2015-2016學年廣州市海珠區(qū)七年級上期末數(shù)學試卷含答案解析.doc
《2015-2016學年廣州市海珠區(qū)七年級上期末數(shù)學試卷含答案解析.doc》由會員分享,可在線閱讀,更多相關《2015-2016學年廣州市海珠區(qū)七年級上期末數(shù)學試卷含答案解析.doc(18頁珍藏版)》請在裝配圖網上搜索。
2015-2016學年廣東省廣州市海珠區(qū)七年級(上)期末數(shù)學試卷 一、選擇題(共10題,每小題3分,滿分30分) 1.﹣2的相反數(shù)是( ?。? A.2 B.﹣2 C.±2 D. 2.如圖,矩形繞它的一條邊MN所在的直線旋轉一周形成的幾何體是( ?。? A. B. C. D. 3.下列方程組中是二元一次方程組的是( ?。? A. B. C. D. 4.下列運用等式性質進行的變形,其中不正確的是( ) A.如果a=b,那么a+3=b+3 B.如果a=b,那么a﹣=b﹣ C.如果a=b,那么ac=bc D.如果a=b,那么 5.如圖,點A位于點O的( ?。┓较蛏希? A.西偏東35° B.北偏西65° C.南偏東65° D.南偏西65° 6.下列選項中,是方程x﹣2y=2的解是( ?。? A. B. C. D. 7.解方程時,去分母后,正確的是( ?。? A.3x﹣2(x﹣1)=1 B.2x﹣3(x﹣1)=1 C.3x﹣2(x﹣1)=6 D.2x﹣3(x﹣1)=6 8.下列圖形不能圍成正方體的是( ?。? A. B. C. D. 9.設有理數(shù)a、b在數(shù)軸上對應的位置如圖所示,化簡|a﹣b|﹣|a|的結果是( ?。? A.﹣2a+b B.2a+b C.﹣b D.b 10.如圖1,將一個邊長為a的正方形紙片剪去兩個小矩形,得到一個“”的圖案,如圖2所示,再將剪下的兩個小矩形拼成一個新的矩形,如圖3所示,則新矩形的周長可表示為( ) A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b 二、填空題(共6小題,每小題3分,共18分) 11.在﹣2、0、1、﹣1這四個數(shù)中,最大的有理數(shù)是 ?。? 12.據(jù)數(shù)據(jù)顯示,2015年某電商的“雙十一”全球狂歡節(jié)最終以約91200000000元交易額落下帷幕!將91200000000用科學記數(shù)法表示為 ?。? 13.若﹣5x2ym與x2y是同類項,m= ?。? 14.一個角的余角是這個角的4倍,則這個角的度數(shù)是 ?。? 15.如圖,直線AB,CD相交于點O,∠AOD=3∠BOD+20°,則∠BOD= ?。? 16.一組按規(guī)律排列的式子:則第1008個式子是 ?。? 三、解答題(共5小題,滿分52分) 17.計算 (1)(+16)﹣(﹣7)﹣(+11) (2)(﹣3)2×2﹣(﹣4)÷2. 18.解方程或方程組: (1)5x+5=9﹣3x (2). 19.先化簡,再求值3(x2﹣2y)﹣2(x2﹣2y),其中x=﹣1,y=2. 20.某機械廠加工車間有84名工人,平均每人每天加工大齒輪16個或者小齒輪10個,已知1個大齒輪與2個小齒輪剛好配成一套,問分別安排多少名工人加工大,小齒輪,才能使每天加工的大小齒輪剛好配套? 21.點A、B、C在同一條直線上,AB=6cm,BC=2cm,點M是線段AC的中點,求AM的長. 四、解答題(共4小題,滿分50分) 22.專車司機小李某天上午從家出發(fā),營運時是在東西走向的大街上進行的,如果規(guī)定向東為正,向西為負,他這天上午所接六位乘客的行車里程(單位:km)如下:﹣1,+6,﹣2,+2,﹣7,﹣4 (1)將最后一位乘客送到目的地時,小李在出發(fā)地的哪一邊?距離出發(fā)地多少km? (2)若汽車每千米耗油量為0.2升,這天上午小李接送乘客,出租車共耗油多少升? 