《2022高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專題四 數(shù)列 第1講 等差數(shù)列與等比數(shù)列配套作業(yè) 文》由會員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專題四 數(shù)列 第1講 等差數(shù)列與等比數(shù)列配套作業(yè) 文(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專題四 數(shù)列 第1講 等差數(shù)列與等比數(shù)列配套作業(yè) 文一、選擇題1(2018合肥模擬)已知數(shù)列an為等差數(shù)列,其前n項和為Sn,2a7a85,則S11為()A110 B55C50 D不能確定答案B解析2a7a85,2a112da17d5,即a15d5,a65,S1111a655.故選B.2已知等比數(shù)列an滿足a1a21,a5a64,則a3a4()A2 B2 C. D答案A解析a1a2,a3a4,a5a6成等比數(shù)列,即(a3a4)2(a1a2)(a5a6),(a3a4)24,a3a4與a1a2符號相同,故a3a42,故選A.3(2018太原模擬)已知Sn是等差數(shù)列
2、an的前n項和,且S32a1,則下列結(jié)論錯誤的是()Aa40 BS4S3CS70 Dan是遞減數(shù)列答案D解析Sn是等差數(shù)列an的前n項和,Snna1d.S32a1,3a13d2a1,a13d.a4a13d0,故A正確,B正確S77a1d7a121d0,C正確an的公差為d,但d不能確定正負,D錯誤故選D.4設(shè)等差數(shù)列an的前n項和為Sn,若S39,S636,則a7a8a9()A63 B45 C36 D27答案B解析解法一:設(shè)等差數(shù)列an的公差為d,由S39,S636,得即解得所以a7a8a93a83(a17d)3(172)45.解法二:由等差數(shù)列的性質(zhì)知S3,S6S3,S9S6成等差數(shù)列,即9
3、,27,S9S6成等差數(shù)列,所以S9S645,所以a7a8a945.5已知Sn為等比數(shù)列an的前n項和,若S3,S9,S6成等差數(shù)列,則()AS62S3 BS6S3CS6S3 DS62S3答案C解析設(shè)等比數(shù)列an的公比為q,則S6(1q3)S3,S9(1q3q6)S3,因為S3,S9,S6成等差數(shù)列,所以2(1q3q6)S3S3(1q3)S3,解得q3,故S6S3.6(2018保定模擬)已知數(shù)列an滿足a10,an1an21,則a13()A143 B156 C168 D195答案C解析由an1an2 1,可知an11an12 1( 1)2,即1,故數(shù)列是首項為1,公差為1的等差數(shù)列,所以121
4、3,則a13168.故選C.二、填空題7已知數(shù)列an的前n項和為Sn,a11,2Snan1,則Sn_.答案3n1解析由2Snan1得2Snan1Sn1Sn,所以3SnSn1,即3,所以數(shù)列Sn是以S1a11為首項,q3為公比的等比數(shù)列,所以Sn3n1,故答案為3n1.8設(shè)等比數(shù)列an滿足a1a21,a1a33,則a4_.答案8解析設(shè)等比數(shù)列an的公比為q,a1a21,a1a33,a1(1q)1,a1(1q2)3. a1a210,q1,即1q0.,得1q3,q2.a11,a4a1q31(2)38.9(2018武漢模擬)已知等差數(shù)列an的前9項和等于它的前4項和若a11,aka40,則k_.答案1
5、0解析設(shè)數(shù)列an的公差為d,由S9S4及a11,得91d41d,所以d.又aka40,所以0,解得k10.10(2018衢州質(zhì)檢)已知數(shù)列an滿足a1a2an3n1,則a1_,an_.答案12解析由題意可得,當(dāng)n1時,a14,解得a112.當(dāng)n2時,a1a2an13n2,所以an3,n2,即an3n1,n2,又當(dāng)n1時,an3n1不成立,所以an三、解答題11(2018桂林模擬)已知等比數(shù)列an滿足an0,a1a2a364,Sn為其前n項和,且2S1,S3,4S2成等差數(shù)列(1)求數(shù)列an的通項公式;(2)設(shè)bnlog2a1log2a2log2an,求數(shù)列的前n項和Tn.解(1)設(shè)數(shù)列an的公
6、比為q,2S1,S3,4S2成等差數(shù)列,2S32S14S2,即2(a1a1qa1q2)2a14(a1a1q),化簡,得q2q20,解得q2或q1.an0,q1不符合題意,舍去,由a1a2a364可得a64,解得a24,故2a14,得到a12,ana1qn122n12n.(2)bnlog2a1log2a2log2anlog2(a1a2an)log2212n12n,2.Tn22.12(2018甘肅模擬)已知數(shù)列an是公差為1的等差數(shù)列,且a4,a6,a9成等比數(shù)列(1)求數(shù)列an的通項公式;(2)設(shè)bn(1)n,求數(shù)列bn的前2n項和T2n.解(1)因為a4,a6,a9成等比數(shù)列,所以aa4a9,
7、所以(a15)2(a13)(a18),解得a11,所以數(shù)列an的通項公式為ann.(2)由(1)知,ann,因為bn(1)n,所以bn(1)n(1)n,所以數(shù)列bn的前2n項和T2n11.13已知數(shù)列an的各項均為正數(shù),記數(shù)列an的前n項和為Sn,數(shù)列a的前n項和為Tn,且3TnS2Sn,nN*.(1)求a1的值;(2)求數(shù)列an的通項公式解(1)由3T1S2S1,得3aa2a1,即aa10.因為a10,所以a11.(2)因為3TnS2Sn,所以3Tn1S2Sn1, ,得3aSS2an1,即3a(Snan1)2S2an1.因為an10,所以an1Sn1, 所以an2Sn11, ,得an2an1
8、an1,即an22an1,所以當(dāng)n2時,2.又由3T2S2S2,得3(1a)(1a2)22(1a2),即a2a20.因為a20,所以a22,所以2,所以對任意的nN*,都有2成立,所以數(shù)列an的通項公式為an2n1,nN*.14(2018福建晉江檢測)已知數(shù)列an的前n項的和為Sn,且a1,an1an.(1)證明:數(shù)列是等比數(shù)列;(2)求通項公式an與前n項的和Sn;(3)設(shè)bnn(2Sn),nN*,若集合Mn|bn,nN*恰有4個元素,求實數(shù)的取值范圍解(1)證明:因為a1,an1an,當(dāng)nN*時,0.又因為,(nN*)為常數(shù),所以是以為首項,為公比的等比數(shù)列(2)由是以為首項,為公比的等比數(shù)列,得n1n.所以annn.由錯位相減法得Sn2n1nn.(3)因為bnn(2Sn)(nN*),所以bnnn1n2n.因為bn1bn(3n2)n1,所以b2b1,b2b3b4.因為集合Mn|bn,nN*恰有4個元素,且b1b4,b22,b3,b5,所以.