《數(shù)學(xué)第五篇 數(shù)列 第4節(jié) 數(shù)列求和及綜合應(yīng)用 理 新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《數(shù)學(xué)第五篇 數(shù)列 第4節(jié) 數(shù)列求和及綜合應(yīng)用 理 新人教版(37頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第第4 4節(jié)數(shù)列求和及綜合應(yīng)用節(jié)數(shù)列求和及綜合應(yīng)用知識(shí)梳理自測(cè)知識(shí)梳理自測(cè)考點(diǎn)專項(xiàng)突破考點(diǎn)專項(xiàng)突破解題規(guī)范夯實(shí)解題規(guī)范夯實(shí) 知識(shí)梳理自測(cè)知識(shí)梳理自測(cè) 把散落的知識(shí)連起來把散落的知識(shí)連起來【教材導(dǎo)讀教材導(dǎo)讀】 數(shù)列求和有哪些方法數(shù)列求和有哪些方法? ?提示提示: :公式法、倒序相加法、裂項(xiàng)相消法、分組求和法、并項(xiàng)求和法、錯(cuò)位公式法、倒序相加法、裂項(xiàng)相消法、分組求和法、并項(xiàng)求和法、錯(cuò)位相減法相減法. .知識(shí)梳理知識(shí)梳理 1.1.數(shù)列求和的基本方法數(shù)列求和的基本方法(1)(1)公式法公式法直接用等差、等比數(shù)列的求和公式求解直接用等差、等比數(shù)列的求和公式求解. .(2)(2)倒序相加法倒序相加法如果一
2、個(gè)數(shù)列如果一個(gè)數(shù)列aan n 滿足與首末兩項(xiàng)等滿足與首末兩項(xiàng)等“距離距離”的兩項(xiàng)的和相等的兩項(xiàng)的和相等( (或等于同一常數(shù)或等于同一常數(shù)),),那么那么求這個(gè)數(shù)列的前求這個(gè)數(shù)列的前n n項(xiàng)和項(xiàng)和, ,可用倒序相加法可用倒序相加法. .(3)(3)裂項(xiàng)相消法裂項(xiàng)相消法把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差, ,在求和時(shí)中間的一些項(xiàng)可以相互抵消在求和時(shí)中間的一些項(xiàng)可以相互抵消, ,從而求得其和從而求得其和. .(4)(4)分組求和法分組求和法一個(gè)數(shù)列的通項(xiàng)公式是由幾個(gè)等差或等比或可求和的數(shù)列的通項(xiàng)公式組成一個(gè)數(shù)列的通項(xiàng)公式是由幾個(gè)等差或等比或可求和的數(shù)列的通項(xiàng)公式組成, ,求和時(shí)可用求和
3、時(shí)可用分組求和法分組求和法, ,分別求和而后相加分別求和而后相加. .(5)(5)并項(xiàng)求和法并項(xiàng)求和法一個(gè)數(shù)列的前一個(gè)數(shù)列的前n n項(xiàng)和中項(xiàng)和中, ,若項(xiàng)與項(xiàng)之間能兩兩結(jié)合求解若項(xiàng)與項(xiàng)之間能兩兩結(jié)合求解, ,則稱之為并項(xiàng)求和則稱之為并項(xiàng)求和. .形如形如a an n= = (-1)(-1)n nf(n)f(n)類型類型, ,可采用并項(xiàng)法求解可采用并項(xiàng)法求解. .(6)(6)錯(cuò)位相減法錯(cuò)位相減法如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的, ,那么這個(gè)那么這個(gè)數(shù)列的前數(shù)列的前n n項(xiàng)和可用此法來求項(xiàng)和可用此法
