《2022高考數(shù)學(xué)一輪復(fù)習(xí) 第6章 數(shù)列 專題研究2 數(shù)列的求和練習(xí) 理》由會員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)一輪復(fù)習(xí) 第6章 數(shù)列 專題研究2 數(shù)列的求和練習(xí) 理(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022高考數(shù)學(xué)一輪復(fù)習(xí) 第6章 數(shù)列 專題研究2 數(shù)列的求和練習(xí) 理1數(shù)列12n1的前n項和為()A12nB22nCn2n1 Dn22n答案C2數(shù)列(1)n(2n1)的前2 018項和S2 018等于()A2 016 B2 018C2 015 D2 015答案B解析S2 0181357(22 0171)(22 0181)222,1 009個2相加2 018.故選B.3在數(shù)列an中,已知對任意nN*,a1a2a3an3n1,則a12a22a32an2等于()A(3n1)2 B.(9n1)C9n1 D.(3n1)答案B解析因為a1a2an3n1,所以a1a2an13n11(n2)則n2時,an2
2、3n1.當(dāng)n1時,a1312,適合上式,所以an23n1(nN*)則數(shù)列an2是首項為4,公比為9的等比數(shù)列,故選B.4數(shù)列an,bn滿足anbn1,ann23n2,則bn的前10項之和為()A. B.C. D.答案B解析bn,S10b1b2b3b10.5在數(shù)列an中,an2n1,則()A1 B12nC1 D12n答案C6已知數(shù)列an的通項公式是an,其前n項和Sn,則項數(shù)n等于()A13 B10C9 D6答案D解析an1,Snn()n1.而5,n15.n6.7已知等差數(shù)列an的公差為d,且an0,d0,則可化簡為()A. B.C. D.答案B解析(),原式()(),選B.8(2017衡水中學(xué)
3、調(diào)研卷)已知等差數(shù)列an的前n項和Sn滿足S36,S5,則數(shù)列的前n項和為()A1 B2C2 D2答案B解析設(shè)等差數(shù)列an的公差為d,則Snna1d,因為S36,S5,所以解得所以ann1,設(shè)數(shù)列的前n項和為Tn,則Tn,Tn,兩項相減得Tn()(1),所以Tn2.9Sn_答案解析通項an(),Sn(1)(1).10已知數(shù)列an的前n項和Snn26n,則|an|的前n項和Tn_答案解析由Snn26n,得an是等差數(shù)列,且首項為5,公差為2.an5(n1)22n7.n3時,an3時,an0.Tn11(2017衡水中學(xué)調(diào)研)已知數(shù)列an滿足a11,an1an2n(nN*),則S2 016_答案32
4、1 0083解析依題意,得an1an2n,an1an22n1,則2,即2,所以數(shù)列a1,a3,a5,a2k1,是以a11為首項,2為公比的等比數(shù)列;數(shù)列a2,a4,a6,a2k,是以a22為首項,2為公比的等比數(shù)列,則S2 016(a1a3a5a2 015)(a2a4a6a2 016)321 0083.12(2018深圳調(diào)研二)數(shù)列an是公差為d(d0)的等差數(shù)列,Sn為其前n項和,a1,a2,a5成等比數(shù)列(1)證明:S1,S3,S9成等比數(shù)列;(2)設(shè)a11,bna2n,求數(shù)列bn的前n項和Tn.答案(1)略(2)2n2n4解析(1)證明:由題意有a22a1a5,即(a1d)2a1(a14
5、d),解得d2a1.又S1a1,S33a13d9a1,S99a136d81a1,S32S1S9.又S1,S3,S9均不為零,S1,S3,S9成等比數(shù)列(2)由a11得d2a12,則an2n1,則Tna2a22a23a2n(221)(2221)(2231)(22n1)2(222232n)n2n2n413(2017課標全國,文)設(shè)數(shù)列an滿足a13a2(2n1)an2n.(1)求數(shù)列an的通項公式;(2)求數(shù)列的前n項和答案(1)an(2)解析(1)因為a13a2(2n1)an2n,故當(dāng)n2時,a13a2(2n3)an12(n1)兩式相減得(2n1)an2,所以an(n2)又由題設(shè)可得a12,從而
