2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 7.1 不等式的性質(zhì)教案 理 新人教A版.doc
《2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 7.1 不等式的性質(zhì)教案 理 新人教A版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 7.1 不等式的性質(zhì)教案 理 新人教A版.doc(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 7.1 不等式的性質(zhì)教案 理 新人教A版 高考導(dǎo)航 考試要求 重難點(diǎn)擊 命題展望 1.不等關(guān)系 了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景. 2.一元二次不等式 (1)會(huì)從實(shí)際情境中抽象出一元二次不等式模型; (2)通過(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系; (3)會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖. 3.二元一次不等式組與簡(jiǎn)單線性規(guī)劃問(wèn)題 (1)會(huì)從實(shí)際情境中抽象出二元一次不等式組; (2)了解二元一次不等式組的幾何意義,能用平面區(qū)域表示二元一次不等式組; (3)會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決. 4.基本不等式:≥ (a,b≥0) (1)了解基本不等式的證明過(guò)程; (2)會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題. 本章重點(diǎn):1.用不等式的性質(zhì)比較大小;2.簡(jiǎn)單不等式的解法;3.二元一次不等式組與簡(jiǎn)單的線性規(guī)劃問(wèn)題;4.基本不等式的應(yīng)用. 本章難點(diǎn):1.含有參數(shù)不等式的解法;2.不等式的應(yīng)用;3.線性規(guī)劃的應(yīng)用. 不等式具有應(yīng)用廣泛、知識(shí)綜合、能力復(fù)合等特點(diǎn).高考考查時(shí)更多的是與函數(shù)、方程、數(shù)列、三角函數(shù)、解析幾何、立體幾何及實(shí)際應(yīng)用問(wèn)題相互交叉和綜合,將不等式及其性質(zhì)的運(yùn)用滲透到這些問(wèn)題的求解過(guò)程中進(jìn)行考查. 線性規(guī)劃是數(shù)學(xué)應(yīng)用的重要內(nèi)容,高考中除考查線性規(guī)劃問(wèn)題的求解與應(yīng)用外,也考查線性規(guī)劃方法的遷移. 知識(shí)網(wǎng)絡(luò) 7.1 不等式的性質(zhì) 典例精析 題型一 比較大小 【例1】已知a>0,a≠1,P=loga(a3-a+1),Q=loga(a2-a+1),試比較P與Q的大小. 【解析】因?yàn)閍3-a+1-(a2-a+1)=a2(a-1), 當(dāng)a>1時(shí),a3-a+1>a2-a+1,P>Q; 當(dāng)0<a<1時(shí),a3-a+1<a2-a+1,P>Q; 綜上所述,a>0,a≠1時(shí),P>Q. 【點(diǎn)撥】作差比較法是比較兩個(gè)實(shí)數(shù)大小的重要方法之一,其解題步驟為:①作差; ②變形;③判斷符號(hào);④得出結(jié)論. 【變式訓(xùn)練1】已知m=a+(a>2),n=x-2(x≥),則m,n之間的大小關(guān)系為( ) A.m<n B.m>n C.m≥n D.m≤n 【解析】選C.本題是不等式的綜合問(wèn)題,解決的關(guān)鍵是找中間媒介傳遞. m=a+=a-2++2≥2+2=4,而n=x-2≤()-2=4. 題型二 確定取值范圍 【例2】已知-≤α<β≤,求,的取值范圍. 【解析】因?yàn)椋堞粒鸡隆?,所以-≤<,-<≤? 兩式相加得-<<. 又-≤<,所以-≤<, 又因?yàn)棣粒鸡?,所以?,所以-≤<0, 綜上-<<,-≤<0為所求范圍. 【點(diǎn)撥】求含字母的數(shù)(式)的取值范圍,一定要注意題設(shè)的條件,否則易出錯(cuò),同時(shí)在變換過(guò)程中,要注意準(zhǔn)確利用不等式的性質(zhì). 【變式訓(xùn)練2】已知函數(shù)f(x)=ax2-c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范圍. 【解析】由已知-4≤f(1)=a-c≤-1,-1≤f(2)=4a-c≤5. 令f(3)=9a-c=γ(a-c)+μ(4a-c), 所以 故f(3)=-(a-c)+(4a-c)∈[-1,20]. 題型三 開(kāi)放性問(wèn)題 【例3】已知三個(gè)不等式:①ab>0;② >;③bc>ad.以其中兩個(gè)作條件,余下的一個(gè)作結(jié)論,則能組成多少個(gè)正確命題? 【解析】能組成3個(gè)正確命題.對(duì)不等式②作等價(jià)變形:>?>0. (1)由ab>0,bc>ad?>0,即①③?②; (2)由ab>0,>0?bc-ad>0?bc>ad,即①②?③; (3)由bc-ad>0,>0?ab>0,即②③?①. 故可組成3個(gè)正確命題. 【點(diǎn)撥】這是一類(lèi)開(kāi)放性問(wèn)題,要求熟練掌握不等式的相關(guān)性質(zhì),并能對(duì)題目條件進(jìn)行恰當(dāng)?shù)牡葍r(jià)變形. 【變式訓(xùn)練3】a、b、c、d均為實(shí)數(shù),使不等式>>0和ad<bc都成立的一組值(a,b,c,d)是_______________(只要寫(xiě)出符合條件的一組即可). 【解析】寫(xiě)出一個(gè)等比式子,如=>0.此時(shí)內(nèi)項(xiàng)的積和外項(xiàng)的積相等,減小的分子,把上式變成不等式>>0,此時(shí)不符合ad<bc的條件,進(jìn)行變換可得>>0,此時(shí)2 (-2)<1(-3).故(2,1,-3,-2)是符合要求的一組值. 總結(jié)提高 1.不等式中有關(guān)判斷性命題,主要依據(jù)是不等式的概念和性質(zhì).一般地,要判斷一個(gè)命題是真命題,必須嚴(yán)格證明.要判斷一個(gè)命題是假命題,只要舉出反例,或者由題設(shè)條件推出與結(jié)論相反的結(jié)果.在不等式證明和推理過(guò)程中,關(guān)鍵是要弄清每個(gè)性質(zhì)的條件與結(jié)論及其邏輯關(guān)系,要注意條件的弱化與加強(qiáng),不可想當(dāng)然.如在應(yīng)用ab>0,a>b?<這一性質(zhì)時(shí),不可弱化為a>b?<,也不可強(qiáng)化為a>b>0?<. 2.題設(shè)條件含有字母,而結(jié)論唯一確定的選擇題,采用賦值法解答可事半功倍. 3.比較大小的常用方法是作差比較法和作商比較法,變形是關(guān)鍵.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 7.1 不等式的性質(zhì)教案 新人教A版 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 不等式 性質(zhì) 教案 新人
鏈接地址:http://m.appdesigncorp.com/p-2658954.html