《2020高中數(shù)學(xué) 第二章 變化率與導(dǎo)數(shù)及導(dǎo)數(shù)的應(yīng)用 導(dǎo)數(shù)與函數(shù)的單調(diào)性教案2 北師大版選修1-1》由會員分享,可在線閱讀,更多相關(guān)《2020高中數(shù)學(xué) 第二章 變化率與導(dǎo)數(shù)及導(dǎo)數(shù)的應(yīng)用 導(dǎo)數(shù)與函數(shù)的單調(diào)性教案2 北師大版選修1-1(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、導(dǎo)數(shù)與函數(shù)的單調(diào)性
教學(xué)過程:
一.創(chuàng)設(shè)情景
函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學(xué)模型,研究函數(shù)時,了解函數(shù)的贈與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的.通過研究函數(shù)的這些性質(zhì),我們可以對數(shù)量的變化規(guī)律有一個基本的了解.下面,我們運用導(dǎo)數(shù)研究函數(shù)的性質(zhì),從中體會導(dǎo)數(shù)在研究函數(shù)中的作用。
二.新課講授
1.問題:圖(1),它表示跳水運動中高度隨時間變化的函數(shù)的圖像,圖(2)表示高臺跳水運動員的速度隨時間變化的函數(shù)
的圖像.
運動員從起跳到最高點,以及從最高點到入水這兩段時間的運動狀態(tài)有什么區(qū)別?
通過觀察圖像,我們可以發(fā)現(xiàn):
(1) 運動員從起點到最高
2、點,離水面的高度隨時間的增加而增加,即是增函數(shù).相應(yīng)地,.
(2) 從最高點到入水,運動員離水面的高度隨時間的增加而減少,即是減函數(shù).相應(yīng)地,.
2.函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
觀察下面函數(shù)的圖像,探討函數(shù)的單調(diào)性與其導(dǎo)數(shù)正負的關(guān)系.
如圖 3.3-3,導(dǎo)數(shù)表示函數(shù)在點處的切線的斜率.
( 圖 3.3-3)
在處,,切線是“左下右上”式的,這時,函數(shù)在附近單調(diào)遞增;
在處,,切線是“左上右下”式的,這時,函數(shù)在附近單調(diào)遞減.
結(jié)論:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
在某個區(qū)間內(nèi),
3、如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞減.
說明:(1)特別的,如果,那么函數(shù)在這個區(qū)間內(nèi)是常函數(shù).
3.求解函數(shù)單調(diào)區(qū)間的步驟:
(1)確定函數(shù)的定義域;
(2)求導(dǎo)數(shù);
(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;
(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間.
三.典例分析
例1.已知導(dǎo)函數(shù)的下列信息:
當(dāng)時,;
當(dāng),或時,;
當(dāng),或時,
試畫出函數(shù)圖像的大致形狀.
解:當(dāng)時,,可知在此區(qū)間內(nèi)單調(diào)遞增;
當(dāng),或時,;可知在此區(qū)間內(nèi)單調(diào)遞減;
當(dāng),或時,,這兩點比較特殊,我們把它稱為“臨界點”.
綜上,函數(shù)圖像的大致形狀如
4、圖3.3-4所示.
例2.判斷下列函數(shù)的單調(diào)性,并求出單調(diào)區(qū)間.
(1); (2)
(3); (4)
解:(1)因為,所以,
因此,在R上單調(diào)遞增,如上圖所示.
(2)因為,所以,
當(dāng),即時,函數(shù)單調(diào)遞增;
當(dāng),即時,函數(shù)單調(diào)遞減;
函數(shù)的圖像如圖3.3-5(2)所示.
(3)因為,所以,
因此,函數(shù)在單調(diào)遞減,如上圖所示.
(4)因為,所以 .
當(dāng),即 時,函數(shù) ;
當(dāng),即 時,函數(shù) ;
函數(shù)的圖像如下圖所
5、示.
注:(3)、(4)生練
例3.如圖3.3-6,水以常速(即單位時間內(nèi)注入水的體積相同)注入下面四種底面積相同的容器中,請分別找出與各容器對應(yīng)的水的高度與時間的函數(shù)關(guān)系圖像.
分析:以容器(2)為例,由于容器上細下粗,所以水以常速注入時,開始階段高度增加得慢,以后高度增加得越來越快.反映在圖像上,(A)符合上述變化情況.同理可知其它三種容器的情況.
解:
思考:例3表明,通過函數(shù)圖像,不僅可以看出函數(shù)的增減,還可以看出其變化的快慢.結(jié)合圖像,你能從導(dǎo)數(shù)的角度解釋變化快慢的情況嗎?
一般的,如果一個函數(shù)在某一范圍內(nèi)導(dǎo)數(shù)的絕對值較大,那么函數(shù)在這個范圍內(nèi)變化
6、的快,這時,函數(shù)的圖像就比較“陡峭”;反之,函數(shù)的圖像就“平緩”一些.
如圖3.3-7所示,函數(shù)在或內(nèi)的圖像“陡峭”,
在或內(nèi)的圖像“平緩”.
例4.求證:函數(shù)在區(qū)間內(nèi)是減函數(shù).
證明:因為
當(dāng)即時,,所以函數(shù)在區(qū)間內(nèi)是減函數(shù).
說明:證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性步驟:
(1)求導(dǎo)函數(shù);
(2)判斷在內(nèi)的符號;
(3)做出結(jié)論:為增函數(shù),為減函數(shù).
例5.已知函數(shù) 在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
解:,因為在區(qū)間上是增函數(shù),所以對恒成立,即對恒成立,解之得:
所以實數(shù)的取值范圍為.
說明:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍是一種常見的題型,常利用導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系:
7、即“若函數(shù)單調(diào)遞增,則;若函數(shù)單調(diào)遞減,則”來求解,注意此時公式中的等號不能省略,否則漏解.
例6.已知函數(shù)y=x+,試討論出此函數(shù)的單調(diào)區(qū)間.
解:y′=(x+)′
=1-1·x-2
=
令>0.
解得x>1或x<-1.
∴y=x+的單調(diào)增區(qū)間是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的單調(diào)減區(qū)間是(-1,0)和(0,1)
四.課堂練習(xí)
1.求下列函數(shù)的單調(diào)區(qū)間
1.f(x)=2x3-6x2+7 2.f(x)=+2x 3. f(x)=sinx , x 4. y=xlnx
2.課本練習(xí)
五.回顧總結(jié)
(1)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
(2)求解函數(shù)單調(diào)區(qū)間
(3)證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性