20t自調(diào)式焊接滾輪架設(shè)計(jì)
喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請放心下載,文件全都包含在內(nèi),有疑問咨詢QQ:414951605 或 1304139763
青島理工大學(xué)本科畢業(yè)設(shè)計(jì)(論文)說明書畢業(yè)設(shè)計(jì)(論文)任務(wù)書專業(yè) 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 班級 機(jī)械052 姓名 沈玉強(qiáng) 下發(fā)日期 2009-3-12題目20t自調(diào)式焊接滾輪架設(shè)計(jì)專題20t自調(diào)式焊接滾輪架設(shè)計(jì)主要內(nèi)容及要求主要內(nèi)容:完成20t自調(diào)式焊接滾輪架設(shè)計(jì)。編寫設(shè)計(jì)說明書,繪制裝配圖及部分零件圖。要求:必須以負(fù)責(zé)的態(tài)度對待自己所做的技術(shù)決定、數(shù)據(jù)和計(jì)算結(jié)果。在教師指導(dǎo)下,獨(dú)立完成設(shè)計(jì)任務(wù),培養(yǎng)較強(qiáng)的創(chuàng)新意識(shí)和學(xué)習(xí)能力,獲得機(jī)械工程師的基本訓(xùn)練。整個(gè)設(shè)計(jì)在技術(shù)上是先進(jìn)的,在經(jīng)濟(jì)上是合理的,在生產(chǎn)上是可行的。計(jì)算步驟清晰,計(jì)算結(jié)果正確;圖面整潔,視圖齊全,布局合理,線條、文字及尺寸標(biāo)注符合國家標(biāo)準(zhǔn);使用計(jì)算機(jī)設(shè)計(jì)、計(jì)算和繪圖;設(shè)計(jì)說明書要求內(nèi)容完整,文字通順,語言簡練,圖示清晰,重要計(jì)算公式和數(shù)據(jù)應(yīng)注明出處。設(shè)計(jì)說明書不少于2萬字,查閱文獻(xiàn)15篇以上,翻譯與課題有關(guān)的英文資料,譯文字?jǐn)?shù)不少于5千漢字,繪制圖紙折合總量不少于5張A1。主要技術(shù)參數(shù)載重量20103 kg,工件直徑9004000 mm,滾輪圓周速度2060 m/h,滾輪直徑450mm,滾輪寬度2120 mm進(jìn)度及完成日期3月 23日 4 月 12日(3周):課題調(diào)研,理解熟悉設(shè)計(jì)任務(wù),借閱資料,翻譯英文文獻(xiàn),制訂設(shè)計(jì)計(jì)劃。4月 13日 4 月26日(2周): 方案設(shè)計(jì),選擇確定機(jī)器總體方案及部件方案。4月 27日 5 月 31日(5周): 技術(shù)設(shè)計(jì),在草圖的基礎(chǔ)上完成裝配圖和零件圖的繪制。6月 1日 6 月 14日(2周):技術(shù)文件編制,編寫完成畢業(yè)設(shè)計(jì)說明書,打印圖紙,上交說明書和圖紙。6月 15日 6 月 21日(1周):教師審閱畢業(yè)設(shè)計(jì),學(xué)生準(zhǔn)備答辯。教學(xué)院長簽字日 期教研室主任簽字日 期指導(dǎo)教師簽字日 期1Jounal of matenals processing technology 63 (1997) 881-886ExperimentExperimentExperimentExperiment andandandand studystudystudystudy intointointointo thethethethe axialaxialaxialaxial driftingdriftingdriftingdrifting ofofofof thethethethe cylindercylindercylindercylinderofofofof a a a a weldingweldingweldingwelding rollerbedrollerbedrollerbedrollerbedFenggang shen ,xide pan ,jin xueWeldingresearchinstiute,xianjiaotonguniversity.Xian.shaanxiprovince710049.P.R.chinaAbstractThe basic theory of the axial drifting of the cylinder of a welding roller bed is introduced in thepaper,and at the same time experiment and study on the mechanism of the axial drifting of thecylinder have been done on an experimental model of the welding roller bed . It is shown that themain cause of the axial drifting of the cylinder lies in the existence of a spiral angle between thecylinder and the cylinder and the roller . therelative axial motions between the roller and thecylinder are compose of spiral motion,elastic sliding and frictional sliding. The theory ofcompatible motion and non-compatible motion is put forward for the axial motions of thecylinder .the relative axial motions of the cylinder . The relative axial motion between the rollersand the cylinder is coordinated by elastic sliding and frictional sliding between themKeywords: welding roller bed; cylinder ; roller ; axial motion ; spiral angle1IntroductionIn welding production, the assembly and circular seam welding of rotary workpieces, such as aboiler, apetrochemical pressure vessel andso on,are conducted on ;a weldingrollerbed.When rotating On a welding roller bed. The cylinde will inevitably produce axial drifting due tomanufacturing, assembling tolerance of the welding roller bed and the cylinders surfaceirregularity (divergiugfrom