓與雙曲線的對偶性質(zhì)-(會推導(dǎo)的經(jīng)典結(jié)論)橢 圓1. 橢圓(abo)的兩個頂點為,,與y軸平行的直線交橢圓于P1、P2時A1P1與A2P2交點的軌跡方程是.2. 過橢圓 (a0,

5、 b0)上任一點任意作兩條傾斜角互補(bǔ)的直線交橢圓于B,C兩點,則直線BC有定向且(常數(shù)).3. 若P為橢圓(ab0)上異于長軸端點的任一點,F1, F 2是焦點, , ,則.4. 設(shè)橢圓(ab0)的兩個焦點為F1、F2,P(異于長軸端點)為橢圓上任意一點,在PF1F2中,記, ,,則有.5. 若橢圓(ab0)的左、右焦點分別為F1、F2,左準(zhǔn)線為L,則當(dāng)0e時,可在橢圓上求一點P,使得PF1是P到對應(yīng)準(zhǔn)線距離d與PF2的比例中項.6. P為橢圓(ab0)上任一點,F1,F2為二焦點,A為橢圓內(nèi)一定點,則,當(dāng)且僅當(dāng)三點共線時,等號成立.7. 橢圓與直線有公共點的充要條件是.8. 已知橢圓(ab0

6、),O為坐標(biāo)原點,P、Q為橢圓上兩動點,且.(1);(2)|OP|2+|OQ|2的最大值為;(3)的最小值是.9. 過橢圓(ab0)的右焦點F作直線交該橢圓右支于M,N兩點,弦MN的垂直平分線交x軸于P,則.10. 已知橢圓( ab0),A、B、是橢圓上的兩點,線段AB的垂直平分線與x軸相交于點, 則.11. 設(shè)P點是橢圓( ab0)上異于長軸端點的任一點,F1、F2為其焦點記,則(1).(2) .12. 設(shè)A、B是橢圓( ab0)的長軸兩端點,P是橢圓上的一點,, ,,c、e分別是橢圓的半焦距離心率,則有(1).(2) .(3) .13. 已知橢圓( ab0)的右準(zhǔn)線與x軸相交于點,過橢圓右

7、焦點的直線與橢圓相交于A、B兩點,點在右準(zhǔn)線上,且軸,則直線AC經(jīng)過線段EF 的中點.14. 過橢圓焦半徑的端點作橢圓的切線,與以長軸為直徑的圓相交,則相應(yīng)交點與相應(yīng)焦點的連線必與切線垂直.15. 過橢圓焦半徑的端點作橢圓的切線交相應(yīng)準(zhǔn)線于一點,則該點與焦點的連線必與焦半徑互相垂直.16. 橢圓焦三角形中,內(nèi)點到一焦點的距離與以該焦點為端點的焦半徑之比為常數(shù)e(離心率). (注:在橢圓焦三角形中,非焦頂點的內(nèi)、外角平分線與長軸交點分別稱為內(nèi)、外點.)17. 橢圓焦三角形中,內(nèi)心將內(nèi)點與非焦頂點連線段分成定比e.18. 橢圓焦三角形中,半焦距必為內(nèi)、外點到橢圓中心的比例中項.橢圓與雙曲線的對偶性

8、質(zhì)-(會推導(dǎo)的經(jīng)典結(jié)論)雙曲線1. 雙曲線(a0,b0)的兩個頂點為,,與y軸平行的直線交雙曲線于P1、P2時A1P1與A2P2交點的軌跡方程是.2. 過雙曲線(a0,bo)上任一點任意作兩條傾斜角互補(bǔ)的直線交雙曲線于B,C兩點,則直線BC有定向且(常數(shù)).3. 若P為雙曲線(a0,b0)右(或左)支上除頂點外的任一點,F1, F 2是焦點, , ,則(或).4. 設(shè)雙曲線(a0,b0)的兩個焦點為F1、F2,P(異于長軸端點)為雙曲線上任意一點,在PF1F2中,記, ,,則有.5. 若雙曲線(a0,b0)的左、右焦點分別為F1、F2,左準(zhǔn)線為L,則當(dāng)1e時,可在雙曲線上求一點P,使得PF1是

