2019-2020年高三數(shù)學(xué)上學(xué)期第三次月考試題 理.doc
《2019-2020年高三數(shù)學(xué)上學(xué)期第三次月考試題 理.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)上學(xué)期第三次月考試題 理.doc(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)上學(xué)期第三次月考試題 理一、選擇題:本大題共12小題,每小題5分,滿分60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1不等式(1+x)(1-|x|)0的解集是 A B. C. D. 2等差數(shù)列中,則此數(shù)列前20項(xiàng)和等于A160B180C200D2203已知向量,, 則“”是“與夾角為銳角”的A必要而不充分條件 B充分而不必要條件C充分必要條件 D既不充分也不必要條件4對(duì)一切實(shí)數(shù)x,不等式恒成立,則實(shí)數(shù)a的取值范圍是 A(-,-2) B-2,+) C-2,2 D0,+)5命題,若是真命題,則實(shí)數(shù)的取值范圍是A B C D6設(shè)點(diǎn)是函數(shù)與的圖象的一個(gè)交點(diǎn),則的值為A. 2 B. 2+ C. 2+ D. 因?yàn)椴晃ㄒ唬什淮_定7已知x、y為正實(shí)數(shù),且x,a1,a2,y成等差數(shù)列,x,b1,b2,y成等比數(shù)列,則 的取值范圍是AR B C D8已知圓C的半徑為2,圓心在軸的正半軸上,直線與圓C相切,則圓C的方程為ABCD9已知數(shù)列的通項(xiàng)公式為=,其中a、b、c均為正數(shù),那么與的大小是 A B C = D. 與n的取值有關(guān)10已知,是平面內(nèi)兩個(gè)互相垂直的單位向量,若向量滿足,則的最大值是 A.1 B.2 C. D.11. 函數(shù)在區(qū)間上的所有零點(diǎn)之和等于A. 2 B. 6 C. 8 D. 1012已知函數(shù)的周期為4,且當(dāng)時(shí), 其中若方程恰有5個(gè)實(shí)數(shù)解,則的取值范圍為 A B C D本卷包括必考題和選考題兩部分第13題第21題為必考題,每個(gè)試題考生都必須做答第22題第24題為選考題,考生根據(jù)要求做答二填空題:本大題共4小題,每小題5分。13直線axy10與連結(jié)A(2,3),B(3,2)的線段相交,則a的取值范圍是_ _14過(guò)點(diǎn)的直線與圓交于、兩點(diǎn),為圓心,當(dāng) 最小時(shí),直線的方程是 .15已知、滿足約束條件,若目標(biāo)函數(shù)的最大值為7,則的最小值為 。16已知分別是函數(shù)的最大值、最小值,則 .三、解答題(本大題共6小題,共70分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟)17(本小題滿分12分)已知函數(shù)(1)當(dāng)時(shí),求函數(shù)的最小值和最大值;(2)設(shè)的內(nèi)角的對(duì)應(yīng)邊分別為,且,若向量與向量共線,求的值.18(本小題滿分12分)設(shè)數(shù)列的各項(xiàng)均為正數(shù),它的前項(xiàng)的和為,點(diǎn)在函數(shù)的圖像上;數(shù)列滿足其中(1)求數(shù)列和的通項(xiàng)公式; (2)設(shè),求證:數(shù)列的前項(xiàng)的和() 19(本小題滿分12分)在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1,圓心在上.(1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線的方程;(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.20(本小題滿分12分)已知圓C過(guò)點(diǎn)P(1,1),且與圓M:關(guān)于直線對(duì)稱。(1)求圓C的方程:(2)設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求最小值;(3)過(guò)點(diǎn)P作兩條相異直線分別與圓C交與A,B,且直線和直線的傾斜角互補(bǔ),為坐標(biāo)原點(diǎn),試判斷直線與直線是否平行?請(qǐng)說(shuō)明理由.21(本小題滿分12分)已知函數(shù).(1)設(shè),求的單調(diào)區(qū)間;(2) 設(shè),且對(duì)于任意,.試比較與的大小.請(qǐng)考生在第22、23、24三題中任選一題做答,如果多做,則按所做的第一題記分.答時(shí)用2B鉛筆在答題卡上把所選題目的題號(hào)涂黑.22.(本小題滿分10分)選修41:幾何證明選講如圖,正方形邊長(zhǎng)為2,以為圓心、為半徑的圓弧與以為直徑的半圓交于點(diǎn),連結(jié)并延長(zhǎng)交于點(diǎn).