指紋U盤的設(shè)計(jì)
指紋U盤的設(shè)計(jì),指紋,設(shè)計(jì)
學(xué)生姓名
吳剛
班級
信工031
指導(dǎo)教師
常文平
論文(設(shè)計(jì))題目
指紋U盤的設(shè)計(jì)
目前已完成任務(wù)
1. 經(jīng)查閱大量相關(guān)資料,已完成系統(tǒng)整體方案的設(shè)計(jì);
2. 指紋圖像采集部分的設(shè)計(jì);
3. 選定數(shù)字處理芯片,用的是TI公司的 TMS320VC5402;
4. 論文整體框架基本完成。
是否符合任務(wù)書要求進(jìn)度:符合
尚需完成的任務(wù)
1. 系統(tǒng)軟件部分需要進(jìn)行大量研究工作,包括驅(qū)動程序的設(shè)計(jì);
2. 繼續(xù)完成外文資料及翻譯;
3. 繼續(xù)查找相關(guān)資料,進(jìn)一步完善系統(tǒng)整體結(jié)構(gòu);
4. 糾正錯誤,查找不足之處。
能否按期完成論文(設(shè)計(jì)):能
存在問題和解決辦法
存
在
問
題
1. 圖像采集芯片和USB接口芯片的選用需要進(jìn)一步查閱資料進(jìn)行詳細(xì)的對比;
2. 不能正確分析硬件和軟件調(diào)試的結(jié)果;
3. 對設(shè)計(jì)軟件時(shí)用到的編程語言匯編和C++還不是很熟練。
擬
采
取
的
辦
法
對所需資料進(jìn)行網(wǎng)上查找和到系資料室查找,和同學(xué)及老師一塊認(rèn)真分析調(diào)試的結(jié)果,為完成論文作好充足的準(zhǔn)備
指導(dǎo)教師簽 字
日期
年 月 日
教學(xué)院長(系主任)
意 見
簽字: 年 月 日
河南科技學(xué)院本科畢業(yè)論文(設(shè)計(jì))中期進(jìn)展情況檢查表
河南科技學(xué)院本科生畢業(yè)設(shè)計(jì)指導(dǎo)過程記錄表
論文(設(shè)計(jì))題目
指紋U盤的設(shè)計(jì)
學(xué)生姓名
吳剛
專業(yè)
信息工程
學(xué)生學(xué)號
20030224226
班級
032
指導(dǎo)教師姓名
常文平
職稱
副教授
第1次指導(dǎo):
給該生下達(dá)任務(wù)書,下放相關(guān)閱讀材料,指導(dǎo)該生如何收集資料。
指導(dǎo)時(shí)間: 2007 年 3 月 8 日
第2次指導(dǎo):
整理、審查學(xué)生收集的資料,指導(dǎo)該生填寫開題報(bào)告。
指導(dǎo)時(shí)間: 2007年 3月 15 日
第3次指導(dǎo):
引導(dǎo)該生對論文整體框架的分析,確定論文的研究方向。
指導(dǎo)時(shí)間: 2007年 3月 21 日
第4次指導(dǎo):
向?qū)W生提供關(guān)于單片機(jī)芯片的資料,指導(dǎo)他們?nèi)绾芜x擇單片機(jī)的類型。
指導(dǎo)時(shí)間: 2007年 4 月 05 日
第5次指導(dǎo):
對指紋U盤進(jìn)行詳細(xì)的分析,指導(dǎo)學(xué)生如何設(shè)計(jì)系統(tǒng)。
指導(dǎo)時(shí)間: 2007年 4月 12日
第6次指導(dǎo):
引導(dǎo)學(xué)生完成科技翻譯。
指導(dǎo)時(shí)間: 2007年 4月 19日
河南科技學(xué)院本科生畢業(yè)論文(設(shè)計(jì))指導(dǎo)過程記錄表
第7次指導(dǎo):
對學(xué)生做出的系統(tǒng)功能框圖進(jìn)行修正,給出指導(dǎo)意見。
指導(dǎo)時(shí)間: 2007年 04月 26日
第8次指導(dǎo):
檢查學(xué)生設(shè)計(jì)的電路,并給出指導(dǎo)意見。
指導(dǎo)時(shí)間: 2007年 05月 03日
第9次指導(dǎo):