9、P到對應(yīng)準(zhǔn)線距離d與PF2的比例中項.6. P為雙曲線(a0,b0)上任一點,F1,F2為二焦點,A為雙曲線內(nèi)一定點,則,當(dāng)且僅當(dāng)三點共線且和在y軸同側(cè)時,等號成立.7. 雙曲線(a0,b0)與直線有公共點的充要條件是.8. 已知雙曲線(ba 0),O為坐標(biāo)原點,P、Q為雙曲線上兩動點,且.(1);(2)|OP|2+|OQ|2的最小值為;(3)的最小值是.9. 過雙曲線(a0,b0)的右焦點F作直線交該雙曲線的右支于M,N兩點,弦MN的垂直平分線交x軸于P,則.10. 已知雙曲線(a0,b0),A、B是雙曲線上的兩點,線段AB的垂直平分線與x軸相交于點, 則或.11. 設(shè)P點是雙曲線(a0,b

10、0)上異于實軸端點的任一點,F1、F2為其焦點記,則(1).(2) .12. 設(shè)A、B是雙曲線(a0,b0)的長軸兩端點,P是雙曲線上的一點,, ,,c、e分別是雙曲線的半焦距離心率,則有(1).(2) .(3) .13. 已知雙曲線(a0,b0)的右準(zhǔn)線與x軸相交于點,過雙曲線右焦點的直線與雙曲線相交于A、B兩點,點在右準(zhǔn)線上,且軸,則直線AC經(jīng)過線段EF 的中點.14. 過雙曲線焦半徑的端點作雙曲線的切線,與以長軸為直徑的圓相交,則相應(yīng)交點與相應(yīng)焦點的連線必與切線垂直.15. 過雙曲線焦半徑的端點作雙曲線的切線交相應(yīng)準(zhǔn)線于一點,則該點與焦點的連線必與焦半徑互相垂直.16. 雙曲線焦三角形中

11、,外點到一焦點的距離與以該焦點為端點的焦半徑之比為常數(shù)e(離心率).(注:在雙曲線焦三角形中,非焦頂點的內(nèi)、外角平分線與長軸交點分別稱為內(nèi)、外點).17. 雙曲線焦三角形中,其焦點所對的旁心將外點與非焦頂點連線段分成定比e.18. 雙曲線焦三角形中,半焦距必為內(nèi)、外點到雙曲線中心的比例中項.圓錐曲線問題解題方法 圓錐曲線中的知識綜合性較強(qiáng),因而解題時就需要運用多種基礎(chǔ)知識、采用多種數(shù)學(xué)手段來處理問題。熟記各種定義、基本公式、法則固然重要,但要做到迅速、準(zhǔn)確解題,還須掌握一些方法和技巧。一. 緊扣定義,靈活解題靈活運用定義,方法往往直接又明了。例1. 已知點A(3,2),F(xiàn)(2,0),雙曲線,P

12、為雙曲線上一點。求的最小值。 解析:如圖所示, 雙曲線離心率為2,F(xiàn)為右焦點,由第二定律知即點P到準(zhǔn)線距離。 二. 引入?yún)?shù),簡捷明快參數(shù)的引入,尤如化學(xué)中的催化劑,能簡化和加快問題的解決。例2. 求共焦點F、共準(zhǔn)線的橢圓短軸端點的軌跡方程。 解:取如圖所示的坐標(biāo)系,設(shè)點F到準(zhǔn)線的距離為p(定值),橢圓中心坐標(biāo)為M(t,0)(t為參數(shù)) ,而 再設(shè)橢圓短軸端點坐標(biāo)為P(x,y),則 消去t,得軌跡方程三. 數(shù)形結(jié)合,直觀顯示將“數(shù)”與“形”兩者結(jié)合起來,充分發(fā)揮“數(shù)”的嚴(yán)密性和“形”的直觀性,以數(shù)促形,用形助數(shù),結(jié)合使用,能使復(fù)雜問題簡單化,抽象問題形象化。熟練的使用它,常能巧妙地解決許多貌似

13、困難和麻煩的問題。例3. 已知,且滿足方程,又,求m范圍。 解析:的幾何意義為,曲線上的點與點(3,3)連線的斜率,如圖所示 四. 應(yīng)用平幾,一目了然用代數(shù)研究幾何問題是解析幾何的本質(zhì)特征,因此,很多“解幾”題中的一些圖形性質(zhì)就和“平幾”知識相關(guān)聯(lián),要抓住關(guān)鍵,適時引用,問題就會迎刃而解。例4. 已知圓和直線的交點為P、Q,則的值為_。 解: 五. 應(yīng)用平面向量,簡化解題向量的坐標(biāo)形式與解析幾何有機(jī)融為一體,因此,平面向量成為解決解析幾何知識的有力工具。例5. 已知橢圓:,直線:,P是上一點,射線OP交橢圓于一點R,點Q在OP上且滿足,當(dāng)點P在上移動時,求點Q的軌跡方程。 分析:考生見到此題基