anidealrotaryworkpiece),thusthe weldingproceduremay not be carried out successfully. It is necessary,therefore,to study the mechanismoftheaxialdriftingofthe cylinderto solve the problem of the axial driftingofthecylinder in circumferential welding. The results of the research will benefit the studyinganddesigning of antidrifting welding rollerbed. especially the analysis of the applied forces onthebed, and lead to determining the manufacturing and assemblingtoleranceofthebed,andproviding the basis of theory for the mechanical adjusting mode to avoid axialdrifting,theadjusting mode of closed circuitin the controlcircuit, and the selection oftheadjustingvalue.2.Theoretical analysis2.1. Welding roller bed and cylinderA welding roller bed is generally composed of four rollers. Driven by thedriving roller, the cylinder makes a rotary uniform motion arounditsaxis(showninFig.I), duringwhichthecircumferentialweldingprocedureis carriedout InFig.1,ais the central angle, S is the supporting distance, Lis the spanof theroller.and V, is the circular linear velocity ofthecylinder, alsonamed the welding velocity2.Theaxisofthecylinderwillbenotparallelto thatofa rolleriftherollerisdeflectedbyacertainanglefromthe dealposition,orifthecentersofthefourrollersliein theverticesofasimplequadrilateral,orifthecentersof thefourrollersarenotonthesameplane,orifthecircu- larityofthecylinderisirregularbecauseofdeviationin manufacturingandassembling.Thus.thecylinderwill nevitablymovealongitsaxiswhenrotatingonabed thecontactofthe cylinderanda rollercanbecansidered as pointcontactifcytindersaxisandrollersaxisdonot lieinthesameplane.SupposePisthepointofcontact. thecylindersnormalplaneAisdefinedbytheplaneon whicharethecylindersaxisandgeneratrix nacrossthe pointoftangencyon thecylinder(shownin fig2) makea cylinderstangent planeBacrosspointP.Thus,planeA isverticaltoplaneB. lcisa cylinders tangent across PandliesinplaneB.Iristherollerstangentacross thesamepointP,andliesinplaneBalso.Ingeneral, isdefinedastheaxialdeviationanglebetweentherol!ers axisandthecylindersaxis;isdefinedasthespiral anglebetweengeneratrixnandm. aprojectiveline obtainedbyprojectingtherollersgeneratrixmacrosspointponplaneBandisdefinedastheprojective anglebetweennandm, a projective line obtained byprojectingmonplaneA.Fig.3indicatesthattherela- tionshipamongstthethreeanglesis tan = tan2 -tan 2InFig.3,SB,S andS,arecalledthespiraldisplace- mentvector,theaxialdeviationdisplacementvectorand theprojectivedisplacementvectorrespectively.theirrelationshipbeing:Fig.2 Geometricrelationshipbetween the cylinder and anindividualrollerFig.3 Relationshipbetweentheanglevectorandthedisplacementvector2.2.2 relative axial motions relationship(1)spiral motion2.Fig.4 ComponentofaxialvelocityBecausetherollersaxisisnotparalleltothecylin- derscentralline,thereisa spiralanglebetweenVr,.and Vc,onthepointofcontact(showninFig.2).Whenthe rollerandcylinderrotatesynchronisticallyaroundtheir ownaxes,drivenbytangentialfrictionalforce.aspiral effectwilloccurbecauseofthedifferentlinearvelocity directionbetweentherollerandthecylinderatpointP ofcontactThecylinderhasacomponentofaxialvelocity,whereVcisthecircularlinearvelocityofthecylinder.is thecylindersaxialcomponentvelociryexertedbysingleroller,andjcanbe1.2,3,4,representingthefourrollers,respectively.