高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第10章 概率 第3節(jié) 幾何概型學(xué)案 文 北師大版

上傳人:仙*** 文檔編號:44754408 上傳時間:2021-12-05 格式:DOC 頁數(shù):8 大?。?14KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第10章 概率 第3節(jié) 幾何概型學(xué)案 文 北師大版_第1頁
第1頁 / 共8頁
高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第10章 概率 第3節(jié) 幾何概型學(xué)案 文 北師大版_第2頁
第2頁 / 共8頁
高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第10章 概率 第3節(jié) 幾何概型學(xué)案 文 北師大版_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第10章 概率 第3節(jié) 幾何概型學(xué)案 文 北師大版》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版文科: 第10章 概率 第3節(jié) 幾何概型學(xué)案 文 北師大版(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第三節(jié) 幾何概型 [考綱傳真] 1.了解隨機數(shù)的意義,能運用模擬方法估計概率.2.了解幾何概型的意義. (對應(yīng)學(xué)生用書第153頁) [基礎(chǔ)知識填充] 1.幾何概型 向平面上有限區(qū)域(集合)G內(nèi)隨機地投擲點M,若點M落在子區(qū)域G1G的概率與G1的面積成正比,而與G的形狀、位置無關(guān),即P(點M落在G1)=,則稱這種模型為幾何概型. 2.幾何概型中的G也可以是空間中或直線上的有限區(qū)域,相應(yīng)的概率是體積之比或長度之比. 3.借助模擬方法可以估計隨機事件發(fā)生的概率. (1)使用計算機或者其他方式進行的模擬試驗,以便通過這個試驗求出隨機事件的概率的近似值的方法就是模擬

2、方法. (2)用計算機或計算器模擬試驗的方法為隨機模擬方法.這個方法的基本步驟是①用計算器或計算機產(chǎn)生某個范圍內(nèi)的隨機數(shù),并賦予每個隨機數(shù)一定的意義;②統(tǒng)計代表某意義的隨機數(shù)的個數(shù)M和總的隨機數(shù)的個數(shù)N;③計算頻率fn(A)=作為所求概率的近似值. [基本能力自測] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“”) (1)隨機模擬方法是以事件發(fā)生的頻率估計概率.(  ) (2)從區(qū)間[1,10]內(nèi)任取一個數(shù),取到1的概率是.(  ) (3)概率為0的事件一定是不可能事件.(  ) (4)在幾何概型定義中的區(qū)域可以是線段、平面圖形、立體圖形.(  )

3、 [答案] (1)√ (2) (3) (4)√ 2.(教材改編)有四個游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎,小明要想增加中獎機會,應(yīng)選擇的游戲盤是 (  ) A [P(A)=,P(B)=,P(C)=,P(D)=, ∴P(A)>P(C)=P(D)>P(B).] 3.(20xx全國卷Ⅱ)某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒.若一名行人來到該路口遇到紅燈,則至少需要等待15秒才出現(xiàn)綠燈的概率為(  ) A.    B.    C.    D. B [如圖,若該行人在時間段AB的某一時刻來到該路口,則該

4、行人至少等待15秒才出現(xiàn)綠燈.AB長度為40-15=25,由幾何概型的概率公式知,至少需要等待15秒才出現(xiàn)綠燈的概率為=,故選B.] 4.(20xx石家莊模擬)如圖1031所示,在邊長為1的正方形中隨機撒1 000粒豆子,有180粒落到陰影部分,據(jù)此估計陰影部分的面積為________. 圖1031 0.18 [由題意知, ==0.18. ∵S正=1,∴S陰=0.18.] 5.設(shè)不等式組表示的平面區(qū)域為D,在區(qū)域D內(nèi)隨機取一個點,則此點到坐標原點的距離大于2的概率是________. 【導(dǎo)學(xué)號:00090357】 1- [如圖所示,區(qū)域D為正方形OABC及其內(nèi)部,

5、且區(qū)域D的面積S=4.又陰影部分表示的是區(qū)域D內(nèi)到坐標原點的距離大于2的區(qū)域.易知該陰影部分的面積S陰=4-π, ∴所求事件的概率P==1-.] (對應(yīng)學(xué)生用書第154頁) 與長度(角度)有關(guān)的幾何概型  (1)(20xx全國卷Ⅰ)某公司的班車在7:30,8:00,8:30發(fā)車,小明在7:50至8:30之間到達發(fā)車站乘坐班車,且到達發(fā)車站的時刻是隨機的,則他等車時間不超過10分鐘的概率是(  ) A.     B.     C.     D. 圖1032 (2)如圖1032所示,四邊形ABCD為矩形,AB=,BC=1,在∠DAB內(nèi)作射線AP,則射線AP與

6、線段BC有公共點的概率為________. (3)(20xx江蘇高考)記函數(shù)f(x)=的定義域為D.在區(qū)間[-4,5]上隨機取一個數(shù)x,則x∈D的概率是________. (1)B (2) (3) [(1)如圖,7:50至8:30之間的時間長度為40分鐘,而小明等車時間不超過10分鐘是指小明在7:50至8:00之間或8:20至8:30之間到達發(fā)車站,此兩種情況下的時間長度之和為20分鐘,由幾何概型概率公式知所求概率為P==.故選B. (2)以A為圓心,以AD=1為半徑作圓弧交AC,AP,AB分別為C′,P′,B′. 依題意,點P′在上任何位置是等可能的,且射線AP與線段

