濟三煤礦4.0Mta新井設(shè)計含5張CAD圖-采礦工程.zip
濟三煤礦4.0Mta新井設(shè)計含5張CAD圖-采礦工程.zip,煤礦,4.0,Mta,設(shè)計,CAD,采礦工程
英文原文Detecting Abandoned Coal Mine Entries by High Resolution Earth Resistivity MethodXianxin Shi, ProfessorShu Yan, ProfessorMingsheng Shen, ProfessorXian Branch, CCRI (China Coal Research Institute) Xian, Shaanxi, ChinaABSTRACTIn surface electrical exploration the high resolution earth resistivity method (HRRM) is a very effective method for detecting abandoned drift mines workings. When the abandoned mines are more than 500 ft (150 m) deep, its detection capability reduces greatly and requires more effort to implement. In Yan Quan coal mine, Shanxi province, we tried to adapt this method for underground application. Two survey lines were designed with the spacing of current and potential poles 20 m and 10 m, respectively and measuring points at 2m. The measurement radius of I line and II line were 140 m and 60 m, respectively, and the infinitely far pole was 12002000 m from the survey line. (Note the I and II lines are located on the north and south ribs of main tunnel, respectively). The survey results showed that abandoned workings were located at 25-70m, Survey Line I and at 80-110m, Survey line II. Based on this finding, the longwall panel gateroads and set up entry were properly located thereby providing safe mining of the No. 15 Coal seam.Key Words: Abandoned coal mine, High resolution earth resistivity, Underground electrical explorationINTRODUCTIONThe development of roadways for the 9th mining district for the #15 coal seam, Nanzhuang Coal Group Co Ltd, Yangquan, Shanxi Province are approaching the Hougou abandoned gobs. Since the data regarding the extent and condition of Hougou gobs were not reliable, it is difficult to finalize the panel layout for the #15 coal seam. In order to provide sufficient geological data for rational layout and safe development of mains and setup entry, the Hougou gob conditions (i.e. area and location) must be known clearly first.Based on our experience gained in the past 10 years, when coal seam is less than 150 m deep, the high resolution surface resistivity method can produce better results. But the Hougou abandoned mine gobs were 350 m deep. For this reason, we tried to use the high resolution resistivity method underground to detect the gobs from entry ribs to facilitate the development of #15 coal seam.CHARACTERISTICS OF