引導(dǎo)學(xué)生畫出軟件流程圖。
指導(dǎo)時(shí)間: 2007年 05月 10日
第10次指導(dǎo):
檢查學(xué)生的軟件流程圖,給出指導(dǎo)意見引導(dǎo),同時(shí)引導(dǎo)該生修改科技翻譯。
指導(dǎo)時(shí)間: 2007年 05月 18日
第11次指導(dǎo):
指導(dǎo)學(xué)生謀劃論文框架,著手寫論文。
指導(dǎo)時(shí)間: 2007年 05月 25日
第12次指導(dǎo):
指導(dǎo)學(xué)生修改論文,準(zhǔn)備答辯。
指導(dǎo)時(shí)間: 2007年 06月 01 日
說明:
1、此表為指導(dǎo)教師指導(dǎo)學(xué)生畢業(yè)論文(設(shè)計(jì))的過程記錄表,由指導(dǎo)教師填寫。
2、要求指導(dǎo)教師每周至少指導(dǎo)學(xué)生2次,每周集中填寫指導(dǎo)記錄表1次。
3、論文(設(shè)計(jì))完成后,此表由指導(dǎo)教師交院(系)教學(xué)秘書處保存。
2
河 南 科 技 學(xué) 院
2007屆本科畢業(yè)設(shè)計(jì)
指紋U盤的設(shè)計(jì)
學(xué)生姓名: 吳剛
所在院系: 信息工程學(xué)院
所學(xué)專業(yè): 信息工程
導(dǎo)師姓名: 常文平
完成時(shí)間: 2007-05-31
河南科技學(xué)院本科生畢業(yè)論文(設(shè)計(jì))開題報(bào)告
題目名稱 指紋U盤的設(shè)計(jì)
學(xué)生姓名
吳剛
專業(yè)
信息工程
學(xué)號
20030224103
指導(dǎo)教師姓名
常文平
所學(xué)專業(yè)
電子通信工程
職稱
副教授
完成期限
2007年3月19日至 2007 年5 月31日
一、 選題的目的意義
隨著現(xiàn)代社會的發(fā)展,人們對社會公共安全和個(gè)人的信息安全提出了更高的要求,可靠
高效的身份識別變得越來越重要。傳統(tǒng)的鑰匙、密碼、識別卡等安全驗(yàn)證方法已不能滿足現(xiàn)
代安全防范的需要,而基于人體生理特征的身份識別系統(tǒng)逐漸為社會所矚目。生物識別技術(shù)是基于人體的生物特征來進(jìn)行身份驗(yàn)證的技術(shù)。人體的生物特征包括指紋、聲音、面孔、虹膜、視網(wǎng)膜、掌紋等。生物識別的優(yōu)勢在于方便和安全,因此生物識別技術(shù)被認(rèn)為是網(wǎng)絡(luò)安全和身份識別的未來方向。
如今的U盤越來越普及,存儲容量也與日俱增,U盤保密性也越來越引起人們的重視。原來的人人都能讀取的U盤已經(jīng)不能滿足人們的保密需要,指紋U盤應(yīng)運(yùn)而生.一般的U盤在存儲數(shù)據(jù)時(shí),不能保障數(shù)據(jù)的保密、安全,里面的數(shù)據(jù)很容易被他人讀取。因此指紋U盤具有廣闊的應(yīng)用環(huán)境。
二、國內(nèi)外研究現(xiàn)狀
指紋識別技術(shù)飛速發(fā)展,已經(jīng)大量應(yīng)用于政府、銀行、稅務(wù)、社保、學(xué)校和公司機(jī)構(gòu)等部門的文件保密、信息安全、門禁控制、考勤管理與證卡管理等各類需要計(jì)算機(jī)進(jìn)行自動身份認(rèn)證的場合。指紋識別系統(tǒng)的模塊化使指紋識別系統(tǒng)的應(yīng)用更加簡單,方便,更加廣泛. 也已經(jīng)應(yīng)用到U盤的保密系統(tǒng)當(dāng)中.目前,國外的指紋U盤已經(jīng)有很先進(jìn)的成品上市,很多產(chǎn)品的保密性很高,圖象識別速度快,分辨率高,體積??;指紋識別準(zhǔn)確性高,有的采用活體指紋識別技術(shù),只有真正人手指上的指紋才能識別出來,對于偽造的手指上的指紋能有效的識別出來.