(1)求證:;(2)求的值.23.(本小題滿分10分)選修44:極坐標(biāo)與參數(shù)方程在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)). 再以原點(diǎn)為極點(diǎn),以正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系有相同的長(zhǎng)度單位. 在該極坐標(biāo)系中圓的方程為.(1)求圓的直角坐標(biāo)方程;(2)設(shè)圓與直線交于點(diǎn)、,若點(diǎn)的坐標(biāo)為,求的值.24. (本小題滿分10分)選修45:不等式選講已知.(1)關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;(2)設(shè),且,求證:.銀川一中xx屆高三第三次月考數(shù)學(xué)(理科)試卷答案題號(hào)123456789101112答案DBABDACCBCCB13a2或a1. 14 15. 7 16.217.(1),因?yàn)?,所?所以 函數(shù)的最小值是,的最大值是0(2)由解得C=,又與向量共線 由余弦定理得 解方程組 得18由已知條件得, 當(dāng)時(shí), 得:,即,數(shù)列的各項(xiàng)均為正數(shù),(),又,;,;,兩式相減得,19解:(1)由得圓心C為(3,2),圓的半徑為圓的方程為:(1分)顯然切線的斜率一定存在,設(shè)所求圓C的切線方程為,即或者所求圓C的切線方程為:或者即或者(3分)(2)解:圓的圓心在在直線上,所以,設(shè)圓心C為(a,2a-4)則圓的方程為:(2分)又設(shè)M為(x,y)則整理得:設(shè)為圓D(3分)點(diǎn)M應(yīng)該既在圓C上又在圓D上 即圓C和圓D有交點(diǎn)(2分)解得,的取值范圍為:(1分)20.解:(1)設(shè)圓心C(a,b),則 解得 a=0 b=0所以圓C的方程為 將點(diǎn)P的坐標(biāo)代人得 所以圓C的方程為(2)設(shè)Q(x,y) 則所以所以的最小值為 -4 (可由線性規(guī)劃或三角代換求得)(3)由題意可知,直線和直線的斜率存在且互為相反數(shù)故 可設(shè): :由 得因?yàn)辄c(diǎn)P的橫坐標(biāo)是 x=1,一定是方程的解 故可得 同理 所以 所以直線與直線一定平行21解:()由,得.(1)當(dāng)時(shí),若,當(dāng)時(shí),恒成立,所以函數(shù)的單調(diào)遞減區(qū)間是若,當(dāng)時(shí),函數(shù)的單調(diào)遞減,當(dāng)時(shí),函數(shù)的單調(diào)遞增,所以函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.(2)當(dāng)時(shí), 得,由得 顯然,當(dāng)時(shí),函數(shù)的單調(diào)遞減,當(dāng)時(shí),函數(shù)的單調(diào)遞增,所以函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,綜上所述當(dāng),時(shí),函數(shù)的單調(diào)遞減區(qū)間是當(dāng),時(shí),函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.() 由,且對(duì)于任意, ,則函數(shù)在處取得最小值,由()知,是的唯一的極小值點(diǎn),故,整理得 即.令, 則令得,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.因此,故,即,即22. 解:(1)由以D為圓心DA為半徑作圓,而ABCD為正方形,EA為圓D的切線依據(jù)切割線定理得 2分另外圓O以BC為直徑,EB是圓O的切線,同樣依據(jù)切割線定理得 4分故 5分(2)連結(jié),BC為圓O直徑,在RTEBC中,有 7分又在中,由射影定理得 10分23. 解:(1)由極坐標(biāo)與直角坐標(biāo)互化公式得圓的直角坐標(biāo)方程式為 4分(2)直線的普通方程為,點(diǎn)在直線上.的標(biāo)準(zhǔn)參數(shù)方程為 6分代入圓方程得:設(shè)、對(duì)應(yīng)的參數(shù)分別為、,則, 8分于是=. 10分24. 解:(1)依據(jù)絕對(duì)值的幾何意義可知函數(shù)表示數(shù)軸上點(diǎn)P()到點(diǎn)A()和B()兩點(diǎn)的距離,其最小值為 3分不等式恒成立只需,解得 5分(2) 只需證明:成立即可.;. 8分于是故要證明的不等式成立. 10分- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)上學(xué)期第三次月考試題 2019 2020 年高 數(shù)學(xué) 學(xué)期 第三次 月考 試題
鏈接地址:http://m.appdesigncorp.com/p-2722711.html