6、an的通項公式為an.(2)記的前n項和為Sn.由(1)知.則Sn.14已知數(shù)列an為等比數(shù)列,Tnna1(n1)a2an,且T11,T24.(1)求數(shù)列an的通項公式;(2)求數(shù)列Tn的通項公式答案(1)an2n1(2)Tn2n1n2解析(1)T1a11,T22a1a22a24,a22.等比數(shù)列an的公比q2.an2n1.(2)方法一:Tnn(n1)2(n2)2212n1,2Tnn2(n1)22(n2)2312n,得Tnn2222n12nnn2n122n1n2.方法二:設(shè)Sna1a2an,Sn122n12n1.Tnna1(n1)a22an1ana1(a1a2)(a1a2an)S1S2Sn(2
7、1)(221)(2n1)(2222n)nn2n1n2.15(2018太原二模)已知數(shù)列an的前n項和Sn2n12,數(shù)列bn滿足bnanan1(nN*)(1)求數(shù)列bn的通項公式;(2)若cnlog2an(nN*),求數(shù)列bncn的前n項和Tn.答案(1)32n(2)3(n1)2n16解析(1)當(dāng)n1時,a1S12,當(dāng)n2時,anSnSn12n,又a12滿足上式,an2n(nN*),bnanan132n.(2)由(1)得an2n,bn32n,cnlog2ann,bncn3n2n,Tn3(12222323n2n),2得2Tn3(122223324n2n1),得Tn3(2222nn2n1)3(1n)
8、2n12,Tn3(n1)2n16.1(2016天津,文)已知an是等比數(shù)列,前n項和為Sn(nN*),且,S663.(1)求an的通項公式;(2)若對任意的nN*,bn是log2an和log2an1的等差中項,求數(shù)列(1)nbn2的前2n項和答案解析(1)設(shè)數(shù)列an的公比為q.由已知,有,解得q2,或q1.又由S6a163,知q1,所以a163,得a11.所以an2n1.(2)由題意,得bn(log2anlog2an1)(log22n1log22n)n,即bn是首項為,公差為1的等差數(shù)列設(shè)數(shù)列(1)nbn2的前n項和為Tn,則T2n(b12b22)(b32b42)(b2n12b2n2)b1b2
9、b3b4b2n1b2n2n2.第二次作業(yè)1數(shù)列1,(12),(1222),(12222n1),的前n項之和為()A2n1Bn2nnC2n1n D2n1n2答案D解析記an12222n12n1,Snn2n12n.2(2017寧夏銀川一中模擬)已知數(shù)列2 008,2 009,1,2 008,2 009,.這個數(shù)列的特點是從第二項起,每一項都等于它的前后兩項之和,則這個數(shù)列的前2 018項之和S2 018等于()A2 008 B4 017C1 D0答案B解析由已知得anan1an1(n2),an1anan1.故數(shù)列的前8項依次為2 008,2 009,1,2 008,2 009,1,2 008,2
10、009.由此可知該數(shù)列為周期數(shù)列,周期為6,且S60.2 01863362,S2 018S22 0082 0094 017.3(2015江蘇)數(shù)列an滿足a11,且an1ann1(nN*),則數(shù)列的前10項和為_答案解析由題意得:an(anan1)(an1an2)(a2a1)a1nn121,所以2(),Sn2(1),S10.4(2018衡水中學(xué)調(diào)研卷)數(shù)列an的通項公式anncos1,前n項和為Sn,則S2 020_答案3 030解析anncos1,a1a2a3a46,a5a6a7a86,a4k1a4k2a4k3a4k46,kN,S2 020505(a1a2a3a4)50563 030.5(2
11、018江蘇蘇州調(diào)研)已知數(shù)列an滿足an1an(1an1),a11,數(shù)列bn滿足bnanan1,則數(shù)列bn的前10項的和S10_答案解析由an1an(1an1)得1,因此數(shù)列是以1為首項,1為公差的等差數(shù)列,所以n,即an,bnanan1,所以S10b1b2b10(1)()()1.6(2013湖南)設(shè)Sn為數(shù)列an的前n項和,Sn(1)nan(nN*),則(1)a3_;(2)S1S2S100_答案(1)(2)(1)解析(1)因為Sn(1)nan,則S3a3,S4a4,解得a3.(2)當(dāng)n為偶數(shù)時,Snan,當(dāng)n為奇數(shù)時,Snan,可得當(dāng)n為奇數(shù)時an,又S1S2S100(a1)(a2)(a99