國內(nèi)也有活體指紋U盤上市,但是價(jià)格還比較高,系統(tǒng)和國外技術(shù)相比還不太穩(wěn)定,在識別速度,識別準(zhǔn)確性方面還有一定差距,本論文旨在設(shè)計(jì)一種適合普通用戶保密級別的指紋U盤,識別速度快,系統(tǒng)成本較低,能夠滿足普通用戶的應(yīng)用需求。
二、 主要研究內(nèi)容
本文主要研究指紋采集的過程,圖像處理過程,U盤存儲過程及系統(tǒng)軟件設(shè)計(jì),驅(qū)動程序設(shè)計(jì),分析其原理,并采用目前市場上出現(xiàn)了較多的FPS200指紋采集芯片和TI公司的C5402作為圖象處理芯片,完成指紋U盤的設(shè)計(jì)。
四、畢業(yè)論文(設(shè)計(jì))的研究方法或技術(shù)路線
本文對指紋U盤的軟硬件設(shè)計(jì)作出詳細(xì)設(shè)計(jì),給出系統(tǒng)流程圖,指紋采集芯片選用FPS200芯片,圖象處理DSP芯片選用TMS320VC5402芯片,接口部件采用ISP1581芯片,軟件部分采用C++語言設(shè)計(jì)。在設(shè)計(jì)過程中,具體分析系統(tǒng)各個(gè)部分的功能并畫出相應(yīng)的流程圖。
五、 主要參考文獻(xiàn)與資料
[1]張雄偉.DSP芯片的原理與開發(fā)應(yīng)用(第3版),北京:電子工業(yè)出版社,2003
[2]劉旭,田捷.自動指紋識別算法在嵌入式系統(tǒng)上的實(shí)現(xiàn)[J].計(jì)算機(jī)工程與應(yīng)用.2002.(21)
[3]楊志龍,張維新,寇建鋒.基于TMS320VC5402的指紋識別系統(tǒng)[J].電子技術(shù).電子技術(shù),2002,(10)
[4]張?zhí)幂x,田捷,劉旭.基于DSP指紋識別核心算法的設(shè)計(jì)與實(shí)現(xiàn)[J].計(jì)算機(jī)工程與應(yīng)用.2003.(16)
[5]戴明楨,周建江.TMS320C54xDSP結(jié)構(gòu)、原理及應(yīng)用[M].北京:北京航空航天大學(xué)出版社,2001.