23.某城市自來水收費實行階梯水價,收費標準如下表所示: 月用水量 不超過12噸的部分 超過12噸的部分且 不超過18噸的部分 超過18噸的部分 收費標準 2元/噸 2.5元/噸 3元/噸 (1)某用戶四月份用水量為16噸,需交水費為多少元? (2)某用戶五月份交水費50元,所用水量為多少噸? (3)某用戶六月份用水量為a噸,需要交水費為多少元? 24.如圖,長方形紙片ABCD,點E、F分別在邊AB、CD上,連接EF,將∠BEF對折,點B落在直線EF上的B′處,得到折痕EC,將點A落在直線EF上的點A′處,得到折痕EN. (1)若∠BEB′=110°,則∠BEC= °,∠AEN= °,∠BEC+∠AEN= °. (2)若∠BEB′=m°,則(1)中∠BEC+∠AEN的值是否改變?請說明你的理由. (3)將∠ECF對折,點E剛好落在F處,且折痕與B′C重合,求∠DNA′. 25.A、B、C為數(shù)軸上的三點,動點A、B同時從原點出發(fā),動點A每秒運動x個單位,動點B每秒運動y個單位,且動點A運動到的位置對應的數(shù)記為a,動點B運動到的位置對應的數(shù)記為b,定點C對應的數(shù)為8. (1)若2秒后,a、b滿足|a+8|+(b﹣2)2=0,則x= ,y= ,并請在數(shù)軸上標出A、B兩點的位置. (2)若動點A、B在(1)運動后的位置上保持原來的速度,且同時向正方向運動z秒后使得|a|=|b|,使得z= . (3)若動點A、B在(1)運動后的位置上都以每秒2個單位向正方向運動繼續(xù)運動t秒,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,點A與點B之間的距離為AB,且AC+BC=1.5AB,則t= ?。? 2015-2016學年廣東省廣州市海珠區(qū)七年級(上)期末數(shù)學試卷 參考答案與試題解析 一、選擇題(共10題,每小題3分,滿分30分) 1.﹣2的相反數(shù)是( ?。? A.2 B.﹣2 C.±2 D. 【考點】相反數(shù). 【分析】根據(jù)相反數(shù)的定義進行解答即可. 【解答】解:由相反數(shù)的定義可知,﹣2的相反數(shù)是﹣(﹣2)=2. 故選A. 【點評】本題考查的是相反數(shù)的定義,即只有符號不同的兩個數(shù)叫做互為相反數(shù). 2.如圖,矩形繞它的一條邊MN所在的直線旋轉一周形成的幾何體是( ?。? A. B. C. D. 【考點】點、線、面、體. 【專題】常規(guī)題型;壓軸題. 【分析】矩形旋轉一周得到的是圓柱,選擇是圓柱的選項即可. 【解答】解:矩形繞一邊所在的直線旋轉一周得到的是圓柱. 故選C. 【點評】本題考查了點、線、面、體的知識,熟記常見的平面圖形轉動所成的幾何體是解題的關鍵,此類題目主要考查同學們的空間想象能力. 3.下列方程組中是二元一次方程組的是( ?。? A. B. C. D. 【考點】二元一次方程組的定義. 【分析】組成二元一次方程組的兩個方程應共含有兩個未知數(shù),且未知數(shù)的項最高次數(shù)都應是一次的整式方程. 【解答】解:A、第一個方程值的xy是二次的,故此選項錯誤; B、第二個方程有,不是整式方程,故此選項錯誤; C、含有3個未知數(shù),故此選項錯誤; D、符合二元一次方程定義,故此選項正確. 故選D. 【點評】此題主要考查了二元一次方程組的定義,一定要緊扣二元一次方程組的定義“由兩個二元一次方程組成的方程組”,細心觀察排除,得出正確答案. 4.下列運用等式性質進行的變形,其中不正確的是( ?。? A.如果a=b,那么a+3=b+3 B.如果a=b,那么a﹣=b﹣ C.如果a=b,那么ac=bc D.如果a=b,那么 【考點】等式的性質. 