(2)ElasticslidingBecauseoftheexistenceofaspiralangle,anaxial forceFajactsoncylinder.Whentheforceis lessthanthe maximumaxialfrictionalforcefNj(where f isthe frictionfactor,andNj isthenormalpressurebetweenasinglerollerandthecylinder),thecylinderwillslideelastically overtherolleralongtheaxialdirection23Thecomponentoftheslidingvelocityis.whereeistheelasticslidingfactorformetallicroller. e=O.OOl0.005.(3)FrictionalslidingWhenFajisgreaterthanthemaximumfrictionalforce fNj,thecylinderwillmakeafrictionalslidingoverthe roller.Theslidingresistanceis fNj3.ThecomponentofthefrictionalslidingvelocityonCylinderisVajthe magnitudeanddirectionofwhichcanbedeterminedby theuniversalrelationshipbetweenthecylinderandthefourrollersFrictionalslidingwillleadtothewearandtearofthesurfaceofthecylinderandtherollers.which is unexpectedinweldingproductionWhenthecylinderdrifts,abovethreekindsofmotiondonotoccursimultaneouslyIhereforc.theaxialdrifting velocityofthecylinderisnotthealgebraicsumofthethreecomponentsofvelocityInthecaseofelasticsliding,the axialvelocityis.2.3 axial motion of the cylinder on a welding roller bed2.3.1Axialcompatible motionUnderidealconditions,whenspiralanglesjbetween thecylinderandthefourrollersareallthesame,thatis:1=2=3=4=thecylinderwillmoveithcompatiblespiralmotion. Twocategoriescanbeclassifiedtoanalyzetheaxialmotionofthecylinder:(I)Whentheredoesnotexistanaxialcomponentdue togravity.thecylindersaxialdriftingvelocityis:Va=Vc * tan(2)Whenthereexistsanaxialcomponent of gravity Gathereexistsan axialforceonthecylinder.Now,theaxial forcesexertedonthefourrollershavethesamedirectionalAnd magnitude, the value being equal to Ga besues the component of spiral vetocity, there existcomponent of elastic on the cylinder the cylinders axial drifting velocity is2.3.2.axial non-compatible motionIngeneral.spiralanglesjbetweenthecylinderand thefourrollersarenotequaltoeachotherinsizeand direction.i .e.thegeometricrelationshipsbetweenthe cylinderandthefourrollersareallinconsistentTherefore,thecomponentsofthecylindersaxialvelocityagainstfourrollers(i.e Vc *taj) arenot identical to each another. The cylinderwillmovewith axial nompatible motionTheaxialvelocitiesofthecylinderagainsathefourrollersshouldbethesamebecausethecylinderisconsideredasarigidbodyasawholeandithasonlyone axial velocity.However.forsomeroller,Vc . tanj and thecylindersrealaxialvelocityarenotlikelytobethesame,soanaxialfrictionalforcealmostcertainlyappearsbetweenthisrollerandthecylinderThefollowingtwo categoriescanbeclassifiedtodiscussthenon-compatible axialmotionofthecylinderaccordingtoIhefrictionalforcesmagnitude:(I)Whentheaxialfrictionalforceserectedbyeach rollerandthecylinderareall less thanthemaximumaxial theactionofthecylinderagainstthefrictionalforcethe action of the cylinder against the rollersproduceselasticslidingTheaxialmotionbetween anindividualrollerandthecylinderiscoordinatedbytheirelasticslidingwhentheaxialvelocityofthecylinderisconstant,the algebraicsumofcylindersaxialforceserectedbyfourrollersshouldbezeroifrheaxialcomponentofgravityis ignored.i.e.andthereislittledifferenceamongstNj,againstthefour rollers,sothattheycanbeapproximatelyregardedas thesame.Thus:accordingtotheabovetwoequations,theaxialdriftingvelocityofthecylinderis.Where0.25Tant