EARTH RESISTIVITYThe #15 coal is the major coal seam in the reserve. Seam thickness is 5.25-6.63 m averaging 5.89 m and consistent throughout the whole reserve. It is anthracite with low-medium ash, very low-low sulphur and high heating value. Its electric resistivity is relatively low. After mining, if the gob is not flooded with water, its apparent resistivity will increase significantly and behave as a high-resistivity material regardless whether the gob is caved or not. This is the prerequisite of physical property for the application of high resolution resistivity method.UNDERGROUND HIGH-RESOLUTION RESISTIVITY METHODAs mentioned above, good seam quality is the prerequisite for high resolution resistivity method. But what devices are needed to perform the resistivity exploration deserves further study. Due to the fact that a gob is a man-made isolated geological body and its not uniform as a bedded deposit, special devices that can superimpose its electric information and focus on its location such that it can distinguish it from the surrounding rocks, must be used to detect this type of geological body.The underground high resolution resistivity method employs special three-pole devices, i.e. monopole-dipole device densely dispatched that can increase the level of observation and control, add the number of superposition, enlarge the amount of information, and improve the resolution of gob detection so that the gobs can be identified from the surrounding rocks. Figure 1 shows the array of survey stations.The parameters adopted for the underground earth resistivity method are:1.Distance between power supply stations, A and A: 20 m2.Distance between survey stations, C and C: 2 m3.Distance between poles, MN: 10 m4.Radius of survey lines: Line I 140 m, Line II 60 m5.Location of infinite distance pole: 1,200 2,000 m from the lines.Figure 1 Survey array for underground earth resistivity methodUnderground survey data were collected by flameproof microvolt digital direct current resistivity meter. In underground survey, the power supply station was located at 20 m interval. For every power supply station, the voltage difference between both directions of measurements must be recorded. The maximum distance of MN on both sides of each power supply was 140 m, i.e. the maximum offset distance was 140 m. This way double coverage observation can be realized and the exploration