4、來求, ,如等比數(shù)列的前如等比數(shù)列的前n n項(xiàng)和公式就是用此法推導(dǎo)的項(xiàng)和公式就是用此法推導(dǎo)的. .2.2.數(shù)列應(yīng)用題的常見模型數(shù)列應(yīng)用題的常見模型(1)(1)等差模型等差模型: :當(dāng)增加當(dāng)增加( (或減少或減少) )的量是一個(gè)固定量時(shí)的量是一個(gè)固定量時(shí), ,該模型是等差模型該模型是等差模型, ,增加增加( (或減少或減少) )的的量就是公差量就是公差. .(2)(2)等比模型等比模型: :當(dāng)后一個(gè)量與前一個(gè)量的比是一個(gè)固定的數(shù)時(shí)當(dāng)后一個(gè)量與前一個(gè)量的比是一個(gè)固定的數(shù)時(shí), ,該模型是等比模型該模型是等比模型, ,這個(gè)固這個(gè)固定的數(shù)就是公比定的數(shù)就是公比. .(3)(3)遞推模型遞推模型: :找到
5、數(shù)列中任一項(xiàng)與它前面項(xiàng)之間的遞推關(guān)系式找到數(shù)列中任一項(xiàng)與它前面項(xiàng)之間的遞推關(guān)系式, ,可由遞推關(guān)系入手解決可由遞推關(guān)系入手解決實(shí)際問題實(shí)際問題, ,該模型是遞推模型該模型是遞推模型. .等差模型、等比模型是該模型的兩個(gè)特例等差模型、等比模型是該模型的兩個(gè)特例. .雙基自測(cè)雙基自測(cè) 1.1.數(shù)列數(shù)列1+21+2n-1n-1 的前的前n n項(xiàng)和為項(xiàng)和為( ( ) )(A)1+2(A)1+2n n (B)2+2 (B)2+2n n(C)n+2(C)n+2n n-1-1 (D)n+2+2 (D)n+2+2n nC CA A4.34.32 2-1-1+4+42 2-2-2+5+52 2-3-3+(n+2
6、)2+(n+2)2-n-n= =. 考點(diǎn)專項(xiàng)突破考點(diǎn)專項(xiàng)突破 在講練中理解知識(shí)在講練中理解知識(shí)考點(diǎn)一考點(diǎn)一 數(shù)列求和數(shù)列求和反思?xì)w納反思?xì)w納 分組法求和的常見類型分組法求和的常見類型(1)(1)若若a an n= =b bn nc cn n, ,且且 b bn n,c,cn n 為等差或等比數(shù)列為等差或等比數(shù)列, ,可采用分組法求可采用分組法求aan n 的前的前n n項(xiàng)和項(xiàng)和. .反思?xì)w納反思?xì)w納 (1)(1)常見的裂項(xiàng)方法常見的裂項(xiàng)方法( (其中其中n n為正整數(shù)為正整數(shù)) )(2)(2)利用裂項(xiàng)相消法求和時(shí)利用裂項(xiàng)相消法求和時(shí), ,應(yīng)注意抵消后不一定只剩下第一項(xiàng)和最后一項(xiàng)應(yīng)注意抵消后不一
7、定只剩下第一項(xiàng)和最后一項(xiàng), ,也有可能前面剩兩項(xiàng)也有可能前面剩兩項(xiàng), ,后面也剩兩項(xiàng)后面也剩兩項(xiàng), ,再就是將通項(xiàng)公式裂項(xiàng)后再就是將通項(xiàng)公式裂項(xiàng)后, ,有時(shí)候需要有時(shí)候需要調(diào)整前面的系數(shù)調(diào)整前面的系數(shù), ,使前后相等使前后相等. .解解: :(1)(1)設(shè)等差數(shù)列設(shè)等差數(shù)列aan n 的公差為的公差為d,d,等比數(shù)列等比數(shù)列bbn n 的公比為的公比為q.q.由已知由已知b b2 2+b+b3 3= =12,12,得得b b1 1(q+q(q+q2 2)=12,)=12,而而b b1 1=2,=2,所以所以q q2 2+q-6=0.+q-6=0.又因?yàn)橛忠驗(yàn)閝0,q0,解得解得q=2.q=2.