14、本上用的都是解析幾何法,給解題帶來了很大的難度,而如果用向量共線的條件便可簡便地解出。 解:如圖,共線,設(shè),則, 點R在橢圓上,P點在直線上 , 即 化簡整理得點Q的軌跡方程為: (直線上方部分)六. 應(yīng)用曲線系,事半功倍利用曲線系解題,往往簡捷明快,收到事半功倍之效。所以靈活運用曲線系是解析幾何中重要的解題方法和技巧之一。例6. 求經(jīng)過兩圓和的交點,且圓心在直線上的圓的方程。 解:設(shè)所求圓的方程為: 則圓心為,在直線上 解得 故所求的方程為七. 巧用點差,簡捷易行在圓錐曲線中求線段中點軌跡方程,往往采用點差法,此法比其它方法更簡捷一些。例7. 過點A(2,1)的直線與雙曲線相交于兩點P1、P

15、2,求線段P1P2中點的軌跡方程。 解:設(shè),則 得 即 設(shè)P1P2的中點為,則 又,而P1、A、M、P2共線 ,即 中點M的軌跡方程是解析幾何題怎么解高考解析幾何試題一般共有4題(2個選擇題, 1個填空題, 1個解答題), 共計30分左右, 考查的知識點約為20個左右. 其命題一般緊扣課本, 突出重點, 全面考查. 選擇題和填空題考查直線, 圓, 圓錐曲線, 參數(shù)方程和極坐標(biāo)系中的基礎(chǔ)知識. 解答題重點考查圓錐曲線中的重要知識點, 通過知識的重組與鏈接, 使知識形成網(wǎng)絡(luò), 著重考查直線與圓錐曲線的位置關(guān)系, 求解有時還要用到平幾的基本知識,這點值得考生在復(fù)課時強(qiáng)化. 例1 已知點T是半圓O的直

16、徑AB上一點,AB=2、OT=t (0t1),以AB為直腰作直角梯形,使垂直且等于AT,使垂直且等于BT,交半圓于P、Q兩點,建立如圖所示的直角坐標(biāo)系.(1)寫出直線的方程; (2)計算出點P、Q的坐標(biāo); (3)證明:由點P發(fā)出的光線,經(jīng)AB反射后,反射光線通過點Q. 講解: 通過讀圖, 看出點的坐標(biāo).(1 ) 顯然, 于是 直線的方程為;(2)由方程組解出、; (3), . 由直線PT的斜率和直線QT的斜率互為相反數(shù)知,由點P發(fā)出的光線經(jīng)點T反射,反射光線通過點Q.需要注意的是, Q點的坐標(biāo)本質(zhì)上是三角中的萬能公式, 有趣嗎?例2 已知直線l與橢圓有且僅有一個交點Q,且與x軸、y軸分別交于R

17、、S,求以線段SR為對角線的矩形ORPS的一個頂點P的軌跡方程 講解:從直線所處的位置, 設(shè)出直線的方程, 由已知,直線l不過橢圓的四個頂點,所以設(shè)直線l的方程為代入橢圓方程 得 化簡后,得關(guān)于的一元二次方程 于是其判別式由已知,得=0即 在直線方程中,分別令y=0,x=0,求得 令頂點P的坐標(biāo)為(x,y), 由已知,得 代入式并整理,得 , 即為所求頂點P的軌跡方程方程形似橢圓的標(biāo)準(zhǔn)方程, 你能畫出它的圖形嗎? 例3已知雙曲線的離心率,過的直線到原點的距離是 (1)求雙曲線的方程; (2)已知直線交雙曲線于不同的點C,D且C,D都在以B為圓心的圓上,求k的值. 講解:(1)原點到直線AB:的

18、距離. 故所求雙曲線方程為 (2)把中消去y,整理得 . 設(shè)的中點是,則 即故所求k=.為了求出的值, 需要通過消元, 想法設(shè)法建構(gòu)的方程. 例4 已知橢圓C的中心在原點,焦點F1、F2在x軸上,點P為橢圓上的一個動點,且F1PF2的最大值為90,直線l過左焦點F1與橢圓交于A、B兩點,ABF2的面積最大值為12 (1)求橢圓C的離心率; (2)求橢圓C的方程 講解:(1)設(shè), 對 由余弦定理, 得,解出 (2)考慮直線的斜率的存在性,可分兩種情況: i) 當(dāng)k存在時,設(shè)l的方程為 橢圓方程為 由 得 .于是橢圓方程可轉(zhuǎn)化為 將代入,消去得 ,整理為的一元二次方程,得 .則x1、x2是上述方程

