《2020高中數(shù)學 第二章 變化率與導數(shù)及導數(shù)的應用 導數(shù)在實際問題中的應用教案1 北師大版選修1-1》由會員分享,可在線閱讀,更多相關(guān)《2020高中數(shù)學 第二章 變化率與導數(shù)及導數(shù)的應用 導數(shù)在實際問題中的應用教案1 北師大版選修1-1(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、導數(shù)在實際問題中的應用
教學目的:
1. 進一步熟練函數(shù)的最大值與最小值的求法;
⒉初步會解有關(guān)函數(shù)最大值、最小值的實際問題
教學重點:解有關(guān)函數(shù)最大值、最小值的實際問題.
教學難點:解有關(guān)函數(shù)最大值、最小值的實際問題.
授課類型:新授課
課時安排:1課時
教 具:多媒體、實物投影儀
教學過程:
一、復習引入:
1.極大值: 一般地,設(shè)函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x)<f(x0),就說f(x0)是函數(shù)f(x)的一個極大值,記作y極大值=f(x0),x0是極大值點
2.極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,
2、如果對x0附近的所有的點,都有f(x)>f(x0).就說f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點
3.極大值與極小值統(tǒng)稱為極值
4. 判別f(x0)是極大、極小值的方法:
若滿足,且在的兩側(cè)的導數(shù)異號,則是的極值點,是極值,并且如果在兩側(cè)滿足“左正右負”,則是的極大值點,是極大值;如果在兩側(cè)滿足“左負右正”,則是的極小值點,是極小值
5. 求可導函數(shù)f(x)的極值的步驟:
(1)確定函數(shù)的定義區(qū)間,求導數(shù)f′(x)
(2)求方程f′(x)=0的根
(3)用函數(shù)的導數(shù)為0的點,順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格.檢查f′(x)在方
3、程根左右的值的符號,如果左正右負,那么f(x)在這個根處取得極大值;如果左負右正,那么f(x)在這個根處取得極小值;如果左右不改變符號即都為正或都為負,那么f(x)在這個根處無極值
6.函數(shù)的最大值和最小值:在閉區(qū)間上連續(xù)的函數(shù)在上必有最大值與最小值.⑴在開區(qū)間內(nèi)連續(xù)的函數(shù)不一定有最大值與最小值. ⑵函數(shù)的最值是比較整個定義域內(nèi)的函數(shù)值得出的;函數(shù)的極值是比較極值點附近函數(shù)值得出的.⑶函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件.(4)函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個,而函數(shù)的極值可能不止一個,也可能沒有一個
7.利用導數(shù)求函數(shù)的最值步驟:⑴求在內(nèi)的
4、極值;⑵將的各極值與、比較得出函數(shù)在上的最值
二、講解范例:
例1在邊長為60 cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?
_
x
_
x
_
60
_
60
x
x
解法一:設(shè)箱底邊長為xcm,則箱高cm,得箱子容積
.
令 =0,解得 x=0(舍去),x=40,
并求得 V(40)=16 000
由題意可知,當x過?。ń咏?)或過大(接近60)時,箱子容積很小,因此,16 000是最大值
答:當x=40cm時,箱子容積最大,最大容積
5、是16 000cm3
解法二:設(shè)箱高為xcm,則箱底長為(60-2x)cm,則得箱子容積
.(后面同解法一,略)
由題意可知,當x過小或過大時箱子容積很小,所以最大值出現(xiàn)在極值點處.
事實上,可導函數(shù)、在各自的定義域中都只有一個極值點,從圖象角度理解即只有一個波峰,是單峰的,因而這個極值點就是最值點,不必考慮端點的函數(shù)值
例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應怎樣選取,才能使所用的材料最省?
解:設(shè)圓柱的高為h,底半徑為R,則表面積
S=2πRh+2πR2
由V=πR2h,得,則
S(R)= 2πR+ 2πR2=+2πR2
令 +4πR=0
解得,R=,從而
6、h====2
即 h=2R
因為S(R)只有一個極值,所以它是最小值
答:當罐的高與底直徑相等時,所用材料最省
變式:當圓柱形金屬飲料罐的表面積為定值S時,它的高與底面半徑應怎樣選取,才能使所用材料最省?
提示:S=2+h=
V(R)=R=
)=0 .
例3在經(jīng)濟學中,生產(chǎn)x單位產(chǎn)品的成本稱為成本函數(shù)同,記為C(x),出售x單位產(chǎn)品的收益稱為收益函數(shù),記為R(x),R(x)-C(x)稱為利潤函數(shù),記為P(x)。
(1)、如果C(x)=,那么生產(chǎn)多少單位產(chǎn)品時,邊際最低?(邊際成本:生產(chǎn)規(guī)模增加一個單位時成本的增加量)
(2)、如果C(x)=50x+10000,產(chǎn)品的單價
7、P=100-0.01x,那么怎樣定價,可使利潤最大?
變式:已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價格p與產(chǎn)量q的函數(shù)關(guān)系式為.求產(chǎn)量q為何值時,利潤L最大?
分析:利潤L等于收入R減去成本C,而收入R等于產(chǎn)量乘價格.由此可得出利潤L與產(chǎn)量q的函數(shù)關(guān)系式,再用導數(shù)求最大利潤.
解:收入,
利潤
令,即,求得唯一的極值點
答:產(chǎn)量為84時,利潤L最大
三、課堂練習:
1.函數(shù)y=2x3-3x2-12x+5在[0,3]上的最小值是___________.
2.函數(shù)f(x)=sin2x-x在[-,]上的最大值為_____;最小值為_______.
3.將
8、正數(shù)a分成兩部分,使其立方和為最小,這兩部分應分成______和___.
4.使內(nèi)接橢圓=1的矩形面積最大,矩形的長為_____,寬為_____.
5.在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當?shù)走吷细邽開__時,它的面積最大
答案:1. -15 2. - 3. 4.a b 5.R
四、小結(jié) :
⑴解有關(guān)函數(shù)最大值、最小值的實際問題,需要分析問題中各個變量之間的關(guān)系,找出適當?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實際意義.
⑵根據(jù)問題的實際意義來判斷函數(shù)最值時,如果函數(shù)在此區(qū)間上只有一個極值點,那么這個極值就是所求最值,不必再與端點值比較.
⑶相當
9、多有關(guān)最值的實際問題用導數(shù)方法解決較簡單
五、課后作業(yè):
1.有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起作成一個無蓋小盒,要使紙盒的容積最大,問剪去的小正方形的邊長應為多少?
解:(1)正方形邊長為x,則V=(8-2x)·(5-2x)x=2(2x3-13x2+20x)(0時,l′>0.
∴h=時,l取最小值,此時b=