8、所以所以b bn n=2=2n n. .由由b b3 3=a=a4 4-2a-2a1 1, ,可得可得3d-a3d-a1 1=8,=8,由由S S1111=11b=11b4 4, ,可得可得a a1 1+5d=16,+5d=16,聯(lián)立聯(lián)立, ,解得解得a a1 1=1,d=3,=1,d=3,由此可得由此可得a an n=3n-2.=3n-2.所以數(shù)列所以數(shù)列aan n 的通項(xiàng)公式為的通項(xiàng)公式為a an n=3n-2,=3n-2,數(shù)列數(shù)列bbn n 的通項(xiàng)公式為的通項(xiàng)公式為b bn n=2=2n n. .考查角度考查角度3:3:錯(cuò)位相減法求和錯(cuò)位相減法求和【例例3 3】 ( (20172017天
9、津卷天津卷) )已知已知aan n 為等差數(shù)列為等差數(shù)列, ,前前n n項(xiàng)和為項(xiàng)和為S Sn n(n(nN N* *),),b bn n 是首項(xiàng)是首項(xiàng)為為2 2的等比數(shù)列的等比數(shù)列, ,且公比大于且公比大于0,b0,b2 2+b+b3 3=12,b=12,b3 3=a=a4 4-2a-2a1 1,S,S1111=11b=11b4 4. .(1)(1)求求aan n 和和 b bn n 的通項(xiàng)公式的通項(xiàng)公式; ;(2)(2)求數(shù)列求數(shù)列aa2n2nb b2n-12n-1 的前的前n n項(xiàng)和項(xiàng)和( (nnN N* *).).反思?xì)w納反思?xì)w納 錯(cuò)位相減法求和策略錯(cuò)位相減法求和策略(1)(1)如果數(shù)列
10、如果數(shù)列aan n 是等差數(shù)列是等差數(shù)列,b bn n 是等比數(shù)列是等比數(shù)列, ,求數(shù)列求數(shù)列 a an nb bn n 的前的前n n項(xiàng)和時(shí)項(xiàng)和時(shí), ,可采用錯(cuò)位相減法可采用錯(cuò)位相減法, ,一般是和式兩邊同乘以等比數(shù)列一般是和式兩邊同乘以等比數(shù)列 b bn n 的公比的公比, ,然后作差然后作差求解求解. .(2)(2)在寫在寫“S Sn n”與與“qSqSn n”的表達(dá)式時(shí)應(yīng)特別注意將兩式的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊錯(cuò)項(xiàng)對(duì)齊”以便下一以便下一步準(zhǔn)確寫出步準(zhǔn)確寫出“S Sn n-qS-qSn n”的表達(dá)式的表達(dá)式. .(3)(3)在應(yīng)用錯(cuò)位相減法求和時(shí)在應(yīng)用錯(cuò)位相減法求和時(shí), ,若等
11、比數(shù)列的公比為參數(shù)若等比數(shù)列的公比為參數(shù), ,應(yīng)分公比等于應(yīng)分公比等于1 1和和不等于不等于1 1兩種情況求解兩種情況求解. .考點(diǎn)二考點(diǎn)二 與數(shù)列求和有關(guān)的綜合問題與數(shù)列求和有關(guān)的綜合問題反思?xì)w納反思?xì)w納 (1)(1)數(shù)列與函數(shù)的綜合問題主要有以下兩類數(shù)列與函數(shù)的綜合問題主要有以下兩類: :已知函數(shù)條件已知函數(shù)條件, ,解解決數(shù)列問題決數(shù)列問題, ,一般利用函數(shù)的性質(zhì)、圖象一般利用函數(shù)的性質(zhì)、圖象; ;已知數(shù)列條件已知數(shù)列條件, ,解決函數(shù)問題解決函數(shù)問題, ,一般要充分利用數(shù)列的范圍、公式、求和方法對(duì)式子化簡(jiǎn)變形一般要充分利用數(shù)列的范圍、公式、求和方法對(duì)式子化簡(jiǎn)變形. .(2)(2)數(shù)列與