【分析】根據(jù)等式的兩邊同時加上(或減去)同一個數(shù)(或字母),等式仍成立;等式的兩邊同時乘以(或除以)同一個不為0數(shù)(或字母),等式仍成立. 【解答】解:A、如果a=b,那么a+3=b+3,正確; B、如果a=b,那么a﹣=b﹣,正確; C、如果a=b,那么ac=bc,正確; D、因為c不知道是否為零,錯誤; 故選D 【點評】本題主要考查了等式的基本性質,等式的兩邊同時加上(或減去)同一個數(shù)(或字母),等式仍成立;等式的兩邊同時乘以(或除以)同一個不為0數(shù)(或字母),等式仍成立. 5.如圖,點A位于點O的( ?。┓较蛏希? A.西偏東35° B.北偏西65° C.南偏東65° D.南偏西65° 【考點】方向角. 【分析】根據(jù)方向角的定義即可直接解答. 【解答】解:A在點O的北偏西65°. 故選B. 【點評】本題考查了方向角的定義,正確確定基準點是關鍵. 6.下列選項中,是方程x﹣2y=2的解是( ?。? A. B. C. D. 【考點】二元一次方程的解. 【分析】根據(jù)使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解進行分析即可. 【解答】解:A、5﹣2×2≠2,因此不是方程x﹣2y=2的解,故此選項錯誤; B、0﹣2×1≠2,因此不是方程x﹣2y=2的解,故此選項錯誤; C、4﹣2×1=2,是方程x﹣2y=2的解,故此選項正確; D、﹣2﹣2×2=﹣6≠2,因此不是方程x﹣2y=2的解,故此選項錯誤; 故選:C. 【點評】此題主要考查了二元一次方程的解,關鍵是掌握二元一次方程解的定義. 7.解方程時,去分母后,正確的是( ?。? A.3x﹣2(x﹣1)=1 B.2x﹣3(x﹣1)=1 C.3x﹣2(x﹣1)=6 D.2x﹣3(x﹣1)=6 【考點】解一元一次方程. 【專題】計算題;一次方程(組)及應用. 【分析】方程兩邊乘以6去分母得到結果,即可做出判斷. 【解答】解:方程﹣=1, 去分母得:2x﹣3(x﹣1)=6, 故選D 【點評】此題考查了解一元一次方程,熟練掌握運算法則是解本題的關鍵. 8.下列圖形不能圍成正方體的是( ?。? A. B. C. D. 【考點】展開圖折疊成幾何體. 【分析】當六個正方形出現(xiàn)“田”字,“凹”字狀時,不能組成正方體 【解答】解:所有選項中只有C選項出現(xiàn)“凹”字狀,所以不能組成正方體 故選:C. 【點評】能組成正方體的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形態(tài)要記牢. 9.設有理數(shù)a、b在數(shù)軸上對應的位置如圖所示,化簡|a﹣b|﹣|a|的結果是( ?。? A.﹣2a+b B.2a+b C.﹣b D.b 【考點】整式的加減;數(shù)軸;絕對值. 【分析】根據(jù)各點在數(shù)軸上的位置判斷出a、b的符號,再去括號,合并同類項即可. 【解答】解:∵由圖可知,a<0<b, ∴a﹣b<0,|a|=﹣a, ∴原式=b﹣a+a=b. 故選D. 【點評】本題考查的是整式的加減,熟知整式的加減實質上就是合并同類項是解答此題的關鍵. 10.如圖1,將一個邊長為a的正方形紙片剪去兩個小矩形,得到一個“”的圖案,如圖2所示,再將剪下的兩個小矩形拼成一個新的矩形,如圖3所示,則新矩形的周長可表示為( ) A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b 【考點】整式的加減;列代數(shù)式. 【專題】幾何圖形問題. 【分析】根據(jù)題意列出關系式,去括號合并即可得到結果. 【解答】解:根據(jù)題意得:2[a﹣b+(a﹣3b)]=4a﹣8b. 故選B 【點評】此題考查了整式的加減,以及列代數(shù)式,熟練掌握運算法則是解本題的關鍵. 