area can cover up to 140 m.In order to insure the accuracy of the data obtained underground, the following measures were adopted:1.In order to insure the power supply was well-grounded, a horizontal hole in the coal seam was drilled at its designated location. Mud and salt water were added. After insertion of the pole, the hole was tamped tight.2.The bronze pole must be inserted sufficiently deep, reaching wet spots, and be tamped tight in order to insure data obtained were steady and reliable.3.Batteries were changed frequently to insure the voltage of power supply was steady and current was sufficient. This is the key to insure the accuracy of the data obtained.4.During the course of survey, always check if the location of the power supply was accurate and data obtained were steady. Once abnormal conditions were observed, the pole location must be re-confirmed, additional poles added, and measurements repeated until the errors obtained were within the limits allowed by regulations.Due to the fact that the instrument employed was steady and precise. So with proper handling of the poles, the ground resistance was greatly reduced. As a result, the signal was stronger and the accuracy of data increased. During the course of survey measurement, the pole of MN was re-confirmed frequently. If abnormal data appeared, observations were repeated. This way the accuracy and reliability of the collected data were insured. DATA ANALYSISThe high resolution resistivity survey was performed along the survey lines simultaneously for measurements in cross-section and depth. Data analyses were divided into two steps: First, check the voltage difference at every supply pole and see if it decreases gradually with distance away from the pole. If there is an abrupt change, it must be analyzed why so? Then the results are computed and a cross section map of apparent resistivity drawn.Since the small abandoned gobs in this mining district had little water, the cross section map of apparent resistivity should be one that exhibits an obvious high resistivity. In this map, if the rate of change is uniform and steady, it reflects the nature state of the rock strata; But if there are local abnormal changes or inconsistent changes, especially where random changes occur, it represents the existence of gobs. Because voids and fractures resulting from mining-induced stresses interrupt the intrinsic