represents the intrinsic attributes of the welding. Other bed under thecondition that only the cylinder against all rolls produces elastic sliding this may be called thespiral rate of the cylinders spiral motion(2)Whentheaxialfrictionalforceerectedbysome rollerandthecylinderisgreaterthanthemaximumaxial frictionalforce,frictionalslidingoccursbetweenthe cylinderandthisrollerThen.themaximumaxialforceisactingonthebearingof theroller,itsvaluebeingFfmax=fFNfmaxBecauseof the esistenceofthisfrictionalsliding.the Axial motionbetween anindividual roller and the cylinderisnotcoordinatedbytheirelasticslidingNowtheaxialnon-compatiblemotionofthecylinderisdeterminedbytherelativerelationshipsbetweenthecylinderandthe fourrollers.Itisdifficulttowriteageneralcompatible equationofthecylindersaxialdriftingvelocitybecause thiskindofconditionisverycomplex.Thefollowingisfurtheranalysisanddiscussionoftheproblem Atfirst,foreaseinanalyzingproblem,thespiralangle averageisdefinedasand the relative spiral angle asArrange,1intheorderfrombigtosmllandthenfromposirivetonegative,expressedas(j).then1234Similarly,thenormalforcebetweenthecylinderanda rollercanbeexpressedasN(j).andtheaxialforceasFjfNjIngeneral,theaxialmotionofthecylinderdeterminedbythespiralangleaverage isdefinelasthe compatiblecomponentoftheaxialmotion,isvelocitybeingTheaxialmotionofthecylinderdeterminedbytherelativespiralanglejisdefinedasthenon-compatible componentofaxialmotion,itsvelocitybeingexpressed asVanAnalysisshowsthatVaisdeterminedbythe equilibriumconditionthe four roller axial forceswhenthecylindermovesalongaxialdirectionataconstantvelocity.wherenottakingintoaccountofthefunctionofgravitysaxialcomponent. Supposingthatthecylindermakesanon-compatiblecomponentofaxialmotionwiththemaximumrelativespiralangle(I).itsvelocityisThen the four axial forces can not be in equlibrium .i.eF1-(F2+F3+F4) 0Becausethereislittledifferenceamongstfournormalforces,thefouraxialfarcesarealsodeterminedbynormalforceand thefrictionfactoranyaxialforceundoubtedlybeinglessthanthesumof theotherthreeforces. Otherwise,ifthecylindermakesanon-compatiblecomponent ofaxialmotionwiththeminimumrelativespiralangle(4).its velocityis.Va”=Vc * tan(4)Similarly.fouraxialforcescannot be inequilibriumalso, i.e. :F(l)+ F(2)+ F(3) J- F(4) 0Therefore,thecylindercanonlybeapproximatelyconsideredasmakinganon-compatiblecomponentofaxial motionwiththesecondorthirdrelativespiralangle,i.e.:Inwhatevercaseasexpressedabove.whenthecylinder makeanon-compatiblecomponentofaxialmotion,the tworollers havingagreatervelocityaredrivingrollers, andtheothertworollershavingalesservelocityareresistantrollers,theequilibriumconditionofaxialforces beingoperative,i.e.:F(1)+ F(2)= F(3)+ F(4)Accordingtotheanalysisabove,andbecauseofthe unstabilityoffrictionfactorfthatisaffectedbythefactors ofload,material,conditionofthecontactsurface, andcircumstance,thenon-compatiblecomponentVaof theaxialvelocityofthecylinderis undefined. Whenthecylindermakesanon-compatibleaxialmotion,itsaxialvelocityiscomposedofacompatiblecomponentVa0andanon-compatiblecomponentVani.eVa=Va0+VanVa=Va0+VanThemostoptimaladjustmentoftheaxialmotionisto makethenon-compatiblecomponentassmallaspossible