二、填空題(共6小題,每小題3分,共18分) 11.在﹣2、0、1、﹣1這四個數(shù)中,最大的有理數(shù)是 1?。? 【考點】有理數(shù)大小比較. 【專題】推理填空題;實數(shù). 【分析】有理數(shù)大小比較的法則:①正數(shù)都大于0;②負數(shù)都小于0;③正數(shù)大于一切負數(shù);④兩個負數(shù),絕對值大的其值反而小,據(jù)此判斷即可. 【解答】解:根據(jù)有理數(shù)比較大小的方法,可得 1>0>﹣1>﹣2, ∴在﹣2、0、1、﹣1這四個數(shù)中,最大的有理數(shù)是1. 故答案為:1. 【點評】此題主要考查了有理數(shù)大小比較的方法,要熟練掌握,解答此題的關鍵是要明確:①正數(shù)都大于0;②負數(shù)都小于0;③正數(shù)大于一切負數(shù);④兩個負數(shù),絕對值大的其值反而?。? 12.據(jù)數(shù)據(jù)顯示,2015年某電商的“雙十一”全球狂歡節(jié)最終以約91200000000元交易額落下帷幕!將91200000000用科學記數(shù)法表示為 9.12×1010?。? 【考點】科學記數(shù)法—表示較大的數(shù). 【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù). 【解答】解:91 200 000 000=9.12×1010, 故答案為:9.12×1010. 【點評】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值. 13.若﹣5x2ym與x2y是同類項,m= 1?。? 【考點】同類項. 【分析】根據(jù)同類項是字母相同且相同字母的指數(shù)也相同,可得答案. 【解答】解:由﹣5x2ym與x2y是同類項,得 m=1, 故答案為:1. 【點評】本題考查了同類項,同類項定義中的兩個“相同”:相同字母的指數(shù)相同,是易混點,因此成了中考的??键c. 14.一個角的余角是這個角的4倍,則這個角的度數(shù)是 18°?。? 【考點】余角和補角. 【分析】利用題中“一個角的余角是這個角的4倍”作為相等關系列方程求解即可. 【解答】解:設這個角是x, 則90°﹣x=4x, 解得x=18°. 故答案為18°. 【點評】主要考查了余角和補角的概念以及運用.互為余角的兩角的和為90°,互為補角的兩角之和為180度.解此題的關鍵是能準確的從圖中找出角之間的數(shù)量關系,從而計算出結果. 15.如圖,直線AB,CD相交于點O,∠AOD=3∠BOD+20°,則∠BOD= 40°?。? 【考點】對頂角、鄰補角. 【分析】根據(jù)已知用同一未知數(shù)表示出∠AOD,再利用鄰補角的定義得出等式求出答案. 【解答】解:設∠BOD=x,則∠AOD=3x+20°, 故x+3x+20°=180°, 解得:x=40°. 故答案為:40°. 【點評】此題主要考查了鄰補角定義,正確用未知數(shù)表示出∠AOD是解題關鍵. 16.一組按規(guī)律排列的式子:則第1008個式子是 ?。? 【考點】單項式. 【專題】規(guī)律型. 【分析】觀察分子、分母的變化規(guī)律,總結出一般規(guī)律即可求解. 【解答】解:a2,a4,a6,a8…,分子可表示為:a2n, 1,3,5,7,…分母可表示為2n﹣1, 則第n個式子為:. 故第1008個式子是. 故答案為:. 【點評】本題考查了單項式的知識,屬于基礎題,關鍵是觀察分子、分母的變化規(guī)律. 三、解答題(共5小題,滿分52分) 17.計算 (1)(+16)﹣(﹣7)﹣(+11) (2)(﹣3)2×2﹣(﹣4)÷2. 【考點】有理數(shù)的混合運算. 【專題】計算題. 