regular rhythm of coal measures strata and increase the resistivity.Figures 2 and 3 are the cross-section apparent resistivity contour maps for Line I and II, respectively. Please note the unit of the vertical and horizontal axes is meter while the intensity of shade denotes resistivity intensity with darker being higher.Figure 2 Apparent resistivity along Survey Line I, 8905 entry, Nan Zhuang Coal Group Figure 3 Apparent resistivity along Survey Line II, 8905 entry, Nan Zhuang Coal GroupIn Figure 1 the area between 25-70 m horizontally and 110-130 m vertically (or deep) and in Figure 2 that between 80-100 m horizontally and 30-50 m vertically (or deep) show obvious abnormal changes in apparent resistivity. They are darker indicating higher resistivity. This is in conflict with the intrinsic regular rhythm of physical property for the coal measures strata in their nature state. They were the results of abandoned gobs!Based on the survey results, mine management drilled in-seam horizontal holes from the entry rib at 50 m location on Line I. When it reached 120.4 m from the rib, coal was soft without resistance and drilling water was completely lost. In addition, methane came out with smell of rotten-eggs. Accordingly it was determined this was the gob of a small abandoned coal mine, approximately 15 m wide. Therefore the survey results were validated. Based on the survey results, mine management selected the proper location of mains and set-up entry and the safe mining operations of #15 coal seam were insured.REFERENCES1Fitch, A.A. Development in Geophysical Exploration Methods-5, Applied Science Publishers, London and New York, 1983. 2Yan, S., and M. Chen. Detecting Underground Openings by High Resolution Resistivity Method. Geology Press, Beijing, 1996.3Shi, X., M. Chen et al. Report on Resistivity Exploration of #15 Coal Seam 9th Mining District, Nan Zhuang Coal Group, Yangquan, Xian Province, Xian Branch of CCRI, 2004.中文譯文高分辨率大地電阻率法探測廢棄煤礦巷道石先新,晏殊,沈明申(中國煤炭科學(xué)研究院西安分院)摘 要:在表面荷電勘探中,高分辨率大地電阻率法是勘探廢巷十分有效的方法。但是當廢棄煤礦的深度高達500英尺(150m)時,該方法的探測能力很大程度的降低,需要采取更多的措施來進行探測。我們在山西省陽泉煤礦使用此種方法進行地下勘探。探測過程使用兩條測線,分別設(shè)置20m的極間距和10m的極間距,同時在兩m處設(shè)置檢測點。第條線的檢測變徑為140m,第條線的為60m,而極遠處的極點大概離測線12002000m。(注意:、分別位于掘進大巷處)。試驗結(jié)果表明:測線的廢棄工作面在2570m,測線的工作面在80110m。通過試驗結(jié)果,對入口進行適當?shù)亩ㄎ?,從而?5號煤層提供了安全的采掘環(huán)境。關(guān)鍵詞:廢棄煤巷 高分辨率大地電阻率法 井下電法勘探1引言 山西省陽泉南莊煤炭集團有限公司的15煤層的9號采區(qū)的巷道的推進是靠近后溝廢棄采空區(qū)的。