accordingtothestabilityofadjustmentanddecreaseinaxialforce. Nomatterwhetherthecylindermakescompatibleor non-compatiblemotion,supposingthatthecylinderis ideal,itsaxialvelocityisalwaysexistentanddefinable foraparticularbed,itsmagnitudeand directionreflectingthebedsinherentproperty.3.Experiment3.1.Descriphmof expermentTheexperimentalmodelis showninFig5.Experimentsweredonetostudytwofactors:thespiralangleandthe cylinderscircularlinearvelocity,whichaffecttheaxial driftingofthecylinder.Intheexperimentingprocess.the axialdisplacementSaandtheaxialdriftingvelocityVaofthecylinderweremeasuredbythevariationofthetwofactorsdescribedabove.Themeasuringmethodisshown in Fig.5,andiscarriedoutbymeansofbringingan axial displacementsensorintocontactwithoneendofthe cylinder.withthesensorbeingconnectedtoanX-Yrecordertorecordthecylindersaxialdisplacementevery5s.LinearlyregressingtheplotSa-t(texpressestime), theaveragedriftingvelocityVa,ateverydeflectinganglecanbe calculated.Beforeexperimenting.theexperimentalmodelisinitialisedasfollows:first.theheightofthefourrollersisadustedbymeansofa leveltoputthecentersofthefourrollersinthesamehorizontalplane,andatthefourvertexesoftherectangle.thentherollersaredeflectedso thattherotatingcylinderis attherelative equilibrium position.Then.thecylinderdoesnotdriftoveralong time.orperiodicallydriftovera verysmallaxialrange3.2experiment results and discussion3.2.1Effect of spiral angle(I)Fig.6showsthatchangeofVawiththevariationofThetestingconditionis:positiverotalion,Vc=35m/hL=422mm,=60”TheVa-tan4curveshowsthatVaisdirectlyproportionalto tan4when4is relativelysmall(16c ). Theslopeofthelinebeing3. 06 mm/s,Vaisnolongerdireclly proportionaltotan4when4,isgreaterthan6CThecurveisanarchedcurve.i. e . withthe incrementof4,.Va,increases.butwiththeincrementofVagraduallybecomingsmalletBecauseonlyonedrivenroller(rollerNo.4)isdeflected,i.e4 canbechangedwhilsttheothersremain zero,thecylindermakesa non-compatiblemotion. When4isrelativelysmall,Vaissmallalso.Theaxialfrictionalforcesbetweenthecylinderandrollersarelessthanthemaximumaxialfrictionalforce,andthecylinder producesanelasticslidingagainstrollers.Axialmotion betweeneachrollerandthecylinderiscoordinatedbyelasticsliding.thusVais:inthe theoretical curve, theslopeKcan becalculatedbythefollowingequation:K=3.06mm/sintheexperimentalcurve.Thus,in takingaccountoftheexperimentaltolerance,the two slopescanbeconsideredtobeapproximatelyequal.When 4isrelativelylarge,theaxialfrictionalforces betweenthecylinderandtherollersarelargerthanthe maximumaxialfrictionalForce,andcylinderproduces frictionalslidingagainsttherollersBecauseofIheexistenceofslidingfrictionalresistance.Vaisnolongerlincartyincreasedwiththeincrementoftan4Withtheincrementoftan4theincrementofV a;withgraduallybecomesmaller(2)Thefollowingthreeexperimentswerearrangedto studythecylindersnon-compatibleaxialmotionfurther, deflectingpositivelyoneroller.tworollersandthreerollersbythesamespiralangletomeasurethreecurvesbetweenSaandvTheexperimentalresultsareshownin Fig7.Withthe incrementinthenumberofdeflected rollers,Vabecomesgreater.i eVa3 Va2 Va1Whenthenumberofdrivenrollersdeflectedisvaried, thedegreeofthecylindersnon-compatibleaxialmotion willbechanged.Withtheincrementofthenumberof lollersdeflectedbythe samespiralangle.thecompatiblecomponentbecomesgreater,butthenon-compatible