【分析】(1)根據(jù)有理數(shù)的混合運算順序,從左向右依次計算,求出算式(+16)﹣(﹣7)﹣(+11)的值是多少即可. (2)根據(jù)有理數(shù)的混合運算順序,首先計算乘方、乘法、除法,然后計算減法,求出算式(﹣3)2×2﹣(﹣4)÷2的值是多少即可. 【解答】解:(1)(+16)﹣(﹣7)﹣(+11) =16+7﹣11 =23﹣11 =12 (2)(﹣3)2×2﹣(﹣4)÷2 =9×2﹣(﹣2) =18+2 =20 【點評】此題主要考查了有理數(shù)的混合運算,要熟練掌握,注意明確有理數(shù)混合運算順序:先算乘方,再算乘除,最后算加減;同級運算,應按從左到右的順序進行計算;如果有括號,要先做括號內的運算. 18.解方程或方程組: (1)5x+5=9﹣3x (2). 【考點】解二元一次方程組;解一元一次方程. 【分析】(1)先移項,再合并同類項,把x的系數(shù)化為1即可; (2)先用加減消元法求出x的值,再用代入消元法求出y的值即可. 【解答】解:(1)5x+5=9﹣3x, 移項得,5x+3x=9﹣5, 合并同類項得,8x=4, 把x的系數(shù)化為1得,x=; (2), ①+②得4x=8,解得x=2, 把x=2代入①得2+2y=9,解得y=3.5, 故方程組的解為. 【點評】本題考查的是解二元一次方程組,熟知解二元一次方程組的加減消元法和代入消元法是解答此題的關鍵. 19.先化簡,再求值3(x2﹣2y)﹣2(x2﹣2y),其中x=﹣1,y=2. 【考點】整式的加減—化簡求值. 【專題】計算題;整式. 【分析】原式去括號合并得到最簡結果,把x與y的值代入計算即可求出值. 【解答】解:原式=3x2﹣6y﹣2x2+4y=x2﹣2y, 當x=﹣1,y=2時,原式=1﹣4=﹣3. 【點評】此題考查了整式的加減﹣化簡求值,熟練掌握運算法則是解本題的關鍵. 20.某機械廠加工車間有84名工人,平均每人每天加工大齒輪16個或者小齒輪10個,已知1個大齒輪與2個小齒輪剛好配成一套,問分別安排多少名工人加工大,小齒輪,才能使每天加工的大小齒輪剛好配套? 【考點】一元一次方程的應用. 【分析】首先設每天加工大齒輪的有x人,則每天加工小齒輪的有(84﹣x)人,再利用1個大齒輪與2個小齒輪剛好配成一套得出等式求出答案. 【解答】解:設每天加工的大齒輪的有x人,則每天加工的小齒輪的有(84﹣x)人,根據(jù)題意可得; 2×16x=10(84﹣x), 解得:x=20, 則84﹣20=64(人). 答:每天加工的大齒輪的有20人,每天加工的小齒輪的有64人. 【點評】此題主要考查了一元一次方程的應用,利用1個大齒輪與2個小齒輪剛好配成一套進而得出等式是解題關鍵. 21.點A、B、C在同一條直線上,AB=6cm,BC=2cm,點M是線段AC的中點,求AM的長. 【考點】兩點間的距離. 【分析】分點C在線段AB的延長線上和點C在線段AB上兩種情況、結合圖形計算即可. 【解答】解:如圖1,當點C在線段AB的延長線上時, ∵AB=6cm,BC=2cm, ∴AC=8cm, ∵點M是線段AC的中點, ∴AM=AC=4cm, 如圖2,當點C在線段AB上時, ∵AB=6cm,BC=2cm, ∴AC=4cm, ∵點M是線段AC的中點, ∴AM=AC=2cm, 答:AM的長為2cm或4cm. 【點評】本題考查的是兩點間的距離的計算,掌握線段中點的定義、靈活運用數(shù)形結合思想是解題的關鍵. 四、解答題(共4小題,滿分50分) 22.專車司機小李某天上午從家出發(fā),營運時是在東西走向的大街上進行的,如果規(guī)定向東為正,向西為負,他這天上午所接六位乘客的行車里程(單位:km)如下:﹣1,+6,﹣2,+2,﹣7,﹣4 (1)將最后一位乘客送到目的地時,小李在出發(fā)地的哪一邊?距離出發(fā)地多少km? (2)若汽車每千米耗油量為0.2升,這天上午小李接送乘客,出租車共耗油多少升? 