由于關(guān)于后溝采空區(qū)的條件和采掘程度數(shù)據(jù)的可靠性較低,這給15號煤層面板布局的最終確定帶來了困難。為了給井巷的合理布局、設(shè)置安全入口以及主巷道的發(fā)展安全提供可靠性地質(zhì)資料,后溝采空區(qū)的情況必須清楚明了。根據(jù)我們過去十年獲得的經(jīng)驗,如果煤層的厚度小于150m,高分辨率的表面電阻率法則可以得到更加精確的結(jié)果。然而,后溝廢棄采空區(qū)的煤層厚底卻達到了350m??紤]到此種情況,我們在地下從掘進大巷入口處使用了高分辨率電阻率法以探測采空區(qū)的位置,從而方便15號煤層的挖掘的推進。2大地電阻率的特征 15號煤層是儲備礦中主要的煤層。煤層的厚度主要在5.15m6.63m之間,平均厚度為5.89m,貫穿了整個儲存區(qū)。煤層中主要為高熱值的無煙煤,含有少量的中低組分的灰分以及極低的含硫量。采掘完畢后,如果采空區(qū)沒有被水淹沒,它的表面電阻率將會有明顯地增加。無論整個采空區(qū)是否塌陷,都會呈現(xiàn)出高電阻率材料的特性。正是基于此種物理條件,我們選擇使用高分辨率電阻率法對采空區(qū)進行探測。3地下高分辨率電阻率法 如上所述,好的煤層質(zhì)量是決定高分辨率電阻率法能否使用的關(guān)鍵。需要使用何種設(shè)備來進行電阻率的勘探是值得更長遠的研究的。事實上,采空區(qū)是一個人造的、孤立的地質(zhì)體,并不是一個統(tǒng)一的層狀礦床。因此需要利用一些可以疊加采空區(qū)的電子信息,定位采空區(qū)坐標,并且能夠區(qū)分其與周圍的巖石的特殊設(shè)備來探測這種地質(zhì)體的類型。地下高分辨率電阻率法需要使用三個特殊的電極。單極偶極裝置發(fā)射的電波更加的密集,提高了觀測和控制的水平、增加了疊加的次數(shù)、放大信息量,從而提高了采空區(qū)探測的分辨率,使得采空區(qū)可以區(qū)別于周圍的巖石群。圖1為調(diào)查站的陣列圖。圖1 地下高分辨率電阻率法調(diào)查陣列圖地下高分辨率電阻率法所采用的參數(shù)分別如下:1)供電站中間的距離為A,A=20m;2)調(diào)查站之間的距離為C,C=2m;3)極間距為MN,MN=10m;4)測線的半徑為:線為140m、線60m;5)無限遠處極桿坐標離測線12002000m遠。地下調(diào)查數(shù)據(jù)通過防爆型的微伏數(shù)字直流電阻率計收集。在地下探測中,每間隔20m設(shè)有一座供電站。對于每個供電站,都需要記錄兩端電壓差的不同。每個供電站兩端兩極間的最大距離為140m(因為偏移的最大距離為140m)。這樣就可以實現(xiàn)雙層覆蓋觀測,并且使得勘探區(qū)域可以覆蓋到140m。采取以下措施以保證采取自地下數(shù)據(jù)得可靠性:1)為了保證電源良好的接地,在煤層中指定的位置鉆水平井;2)青銅極必須插入足夠的深度并且到達濕點、夯實堅固,以確保得到的數(shù)據(jù)穩(wěn)定和可靠;3)電池需要經(jīng)常的充電以保證電源電壓的穩(wěn)定,滿足使用時的要求。這是獲得可靠、準確數(shù)據(jù)的關(guān)鍵;4)在調(diào)查過程中,要經(jīng)常地檢查電源的位置是否準確,獲得的數(shù)據(jù)是否穩(wěn)定。一旦發(fā)現(xiàn)有異常情況,必須重新確認電極的位置,不斷的加入額外的電極,重復(fù)的測試,直到誤差在允許接受的范圍內(nèi)為止。事實上,儀器是穩(wěn)定且精確的。只要在試驗過程中操作合理,就可以大大地降低大地的電阻率。作為結(jié)果,信號將變得更強,數(shù)據(jù)的準確性得到提高。在試驗過程中,MN極需要經(jīng)常的校正。如果有異常情況出現(xiàn),檢測需要重復(fù)的進行。這樣的試驗方法確保了收集的數(shù)據(jù)的準確性和可信度。4數(shù)據(jù)分析 高分辨率電阻率法的測定是沿著測線所在的橫截面和垂直面同時進行測量的。數(shù)據(jù)分析分兩個步驟進行:首先,檢查每個電極電壓的不同點。是不是離電極越遠電壓越低。如果在某處出現(xiàn)突然變化,則需要分析說明此種情況出現(xiàn)的原因。最后,利用所得數(shù)據(jù),通過電腦繪制成一個電阻率橫斷面圖。因為小的采空區(qū)中一般會出現(xiàn)少量的積水,在電阻率橫斷面圖上會出現(xiàn)一個明顯的高電阻率區(qū)域。如果圖上的斜率的變化是一致且穩(wěn)定的,那么它就反應(yīng)了巖層的自然狀態(tài);如果圖上出現(xiàn)異常的變化或者不一致的變化,特別是變化是隨機發(fā)生時,則說明了采空區(qū)的存在。這是由于采礦時形成的孔洞和裂縫擾亂了煤巖層的內(nèi)在有規(guī)律的節(jié)奏,增加了電阻率。圖2、3分別是測線和測線的電阻率斷面等高線圖。請注意:垂直和水平軸的單位是m,圖上陰影部分顏色越深則電阻率強度越強。 圖2 沿測線電阻率斷面等高線圖圖3 沿測線電阻率斷面等高線圖圖2中,在水平軸2570m,垂直110130m范圍內(nèi);圖3,在水平軸80100m,垂直3050內(nèi)范圍,出現(xiàn)了電阻率明顯變化的情況。這些陰影越深說明了電阻率越高。這種現(xiàn)象與自然狀態(tài)下煤巖層顯現(xiàn)的內(nèi)在規(guī)律的物理性質(zhì)相沖突,從而證明了采空區(qū)的存在。基于調(diào)查結(jié)果,礦山管理部門從掘進大巷入口即測線50m處鉆一個相對煤層水平的孔。