[6]謝健陽,李鐵才,唐降龍,佟喜峰.指紋識別系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J].微計(jì)算機(jī)信息.微計(jì)算機(jī)信息.2006,3—2
[7] USB Implementers Forum, inc. On-The-Go Supplement to the USB 2.0 specification Revision 1.0a, 2003
[8]Philips Electronics. ISP1362 Single-Chip Universal Serial Bus On-The-Go contro
[9]梁倬.自動指紋識別系統(tǒng)的預(yù)處理技術(shù)[D],成都:電子科技大學(xué),2004
[10]趙紅怡.DSP技術(shù)與應(yīng)用實(shí)例[M].北京:電子工業(yè)出版社,2003
ller, 2004
六、 指導(dǎo)教師審批意見
簽名:
年 月 日
指紋U盤的設(shè)計(jì)
摘要
針對指紋的唯一性和終身不變性的特點(diǎn),本文提出了一種基于FPS200固態(tài)指紋傳感器和TMS320VC5402 DSP芯片的快速指紋識別系統(tǒng),給出了系統(tǒng)的設(shè)計(jì)方案。
本文實(shí)現(xiàn)了利用TI 公司的TMS320VC5402 芯片對指紋采集芯片F(xiàn)PS200 采集到的指紋圖像數(shù)據(jù)進(jìn)行圖像預(yù)處理后, 再通過USB2.0 接口將數(shù)據(jù)傳輸?shù)街鳈C(jī)中與U盤中注冊過的指紋進(jìn)行顯示和對比的具體過程;對系統(tǒng)的組成原理、指紋采集和指紋圖像處理方法進(jìn)行了具體分析;結(jié)合FPS200和TMS320VC5402芯片的特性,對系統(tǒng)硬件核心和圖像采集電路做了詳細(xì)分析,并給出系統(tǒng)硬件設(shè)計(jì)方案、軟件設(shè)計(jì)流程圖。通過本研究工作證明了系統(tǒng)設(shè)計(jì)合理,方案可行,成本較低,能夠?qū)崿F(xiàn)U盤上的指紋識別,有重要的實(shí)用價(jià)值與廣泛的應(yīng)用前景。
關(guān)鍵詞: 指紋識別,U盤,DSP,FPS200
The U Disk Design Of Fingerprint Identification
Abstract
As the uniqueness and constancy of fingerprint,a quick fingerprint recognition system based on fingerprint sensor FPS200 and DSP chip TMS320VC5402 is presented.
The fingerprint image data collected by FPS200 is pretreated by TMS320VC5402 firstly , and then is transmitted by USB2.0 interface to host for show and fingerprint identification. The composing principles of the system,fingerprint collection and fingerprint image processing methods are introduced particularly.With the characteristics of FPS200 and TMS320VC5402,the core of the hardware,collecting circuit and the designs of the hardware and software are introduced in details.Through this research ,the work system design is reasonable, and the project can go, and the cost is low, which can carry out the fingerprint of U disk to identify and have important practical value and extensive of applied foreground.
Keywords: fingerprint identification , U disk , DSP , FPS200
目 錄
1 引言 1
2 設(shè)計(jì)目標(biāo) 1
3 指紋識別系統(tǒng)原理 1
3.1指紋識別過程 1
3.2指紋圖象處理 2
3.3指紋識別的實(shí)現(xiàn)方法 3
3.4指紋采集設(shè)備 3
4 系統(tǒng)硬件設(shè)計(jì) 4
4.1系統(tǒng)組成 4
4.1.1系統(tǒng)工作原理 4
4.1.2指紋采集模塊硬件設(shè)計(jì) 5
4.1.3 FPS200功能與接口 5
4.2系統(tǒng)硬件核心設(shè)計(jì) 8
4.2.1 DSP的選擇 8
4.2.2 DSP的BOOT LOADER 9
4.2.3 DSP的電源設(shè)計(jì) 9
4.2.4 DSP的時(shí)鐘模式 10
4.2.5 TMS320VC5402對圖象的處理 11
4.3 USB接口部件 12
5 軟件設(shè)計(jì) 13
5.1固件設(shè)計(jì) 15
5.2設(shè)備驅(qū)動 16
5.3初始化USB設(shè)備 17
5.4部分程序說明 18
結(jié) 論 20
致 謝 21
參考文獻(xiàn) 22
Fingerprint Identification
By Salil Prabhakar, Anil Jain
Fingerprint Matching:
Among all the biometric techniques, fingerprint-based identification is the oldest method which has been successfully used in numerous applications. Everyone is known to have unique, immutable fingerprints. A fingerprint is made of a series of ridges and furrows on the surface of the finger. The uniqueness of a fingerprint can be determined by the pattern of ridges and furrows as well as the minutiae points. Minutiae points are local ridge characteristics that occur at either a ridge bifurcation or a ridge ending. Fingerprint matching techniques can be placed into two categories: minutae-based and correlation based. Minutiae-based techniques first find minutiae points and then map their relative placement on the finger.? However, there are some difficulties when using this approach. It is difficult to extract the minutiae points accurately when the fingerprint is of low quality. Also this method does not take into account the global pattern of ridges and furrows. The correlation-based method is able to overcome some of the difficulties of the minutiae-based approach.? However, it has some of its own shortcomings. Correlation-based techniques require the precise location of a registration point and are affected by image translation and rotation.