【考點】正數(shù)和負數(shù). 【分析】(1)根據(jù)有理數(shù)的加法,可得答案; (2)根據(jù)單位耗油量乘以行駛路程等于耗油量,可得答案. 【解答】解:(1)(﹣1)+6+(﹣2)+2+(﹣7)+(﹣4)=﹣6, 答:將最后一位乘客送到目的地時,小李在出發(fā)地的西邊,距離出發(fā)地6km處; (2))(|﹣1|+6+|﹣2|+2+|﹣7|+|﹣4|)×0.2=22×0.2=4.4(升), 答:這天上午小李接送乘客,出租車共耗油4.4升. 【點評】本題考查了正數(shù)和負數(shù),利用單位耗油量乘以行駛路程等于耗油量是解題關鍵. 23.某城市自來水收費實行階梯水價,收費標準如下表所示: 月用水量 不超過12噸的部分 超過12噸的部分且 不超過18噸的部分 超過18噸的部分 收費標準 2元/噸 2.5元/噸 3元/噸 (1)某用戶四月份用水量為16噸,需交水費為多少元? (2)某用戶五月份交水費50元,所用水量為多少噸? (3)某用戶六月份用水量為a噸,需要交水費為多少元? 【考點】一元一次方程的應用. 【分析】(1)首先得出16噸,應分兩段交費,再利用已知表格中數(shù)據(jù)求出答案; (2)利用五月份交水費50元,可以判斷得出應分3段交費,再利用已知表格中數(shù)據(jù)得出等式求出答案; (3)利用分類討論利用①當a≤12時,②當12<a≤18時,③當a>18時,求出答案. 【解答】解:(1)∵12<16<18, ∴2×12+2.5×(16﹣12) =24+10 =34(元), 答:四月份用水量為16噸,需交水費為34元; (2)設五月份所用水量為x噸,依據(jù)題意可得: 2×12+6×2.5+(x﹣18)×3=50, 解得;x=21, 答:五月份所有水量為21噸; (3)①當a≤12時,需交水費2a元; ②當12<a≤18時,需交水費,2×12+(a﹣12)×2.5=(2.5a﹣6)元, ③當a>18時,需交水費2×12+6×2.5+(a﹣18)×3=(3a﹣15)元. 【點評】此題主要考查了一元一次方程的應用以及列代數(shù)式,正確利用分段表示出水費的總額是解題關鍵. 24.如圖,長方形紙片ABCD,點E、F分別在邊AB、CD上,連接EF,將∠BEF對折,點B落在直線EF上的B′處,得到折痕EC,將點A落在直線EF上的點A′處,得到折痕EN. (1)若∠BEB′=110°,則∠BEC= 55 °,∠AEN= 35 °,∠BEC+∠AEN= 90 °. (2)若∠BEB′=m°,則(1)中∠BEC+∠AEN的值是否改變?請說明你的理由. (3)將∠ECF對折,點E剛好落在F處,且折痕與B′C重合,求∠DNA′. 【考點】翻折變換(折疊問題). 【分析】(1)根據(jù)折疊的性質可求出∠BEC和∠AEN的度數(shù),然后求出兩角之和; (2)不變.根據(jù)折疊的性質可得∠BEC=∠B'EC,根據(jù)∠BEB′=m°,可得∠BEC=∠B'EC=∠BEB′=m°,然后求出∠AEN,最后求和進行判斷; (3)根據(jù)折疊的性質可得∠B'CF=∠B'CE,∠B'CE=∠BCE,進而得出∠B'CF=∠B'CE=∠BCE,求出其度數(shù),在Rt△BCE中,可知∠BEC與∠BCE互余,然后求出∠BEC的度數(shù),最后根據(jù)平角的性質和折疊的性質求解. 【解答】解:(1)由折疊的性質可得,∠BEC=∠B'EC,∠AEN=∠A'EN, ∵∠BEB′=110°, ∴∠AEA'=180°﹣110°=70°, ∴∠BEC=∠B'EC=∠BEB′=55°,∠AEN=∠A'EN=∠AEA'=35°. ∴∠BEC+∠AEN=55°+35°=90°; (2)不變. 