12、不等式的恒成立問題數(shù)列與不等式的恒成立問題. .此類問題常構(gòu)造函數(shù)此類問題常構(gòu)造函數(shù), ,通過函數(shù)的單調(diào)性、通過函數(shù)的單調(diào)性、最值等解決問題最值等解決問題. .(3)(3)與數(shù)列有關(guān)的不等式證明問題與數(shù)列有關(guān)的不等式證明問題. .解決此類問題要靈活選擇不等式的證明解決此類問題要靈活選擇不等式的證明方法方法, ,如比較法、綜合法、分析法、放縮法等如比較法、綜合法、分析法、放縮法等. .備選例題備選例題 【例例1 1】 已知數(shù)列已知數(shù)列aan n 的前的前n n項(xiàng)和為項(xiàng)和為S Sn n, ,且且a a2 2a an n=S=S2 2+S+Sn n對(duì)一切正整數(shù)對(duì)一切正整數(shù)n n都成立都成立. .(1
13、)(1)求求a a1 1,a,a2 2的值的值; ;(2)(2)若若b bn n=(-1)=(-1)n na an n, ,求數(shù)列求數(shù)列 b bn n 的前的前n n項(xiàng)和項(xiàng)和T Tn n. . 解題規(guī)范夯實(shí)解題規(guī)范夯實(shí) 把典型問題的解決程序化把典型問題的解決程序化數(shù)列求和中的創(chuàng)新問題解題策略數(shù)列求和中的創(chuàng)新問題解題策略【典例典例】 (12 (12分分)()(20162016全國(guó)全國(guó)卷卷)S)Sn n為等差數(shù)列為等差數(shù)列aan n 的前的前n n項(xiàng)和項(xiàng)和, ,且且a a1 1=1,S=1,S7 7=28.=28.記記b bn n=lg a=lg an n,其中其中xx表示不超過表示不超過x x的
14、最大整數(shù)的最大整數(shù), ,如如0.9=0,lg 0.9=0,lg 99=1.99=1.(1)(1)求求b b1 1,b,b1111,b,b101101; ;(2)(2)求數(shù)列求數(shù)列bbn n 的前的前1 0001 000項(xiàng)和項(xiàng)和. .審題指導(dǎo)審題指導(dǎo)關(guān)鍵信息關(guān)鍵信息信息轉(zhuǎn)化信息轉(zhuǎn)化S Sn n為等差數(shù)列為等差數(shù)列aan n 的前的前n n項(xiàng)和項(xiàng)和, ,且且a a1 1=1,S=1,S7 7=28=28可以求得數(shù)列可以求得數(shù)列aan n 的通項(xiàng)的通項(xiàng)b bn n=lg a=lg an n,x,x的定義的定義, ,0.9=0,lg 99=10.9=0,lg 99=1分別求解分別求解b b1 1,b,b2 2,b,b3 3, ,b,b1 0001 000數(shù)列數(shù)列bbn n 的前的前1 0001 000項(xiàng)和項(xiàng)和分組求和分組求和答題模板答題模板: :第一步第一步: :根據(jù)等差數(shù)列根據(jù)等差數(shù)列aan n 中的中的a a1 1=1,S=1,S7 7=28=28求求a an n, ,再根據(jù)函數(shù)再根據(jù)函數(shù)xx的定義求的定義求b b1 1,b,b1111,b,b101101; ;第二步第二步: :分析分析b bn n=lg a=lg an n 的規(guī)律并分類求出的規(guī)律并分類求出b bn n; ;第三步第三步: :分組求和得數(shù)列分組求和得數(shù)列bbn n 的前的前1 0001 000項(xiàng)和項(xiàng)和. .