componentbecomessmaller.Inotherwords,thecylindersaxialmotionwillbetransformedfromnoncompatiblemotiontocompatiblemotion.Thus,Vabecomesgreateralso,ultimately,beingequaltothecompatibleaxialvelocitydeterminedbythespiralangle Now.thefourrollershavethesamespiralanyle. SothatVais:3.2.2 effect of circular linear velocityDeflectingdrivenrollerNo4toaspiralangleof+2”fromtheequilibriumposition,thecylinderwillsuffer axialdrifting,Fig.8showstheVa-Vccurve,whichlatter indicatesthatVaisdirectlyproportionaltoVc, theslope ofthecurvebeingapproximately0.00708because 4=+2istoosmall,thecylinderdoes not makefrictionalslidingagainsteachroller.Thus,therelativeaxialmotionbetweentherollerandthecylinderis completelycoordinatedbytheirelasticsliding,sothatVaisI. I. I. I.e .VaisdirectlyproportionaltoVeForthetheoretical Curve theslopeK *canbecalculatedbythefollowing equation K”=0.25tan 4=0.25tan2=0.00873 whereK=0.00708mm/sintheexperimentalcurve.Thus, intakingaccountoftheexperimentaltolerance,thetwo slopescanbeconsideredtobeapproximatelyequal.導(dǎo)室.4Conclusions1.Becauseofthedeviationsduetomanufacturingand assembling.thecylinderscentrallineandtherollers axisarenotparallel.i. e,theyarenotinthesame plane,andthereisaspiralangle atthcpointofcontactbetweenthecylinderandtherollerinthecircular linearvelocitydirection.Theexistenceofisthebasicreasonfortheoccurrenceofaxialdrifting.Theeffectof gravityincylindersaxialdirectionisalsoone ofreasonsfordrifting.2.Therelativeaxialmotionsbetweenanindividualroller andthecylinderarecomposedofspiralmotion.elastic slidingandfrictionalslidingWhenaxialfrictionalslidingdoesnotoccurbetweenthecylinderandasingleroller,therelativeaxialmotionbetweentherollersandthecylinderiscompletelycoordinatedbytheirelastic sliding,VaisdirectlyproportionaltoWhenaxialfrictionalslidingoccursbetweenthecylinderandaroller.therelativeasialmotionbetweenthe rollersandthecylinderwillbecommonlycoordinatedbyelasticslidingandfrictionalsliding.butVaisnotdirectlyproportionalto3Theaxialmotionsofthecylindercanbedividedinto compatibleandnon-compatiblemotionTherewillbe largeaxialforcesactingonthebearingsoftherollers, whichwillcausethewearandtearofthecontactsurfacesoftherollersandthecylinder,whennon-compatiblemotionexistsThenon-compatiblecomponentoftheaxialmotionisundefinedhowever.thecylindersaxialvelocityisalwaysexistentanddefinableforaparticularbed,itsmagnitudeanddirection reflectingthebedsinherentproperty.4Thereasonableadjustmentoftheaxialmotionisto makethenon-compatiblecomponentas smallaspossibleandthecompatiblecomponentaslargeas possible.5Withtheincrementofthenumberofrollersdeflected bythesamevalueofthecompatiblecomponentof axialvelocityincreases,butthenon-compatiblecomponentdecreases.Withtheincrementofthecompatiblecomponent,thevelocityofaxialdriftingofthecylinderincreasesReferences(1) Z Wang(ed).teachingmaterialonweldingmachinery Equipment Gansu universityof Technology lanzhou PR china(1992)pp85-98(2)WuhanlnstitulcofBuildinsMaterialsandTechnologyITongiUniversily.NanjingInstituteofChemical Engineering,andHuananInstituteofTechnology.CementProducing machineryequipment,ArchitecturalIndustrialPublishingHouseofChina,Beijing,(1981)pp,184-187(3)J . Halling(ed.).PrinciplesofTrilrologyTheMacmillanPress,(1975)pp.174-200
收藏