7、BC有公共點,則事件“點P′在上發(fā)生”. 又在Rt△ABC中,易求∠BAC=∠B′AC′=. 故所求事件的概率P===. (3)由6+x-x2≥0,解得-2≤x≤3,∴D=[-2,3].如圖,區(qū)間[-4,5]的長度為9,定義域D的長度為5, ∴P=. ] [規(guī)律方法] 1.解答幾何概型問題的關(guān)鍵在于弄清題中的考查對象和對象的活動范圍,當考查對象為點,且點的活動范圍在線段上時,用“線段長度”為測度計算概率,求解的核心是確定點的邊界位置. 2.(1)第(2)題易出現(xiàn)“以線段BD為測度”計算幾何概型的概率,導(dǎo)致錯求P=. (2)當涉及射線的轉(zhuǎn)動,扇形中有關(guān)落點區(qū)域問題時

8、,應(yīng)以角對應(yīng)的弧長的大小作為區(qū)域度量來計算概率.事實上,當半徑一定時,曲線弧長之比等于其所對應(yīng)的圓心角的弧度數(shù)之比. [變式訓(xùn)練1] (1)(20xx唐山質(zhì)檢)設(shè)A為圓周上一點,在圓周上等可能地任取一點與A連接,則弦長超過半徑倍的概率是(  ) 【導(dǎo)學(xué)號:00090358】 A. B. C. D. (2)(20xx山東高考)在[-1,1]上隨機地取一個數(shù)k,則事件“直線y=kx與圓(x-5)2+y2=9相交”發(fā)生的概率為________. (1)B (2)[(1)作等腰直角△AOC和△AMC,B為圓上任一點,則當點B在上運動時,弦長|AB|>R, ∴P==.

9、 (2)由直線y=kx與圓(x-5)2+y2=9相交,得<3, 即16k2<9,解得-

10、所以構(gòu)成的n個數(shù)對(x1,y1),(x2,y2),…,(xn,yn)都在正方形OABC內(nèi)(包括邊界),如圖所示.若兩數(shù)的平方和小于1,則對應(yīng)的數(shù)對在扇形OAC內(nèi)(不包括扇形圓弧上的點所對應(yīng)的數(shù)對),故在扇形OAC內(nèi)的數(shù)對有m個.用隨機模擬的方法可得=,即=,所以π=.] 角度2 與線性規(guī)劃交匯問題  (20xx長沙模擬)在區(qū)間[0,4]上隨機取兩個實數(shù)x,y,使得x+2y≤8的概率為(  ) A. B. C. D. D [由x,y∈[0,4]可知(x,y)構(gòu)成的區(qū)域是邊長為4的正方形及其內(nèi)部,其中滿足x+2y≤8的區(qū)域為如圖所示的陰影部分. 易知A(4,2),

11、S正方形=16,S陰影==12. 故“使得x+2y≤8”的概率P==.] [規(guī)律方法] 求解與面積有關(guān)的幾何概型的注意點 求解與面積有關(guān)的幾何概型時,關(guān)鍵是弄清某事件對應(yīng)的面積,必要時可根據(jù)題意構(gòu)造兩個變量,把變量看成點的坐標,找到全部試驗結(jié)果構(gòu)成的平面圖形,以便求解. [變式訓(xùn)練2] (1)(20xx全國卷Ⅰ)如圖1033,正方形ABCD內(nèi)的圖形來自中國古代的太極圖.正方形內(nèi)切圓中的黑色部分和白色部分關(guān)于正方形的中心成中心對稱.在正方形內(nèi)隨機取一點,則此點取自黑色部分的概率是(  ) 【導(dǎo)學(xué)號:00090359】 圖1033 A. B. C. D.

12、(2)(20xx莆田模擬)從區(qū)間(0,1)中任取兩個數(shù)作為直角三角形兩直角邊的長,則所取的兩個數(shù)使得斜邊長不大于1的概率是(  ) A. B. C. D. (1)B (2)B [(1)不妨設(shè)正方形ABCD的邊長為2,則正方形內(nèi)切圓的半徑為1,可得S正方形=4. 由圓中的黑色部分和白色部分關(guān)于正方形的中心成中心對稱,得S黑=S白=S圓=,所以由幾何概型知所求概率P===. 故選B. (2)任取的兩個數(shù)記為x,y,所在區(qū)域是正方形OABC內(nèi)部,而符合題意的x,y位于陰影區(qū)域內(nèi)(不包括x,y軸),故所求概率P==. ] 與體積有關(guān)的幾何概型  在棱長為2的正方體

13、ABCDA1B1C1D1中,點O為底面ABCD的中心,在正方體ABCDA1B1C1D1內(nèi)隨機取一點P,則點P到點O的距離大于1的概率為(  ) A. B.1- C. D.1- B [設(shè)“點P到點O的距離大于1”為事件A. 則事件A發(fā)生時,點P位于以點O為球心,以1為半徑的半球的外部. ∴V正方體=23=8,V半球=π13=π. ∴P(A)==1-.] [規(guī)律方法] 對于與體積有關(guān)的幾何概型問題,關(guān)鍵是計算問題的總體積(總空間)以及事件的體積(事件空間),對于某些較復(fù)雜的也可利用其對立事件求解. [變式訓(xùn)練3] 如圖1034,正方體ABCDA1B1C1D1的棱長為1,在正方體內(nèi)隨機取點M,則使四棱錐MABCD的體積小于的概率為________. 圖1034  [設(shè)四棱錐MABCD的高為h,由于V正方體=1. 且SABCDh<, 又SABCD=1,∴h<, 即點M在正方體的下半部分, ∴所求概率P==.]

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!