當鉆孔深度離大巷達到120.4m時,煤質(zhì)變得疏松且電阻率極低可忽略,同時鉆井水也完全的消失。此外,井巷中開始出現(xiàn)有臭雞蛋氣味的甲烷氣體。發(fā)現(xiàn)此處為一個小的廢棄煤礦的采空區(qū),寬度大約為15m。因此,試驗結(jié)果得以驗證?;谡{(diào)查結(jié)果,礦山管理部門對礦井進行合理的定位、設(shè)置進口,從而使得15號煤層的安全采掘得以進行。參考文獻1 Fitch, A.A.地球物理勘探方法發(fā)展.倫敦和紐約:應(yīng)用科學(xué)出版社, 19832晏殊,陳明.通過高分辨率電阻率法探測地下采空區(qū).北京:地質(zhì)出版社,19963石先新,陳明等.15號煤層第九采區(qū)電阻率勘探報告:陽泉南莊礦.中國煤炭科學(xué)研究院西安分院,2004大采高綜采工作面礦壓顯現(xiàn)規(guī)律研究摘要:針對大采高綜采工作面采場頂板巖層的運動規(guī)律和采場礦山壓力顯現(xiàn)規(guī)律有其特殊性的特點,著重研究大采高綜采工作面的礦壓顯現(xiàn)特征及其規(guī)律、工作面采場圍巖應(yīng)力場、位移場及圍巖塑性破壞場的分布規(guī)律以及大采高綜采工作面煤巖組合力學(xué)模型及其控制。關(guān)鍵詞:大采高綜采,礦壓顯現(xiàn)規(guī)律,巖層移動規(guī)律,支承壓力分布 0 引言目前,在我國一次能量消費結(jié)構(gòu)中,煤炭占75%以上。煤炭不僅是我國的基本燃料,又是重要的工業(yè)原料,電力、鋼鐵、石油加工、水泥、化學(xué)原料五大行業(yè)都離不開煤炭,因此,煤炭工業(yè)的發(fā)展直接關(guān)系到國計民生。為使我國能源戰(zhàn)略持續(xù)穩(wěn)定的發(fā)展,必須穩(wěn)步高效地發(fā)展煤炭工業(yè)。我國是世界上煤炭資源最豐富的國家之一。據(jù)不完全統(tǒng)計,己知含煤面積約55000k了,探明總儲量在9000億t以上,居世界前列。自1989年,我國一直是世界第一大煤炭生產(chǎn)國和消費國,煤炭產(chǎn)量占世界煤炭產(chǎn)量的1/4以上,而緩傾斜厚煤層煤炭產(chǎn)量又占我國總產(chǎn)量的40%以上,我國很多礦區(qū)賦存有3.56.0m厚的煤層,這類煤層在邢臺、開灤、徐州、充州、淮北、阜新、雙鴨山、義馬、西山、銅川、陽泉等礦區(qū)均為主采煤層。隨著市場經(jīng)濟的發(fā)展,煤炭工業(yè)日趨向大型化、集中化、高產(chǎn)高效方向發(fā)展,建設(shè)高產(chǎn)高效礦井,提高企業(yè)經(jīng)濟效益己成為煤礦企業(yè)的基本經(jīng)營理念,尤其是市場經(jīng)濟的激勵機制極大地促進了采煤技術(shù)與裝備水平的快速發(fā)展。我國在引進國外大采高裝備技術(shù)后,綜采工作面日產(chǎn)量可達萬t,取得了舉世矚目的成績。據(jù)目前國內(nèi)外開采技術(shù)的發(fā)展,大采高綜采是指采高在3.56.0m,工作面使用大功率雙滾筒采煤機和重型刮板運輸機割、運煤,用大噸位液壓支架(支架工作阻力、單架支護面積和支架支撐高度大)控制頂板,一次采全高的綜采技術(shù)。其設(shè)備趨于大型化、重型化和自動化,其特點是技術(shù)先進、性能可靠、裝機功率大、生產(chǎn)效率高。對于煤層傾角小于30的厚煤層(3.56.0m)開采,大采高綜采與綜采采煤法相比,具有下列優(yōu)點:煤炭資源回采率高;煤炭含研率低;回采工作面煤塵、煤的自然發(fā)火和瓦斯涌出安全性好;對于34m不適宜綜采開采的厚煤層,大采高具有工效高、成本低等優(yōu)點。大采高綜采與分層開采相比,具有下列優(yōu)點:工作面生產(chǎn)能力大,有利于合理集中生產(chǎn);回采工效和煤炭資源回收率高、巷道掘進率和維護量低;回采工藝和巷道布置簡化,綜采設(shè)備搬家次數(shù)少,搬家費用省,增加生產(chǎn)時間;節(jié)省材料(人工假頂材料等)和回采成本低等。高產(chǎn)高效大采高綜采生產(chǎn)能力大、回采率高、安全條件和經(jīng)濟效益好,是目前國內(nèi)外厚煤層(3.56.0m)開采技術(shù)的主要發(fā)展方向之一,其優(yōu)勢使得在國內(nèi)外被廣泛采用。但是,經(jīng)過礦山實踐和許多專家、學(xué)者多年的現(xiàn)場觀測及理論研究發(fā)現(xiàn),大采高綜采與一般綜采(采高6002350455560700345058572090045006508001000康家灘礦88101工作面來壓時的最大平均載荷為7591kN/架,其支護強度為1012 kN/m2,相當于W級來壓極強烈頂板所需支護強度,但實際上由直方圖可知,該工作面并無沖擊載荷,而且動載系數(shù)均小于1.4,說明該類頂板來壓并不強烈,但如果按照II級或III級頂板估算其支護強度,僅650 kN/m2或800 kN/m2,顯然比實際所需最大平均支護強度1012 kN/m2低36%和21%,即按照表中II , III級頂板設(shè)計,其支護安全可靠性大大降低,說明88101大采高綜采面的支架承受的載荷比普通綜采高。寺河礦23101工作面來壓時的最大平均載荷為8228 kN/架,其支護強度為930 kN/m2,相當于III ,W級來壓強烈頂板所需支護強度,但實際上由直方圖可知,如果除去初撐力過低和過高的因素外,其頂板真是的直方圖應(yīng)為正態(tài)分布,動載系數(shù)為1. 52,該工作面為II-m級來壓明顯的頂板。