19、的兩根且,也可這樣求解: ,AB邊上的高 ii) 當(dāng)k不存在時,把直線代入橢圓方程得 由知S的最大值為 由題意得=12 所以 故當(dāng)ABF2面積最大時橢圓的方程為: 下面給出本題的另一解法,請讀者比較二者的優(yōu)劣:設(shè)過左焦點的直線方程為:(這樣設(shè)直線方程的好處是什么?還請讀者進(jìn)一步反思反思.)橢圓的方程為:由得:于是橢圓方程可化為:把代入并整理得:于是是上述方程的兩根.,AB邊上的高,從而當(dāng)且僅當(dāng)m=0取等號,即由題意知, 于是 .故當(dāng)ABF2面積最大時橢圓的方程為: 例5 已知直線與橢圓相交于A、B兩點,且線段AB的中點在直線上.()求此橢圓的離心率;(2 )若橢圓的右焦點關(guān)于直線的對稱點的在圓

20、上,求此橢圓的方程.講解:(1)設(shè)A、B兩點的坐標(biāo)分別為 得, 根據(jù)韋達(dá)定理,得 線段AB的中點坐標(biāo)為(). 由已知得,故橢圓的離心率為 . (2)由(1)知從而橢圓的右焦點坐標(biāo)為 設(shè)關(guān)于直線的對稱點為解得 由已知得 ,故所求的橢圓方程為 .例6 已知M:軸上的動點,QA,QB分別切M于A,B兩點,(1)如果,求直線MQ的方程;(2)求動弦AB的中點P的軌跡方程.講解:(1)由,可得由射影定理,得 在RtMOQ中, ,故,所以直線AB方程是(2)連接MB,MQ,設(shè)由點M,P,Q在一直線上,得由射影定理得即 把(*)及(*)消去a,并注意到,可得適時應(yīng)用平面幾何知識,這是快速解答本題的要害所在,

21、還請讀者反思其中的奧妙. 例7 如圖,在RtABC中,CBA=90,AB=2,AC=。DOAB于O點,OA=OB,DO=2,曲線E過C點,動點P在E上運動,且保持| PA |+| PB |的值不變.(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;A O B C(2)過D點的直線L與曲線E相交于不同的兩點M、N且M在D、N之間,設(shè),試確定實數(shù)的取值范圍講解: (1)建立平面直角坐標(biāo)系, 如圖所示| PA |+| PB |=| CA |+| CB | y=動點P的軌跡是橢圓曲線E的方程是 . (2)設(shè)直線L的方程為 , 代入曲線E的方程,得設(shè)M1(, 則 i) L與y軸重合時, ii) L與y軸不重合時,

22、 由得 又, 或 01 ,而 , ,的取值范圍是 . 值得讀者注意的是,直線L與y軸重合的情況易于遺漏,應(yīng)當(dāng)引起警惕. 例8 直線過拋物線的焦點,且與拋物線相交于A兩點. (1)求證:;(2)求證:對于拋物線的任意給定的一條弦CD,直線l不是CD的垂直平分線. 講解: (1)易求得拋物線的焦點. 若lx軸,則l的方程為.若l不垂直于x軸,可設(shè),代入拋物線方程整理得. 綜上可知 .(2)設(shè),則CD的垂直平分線的方程為假設(shè)過F,則整理得 ,. 這時的方程為y=0,從而與拋物線只相交于原點. 而l與拋物線有兩個不同的交點,因此與l不重合,l不是CD的垂直平分線.此題是課本題的深化,你能夠找到它的原形嗎?知識在記憶中積累,能力在聯(lián)想中提升. 課本是高考試題的生長點,復(fù)課切忌忘掉課本!例9 某工程要將直線公路l一側(cè)的土石,通過公路上的兩個道口A和B,沿著道路AP、BP運往公路另一側(cè)的P處,PA=100m,PB=150m,APB=60,試說明怎樣運土石最省工?講解: 以直線l為x軸,線段AB的中點為原點對立直角坐標(biāo)系,則在l一側(cè)必存在經(jīng)A到P和經(jīng)B到P路程相等的點,設(shè)這樣的點為M,則|MA|+|AP|=|MB|+|BP|,即|MA|MB|=|BP|AP|=50,M在雙曲線的右支上.故曲線右側(cè)的土石層經(jīng)道口B沿BP運往P處,曲線左側(cè)的土石層經(jīng)道口A沿AP運往P處,按這種方法運土石最省工.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!