由折疊的性質可得:∠BEC=∠B'EC,∠AEN=∠A'EN, ∵∠BEB′=m°, ∴∠AEA'=180°﹣m°, 可得∠BEC=∠B'EC=∠BEB′=m°,∠AEN=∠A'EN=∠AEA'=(180°﹣m°), ∴∠BEC+∠AEN=m°+(180°﹣m°)=90°, 故∠BEC+∠AEN的值不變; (3)由折疊的性質可得:∠B'CF=∠B'CE,∠B'CE=∠BCE, ∴∠B'CF=∠B'CE=∠BCE=×90°=30°, 在Rt△BCE中, ∵∠BEC與∠BCE互余, ∴∠BEC=90°﹣∠BCE=90°﹣30°=60°, ∴∠B'EC=∠BEC=60°, ∴∠AEA'=180°﹣∠BEC﹣∠B'EC=180°﹣60°﹣60°=60°, ∴∠AEN=∠AEA'=30°, ∴∠ANE=90°﹣∠AEN=90°﹣30°=60°, ∴∠ANE=∠A'NE=60°, ∴∠DNA'=180°﹣∠ANE﹣∠A'NE=180°﹣60°﹣60°=60°. 故答案為:55,35,90. 【點評】本題考查了翻折變換,涉及了折疊的性質、余角和補角的知識,根據(jù)條件求出各角的度數(shù)是解答本題的關鍵. 25.A、B、C為數(shù)軸上的三點,動點A、B同時從原點出發(fā),動點A每秒運動x個單位,動點B每秒運動y個單位,且動點A運動到的位置對應的數(shù)記為a,動點B運動到的位置對應的數(shù)記為b,定點C對應的數(shù)為8. (1)若2秒后,a、b滿足|a+8|+(b﹣2)2=0,則x= 4 ,y= 1 ,并請在數(shù)軸上標出A、B兩點的位置. (2)若動點A、B在(1)運動后的位置上保持原來的速度,且同時向正方向運動z秒后使得|a|=|b|,使得z= ?。? (3)若動點A、B在(1)運動后的位置上都以每秒2個單位向正方向運動繼續(xù)運動t秒,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,點A與點B之間的距離為AB,且AC+BC=1.5AB,則t= ?。? 【考點】一元一次方程的應用;數(shù)軸;絕對值. 【專題】幾何動點問題;動點型;方程思想;一次方程(組)及應用. 【分析】(1)先根據(jù)|a+8|+(b﹣2)2=0求出a、b的值,再用距離÷時間=速度,可求出x、y的值; (2)先根據(jù)題意表示出向正方向運動z秒后a、b所表示的數(shù),再列方程可求得z; (3)分別表示出AC、BC、AB,再根據(jù)AC+BC=1.5AB列出方程,解方程可得t的值. 【解答】解:(1)∵|a+8|+(b﹣2)2=0, ∴a+8=0,b﹣2=0,即a=﹣8,b=2, 則x=|﹣8|÷2=4,y=2÷2=1 (2)動點A、B在(1)運動后的位置上保持原來的速度,且同時向正方向運動z秒后 a=﹣8+4z,b=2+z, ∵|a|=|b|, ∴|﹣8+4z|=2+z, 解得; (3)若動點A、B在(1)運動后的位置上都以每秒2個單位向正方向運動繼續(xù)運動t秒后 點A表示:﹣8+2t,點B表示:2+2t,點C表示:8, ∴AC=|﹣8+2t﹣8|=|2t﹣16|,BC=|2+2t﹣8|=|2t﹣6|,AB=|﹣8+2t﹣(2+2t)|=10, ∵AC+BC=1.5AB ∴|2t﹣16|+|2t﹣6|=1.5×10, 解得; 【點評】此題考查了一元一次方程的應用,解題關鍵是表示出運動后所表示的數(shù),根據(jù)題目給出的條件列出方程,再求解,屬中檔題.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2015 2016 學年 廣州市 海珠區(qū)七 年級 期末 數(shù)學試卷 答案 解析
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-1659003.html