但如果按照II級或III級頂板估算其支護強度,僅650 kN/mz或800 kN/m2,顯然比實際所需最大平均支護強度930 kN/mz低30%和14%,即按照表中II , III級頂板設(shè)計,其支護安全可靠性大大降低,說明23101大采高綜采面的支架承受的載荷比普通綜采高。造成上述情形的原因是隨著采高的增加,直接頂垮落的巖石不能充滿采空區(qū),基本頂巖層層位必然上升,即對支架有影響的巖層移動的層位增高,雖然采場內(nèi)無沖擊載荷,但其靜載較大,890kN/m2, 1012 kN/m2, 930kN/m2,分別相當于各大采高綜采工作面約8倍采高的巖重。其次,由于采高的增加,回采后頂板的變形位移也要增大,原來認為是基本頂?shù)膸r層,部分因變形增大而變成可隨支架及時垮落的直接頂,而且基本頂也會隨著上移,由此也造成需控制的巖層層位升高。2.大采高綜采工作面頂板控制的力學(xué)模型根據(jù)上述礦壓顯現(xiàn)規(guī)律分析,對于大采高綜采工作面我們建立一個以靜載計算為主的力學(xué)模型,參見圖4.3。圖4.3 大采高綜采面煤巖組合力學(xué)模型 圖中L為控頂距, 為需控制巖層總厚度,為所控制巖層平均破斷角。故支架載荷P為需控制巖層的重力Q1與控制巖層的懸頂重力Q2之和,即: 式中B為支架支護寬度。4.2大采高綜采工作面煤巖組合力學(xué)模型計算實例1.沙曲礦24101工作面支架工作阻力的確定沙曲礦24101工作面頂板為砂巖,砂巖基本頂巖層的破斷角一般取600,因基本頂上位巖層及直接頂也均為一砂巖,為計算方便,取整個要垮落的巖層破斷角為60,依據(jù)工作面綜合柱狀圖可知,需控制的巖層為3.7m厚的中砂巖、3.8m厚的粗砂巖及其上部5.65m的中砂巖,總計要控制的巖層厚度為14m,約3.5倍采高。將 代入得:即支架所需支護強度為930kN/mz。顯然可以滿足實際工作面頂板所需的支護強度890kN/mz,由此可知沙曲礦24101工作面實際所選支架額定工作阻力偏低,這與現(xiàn)場觀測的工作面支架阻力偏低相對應(yīng)。2.康家灘礦88101工作面支架工作阻力的確定將 代入得:砂巖基本頂巖層的破斷角一般取600,康家灘礦88010工作面因有部分基本頂巖層可視為直接頂,為計算方便,取整個要垮落的巖層破斷角為600,依據(jù)工作面綜合柱狀圖可知,需控制的巖層為14.88m厚的粗砂巖及其上部3.17m的泥巖,總計要控制的巖層厚度約為19m,約4倍采高。即P=1845kN/m2。顯然滿足實際工作面所需的支架支護強度1012kN/m。所選支架工作阻力8638kN/架是可靠的。3.寺河礦23101工作面支架工作阻力的確定23101工作面直接頂為砂質(zhì)泥巖,厚達8.33m(包括偽頂和煤頂在內(nèi)),基本頂為細砂巖,根據(jù)相似模擬試驗,其頂板破斷角為700,依據(jù)工作面綜合柱狀圖可知;需控制的巖層為2m厚的偽頂、6.33m厚砂質(zhì)泥巖巖、4.26m厚的細砂巖及其上部6.42m厚的泥巖,總計要控制的巖層厚度為19m,約4倍采高。即P=841kN/m2。若考慮I、II級頂板的富余系數(shù)1.11.2,則P=921009kN/m2,顯然滿足實際工作面所需的支架支護強度930kN/m2。所選支架工作阻力8638kN/架是可靠的。將 代入得:由上計算可知:對于緩傾斜厚煤層,采用大采高綜采回采工藝,采場支架受力以靜載為主,對于現(xiàn)行基本頂板分類條件來說,按約4倍采高控制巖層,加上采空區(qū)的懸頂重力,以靜載計算支架所需的工作阻力是可以滿足大采高工作面頂板控制要求的,這與現(xiàn)場觀測與數(shù)值模擬計算的結(jié)果是相吻合的。結(jié)論利用現(xiàn)場觀測、理論分析及數(shù)值模擬等研究手段,針對大采高綜采工作面采場頂板巖層的運動規(guī)律和采場壓力顯現(xiàn)規(guī)律有其特殊性的特點,著重研究了大采高綜采工作面的礦壓顯現(xiàn)特征及其規(guī)律、和大采高綜采工作面煤巖組合任務(wù)書設(shè)計日期:20XX年3月12日 至 20XX年6月10日設(shè)計題目: 濟三煤礦4.0 Mt/a新井設(shè)計設(shè)計專題題目: 大采高綜采工作面礦壓顯現(xiàn)規(guī)律研究設(shè)計主要內(nèi)容和要求:以實習礦井濟寧三號煤礦條件為基礎(chǔ),完成濟三煤礦4.0Mt/a新井設(shè)計。主要內(nèi)容包括:礦井概況、礦井工作制度及設(shè)計生產(chǎn)能力、井田開拓、首采區(qū)設(shè)計、采煤方法、礦井通風系統(tǒng)、礦井運輸提升等。結(jié)合煤礦生產(chǎn)前沿及礦井設(shè)計情況,撰寫一篇關(guān)于大采高綜采工作面礦壓顯現(xiàn)規(guī)律研究的專題論文。完成“The 23rd International Conference on Ground Control Ming”上與采礦有關(guān)的科技論文翻譯一篇,題目為“Detecting Abandoned Coal Mine Entries by High Resolution Earth Resistivity Method”,論文9106字符。院長簽字: 指導(dǎo)教師簽字:摘 要本設(shè)計包括三個部分:一般部分、專題部分和翻譯部分。一般部分為兗礦集團濟寧三號煤礦4.0Mt/a新井設(shè)計,共分10章:1.礦區(qū)概述及井田地質(zhì)特征;2.井田境界和儲量;3.礦井工作制度、設(shè)計生產(chǎn)能力及服務(wù)年限;4.