12、)(a100)a1a2a99a100()S1002(a1a3a99)(1)S101a1012()(1)()2(1)(1)(1)7(2016北京,文)已知an是等差數(shù)列,bn是等比數(shù)列,且b23,b39,a1b1,a14b4.(1)求an的通項公式;(2)設(shè)cnanbn,求數(shù)列cn的前n項和答案(1)an2n1 (2)Snn2解析(1)等比數(shù)列bn的公比q3,所以b11,b4b3q27.bn3n1.設(shè)等差數(shù)列an的公差為d.因為a1b11,a14b427,所以113d27,即d2.所以an2n1(n1,2,3,)(2)由(1)知,an2n1,bn3n1,因此cnanbn2n13n1.從而數(shù)列cn
13、的前n項和Sn13(2n1)133n1n2.8(2018安徽江南十校聯(lián)考)已知Sn是數(shù)列an的前n項和,且滿足Sn2ann4.(1)證明:Snn2為等比數(shù)列;(2)求數(shù)列Sn的前n項和Tn.答案(1)略(2)解析(1)證明:當(dāng)n1時,a1S1,S12a114,解得a13.由Sn2ann4可得Sn2(SnSn1)n4(n2),即Sn2Sn1n4,所以Snn22Sn1(n1)2因為S1124,所以Snn2是首項為4,公比為2的等比數(shù)列(2)由(1)知Snn22n1,所以Sn2n1n2,于是Tn(22232n1)(12n)2n2n.9(2017重慶抽測二)已知數(shù)列an的前n項和為Sn,a12,an1
14、Sn(nN*)(1)求數(shù)列an的通項公式;(2)設(shè)bn(n1)an,求數(shù)列bn的前n項和Tn.答案(1)(2)(n2)2n2(nN*)解析(1)an1Sn(nN*),Sn1SnSn,2.又S1a12,數(shù)列Sn是首項為2,公比為2的等比數(shù)列,Sn2n(nN*)當(dāng)n2時,anSnSn12n1(n2),an(2)Tn0a11a22a3(n1)an,當(dāng)n1時,T10.當(dāng)n2時,Tn12222323(n1)2n1,2Tn122223324(n2)2n1(n1)2n,得Tn222232n1(n1)2n(n1)2n(2n)2n2.Tn(n2)2n2(n2)又T10也滿足上式,Tn(n2)2n2(nN*)10
15、(2015課標全國)Sn為數(shù)列an的前n項和,已知an0,an22an4Sn3.(1)求an的通項公式;(2)設(shè)bn,求數(shù)列bn的前n項和答案(1)an2n1(2)Tn解析(1)由an22an4Sn3,可知an122an14Sn13.可得an12an22(an1an)4an1,即2(an1an)an12an2(an1an)(an1an)由于an0,可得an1an2.又a122a14a13,解得a11(舍去)或a13.所以an是首項為3,公差為2的等差數(shù)列,通項公式為an2n1.(2)由an2n1可知bn()設(shè)數(shù)列bn的前n項和為Tn,則Tnb1b2bn()()().11數(shù)列an滿足a11,na
16、n1(n1)ann(n1)(nN*)(1)證明:數(shù)列是等差數(shù)列;(2)設(shè)bn3n,求數(shù)列bn的前n項和Sn.答案(1)略(2)Sn解析(1)證明:由題意,得1,即1,所以是以1為首項,1為公差的等差數(shù)列(2)解:由(1)得1(n1)1n,所以ann2.所以bnn3n.Sn131232333n3n,3Sn132233(n1)3nn3n1.得2Sn31323nn3n1n3n1.所以Sn.1(2015安徽)已知數(shù)列an是遞增的等比數(shù)列,且a1a49,a2a38.(1)求數(shù)列an的通項公式;(2)設(shè)Sn為數(shù)列an的前n項和,bn,求數(shù)列bn的前n項和Tn.答案(1)an2n1(2)Tn1解析(1)由題
17、設(shè)知,a1a4a2a38,又a1a49,可解得或(舍去)由a4a1q3得公比為q2,故ana1qn12n1.(2)Sn2n1,又bn,所以Tnb1b2bn()()()1.2(2016浙江,文)設(shè)數(shù)列an的前n項和為Sn.已知S24,an12Sn1,nN*.(1)求通項公式an;(2)求數(shù)列|ann2|的前n項和答案(1)an3n1 (2)解析(1)由題意知則又當(dāng)n2時,由an1an(2Sn1)(2Sn11)2an,得an13an.所以,數(shù)列an的通項公式為an3n1,nN*.(2)設(shè)bn|3n1n2|,nN*,b12,b21.當(dāng)n3時,由于3n1n2,故bn3n1n2,n3.設(shè)數(shù)列bn的前n項和為Tn,則T12,T23.當(dāng)n3時,Tn3,所以Tn