井田開拓;5.準備方式-盤區(qū)巷道布置;6.采煤方法;7.井下運輸;8.礦井提升;9.礦井通風與安全技術(shù);10.礦井基本技術(shù)經(jīng)濟指標。兗礦集團濟寧三號煤礦位于山東省濟寧煤田中部,主采煤層一層,即3下煤層,傾角29,平均厚度5.26m,地質(zhì)條件簡單,煤層具有煤塵爆炸危險性并有自然發(fā)火傾向。井田工業(yè)儲量為567.881Mt,可采儲量424.408Mt,適宜布置大型礦井,礦井設(shè)計產(chǎn)量4.0Mt/a,設(shè)計服務(wù)年限為70a。設(shè)計礦井采用立井單水平開拓,前期采用中央并列式通風,后期采用兩翼對角式通風。一礦一面,采煤方法為厚煤層綜采一次采全高全部垮落法。煤炭運輸采用鋼絲繩芯膠帶,輔助運輸采用無軌膠輪車。礦井年工作日為330 d,每天凈提升時間16 h。礦井工作制度為:實行“三八”制作業(yè),(兩班生產(chǎn),一班檢修),每日兩班出煤。專題部分題目為大采高綜采工作面礦壓顯現(xiàn)規(guī)律研究。著重研究了大采高綜采工作面礦壓顯現(xiàn)特征及規(guī)律,和大采高綜采工作面煤巖組合力學(xué)模型及其控制。翻譯部分是“The 23rd International Conference on Ground Control Ming”中一篇名為Detecting Abandoned Coal Mine Entries by High Resolution Earth Resistivity Method的論文,中文譯名為高分辨率大地電阻率法探測廢棄煤礦巷道。關(guān)鍵詞:立井;盤區(qū);大采高;無軌運輸;混合式通風;礦壓顯現(xiàn)規(guī)律ABSTRACTThis design includes of three parts: the general part, special subject part and translated part. The general part is a new design of Jining 3rd mine. Jining 3rd mine lies in middle of Shandong province Jining coalfield. The three is the main coal seam, and its dip angle is 5 degree. The thickness of the mine is about 5.26m in all. It is bituminous coal with low mine gas emission rate and coal spontaneous combustion tendency, and its a coal seam liable to dust explosion.The proved reserves of the minefield are 567.881 million tons. The recoverable reserves are 424.408 million tons. The designed productive capacity is 4 million tons percent year, and the service life of the mine is 70 years. The well farmland is a single level in an inclined and calm well to expand.The working system “three-eight” is used in the Jining 3rd mine. It produced 330d/a.This design includes ten chapters: 1.An outline of the mine field geology; 2.Boundary and the reserves of mine; 3.The service life and working system of mine; 4.development engineering of coalfield; 5.The layout of panels; 6. The method used in coal mining; 7. Transportation of the underground; 8.The lifting of the mine; 9. The ventilation and the safety operation of the mine; 10.The basic economic and technical norms.Special subject parts of topics is large mining height fully - mechanized coal face research on mine pressure behavior law.Translation part of main contentses is Detecting Abandoned Coal Mine Entries by High Resolution Earth Resistivity Method.Keywords:vertical; panel; high seam mining; transport without track; combined ventilation; mine pressure behavior law
收藏