Fingerprint matching based on minutiae has problems in matching different sized (unregistered) minutiae patterns. Local ridge structures can not be completely characterized by minutiae. We are trying an alternate representation of fingerprints which will capture more local information and yield a fixed length code for the fingerprint. The matching will then hopefully become a relatively simple task of calculating the Euclidean distance will between the two codes
We are developing algorithms which are more robust to noise in fingerprint images and deliver increased accuracy in real-time. A commercial fingerprint-based authentication system requires a very low False Reject Rate (FAR) for a given False Accept Rate (FAR). This is very difficult to achieve with any one technique. We are investigating methods to pool evidence from various matching techniques to increase the overall accuracy of the system. In a real application, the sensor, the acquisition system and the variation in performance of the system over time is very critical. We are also field testing our system on a limited number of users to evaluate the system performance over a period of time.
Fingerprint Classification:
Large volumes of fingerprints are collected and stored everyday in a wide range of applications including forensics, access control, and driver license registration. An automatic recognition of people based on fingerprints requires that the input fingerprint be matched with a large number of fingerprints in a database (FBI database contains approximately 70 million fingerprints!). To reduce the search time and computational complexity, it is desirable to classify these fingerprints in an accurate and consistent manner so that the input fingerprint is required to be matched only with a subset of the fingerprints in the database.
Fingerprint classification is a technique to assign a fingerprint into one of the several pre-specified types already established in the literature which can provide an indexing mechanism. Fingerprint classification can be viewed as a coarse level matching of the fingerprints. An input fingerprint is first matched at a coarse level to one of the pre-specified types and then, at a finer level, it is compared to the subset of the database containing that type of fingerprints only. We have developed an algorithm to classify fingerprints into five classes, namely, whorl, right loop, left loop, arch, and tented arch. The algorithm separates the number of ridges present in four directions (0 degree, 45 degree, 90 degree, and 135 degree) by filtering the central part of a fingerprint with a bank of Gabor filters. This information is quantized to generate a Finger Code which is used for classification. Our classification is based on a two-stage classifier which uses a K-nearest neighbor classifier in the first stage and a set of neural networks in the second stage. The classifier is tested on 4,000 images in the NIST-4 database. For the five-class problem, classification accuracy of 90% is achieved. For the four-class problem (arch and tented arch combined into one class), we are able to achieve a classification accuracy of 94.8%. By incorporating a reject option, the classification accuracy can be increased to 96% for the five-class classification and to 97.8% for the four-class classification when 30.8% of the images are rejected.
Fingerprint Image Enhancement
A critical step in automatic fingerprint matching is to automatically and reliably extract minutiae from the input fingerprint images. However, the performance of a minutiae extraction algorithm relies heavily on the quality of the input fingerprint images. In order to ensure that the performance of an automatic fingerprint identification verification system will be robust with respect to the quality of the fingerprint images, it is essential to incorporate a fingerprint enhancement algorithm in the minutiae extraction module. We have developed a fast fingerprint enhancement algorithm, which can adaptively improve the clarity of ridge and furrow structures of input fingerprint images based on the estimated local ridge orientation and frequency. We have evaluated the performance of the image enhancement algorithm using the goodness index of the extracted minutiae and the accuracy of an online fingerprint verification system. Experimental results show that incorporating the enhancement algorithms improves both the goodness index and the verification accuracy.
Fingerprint Identifies Arithmetic
The fingerprint technique of scans can divided into 2 types generally: identification system, such as AFIS(automatic fingerprint confirm system) and verification system, two kinds of system key of the differentiation is in the fingerprint template. verification the system equally needs to obtain fingerprint image, but this kind of technique doesn't keep complete fingerprint image and it just keeps through some particular datas that some calculate way processings chase a fingerprint in an opposite smaller template(250-1000 word byte).When these datas are pick up after, the fingerprint portrait won't be again keep and can't scan template to rebuild through a finger, either. For this, many companies with domestic and international in the last yearses and its think factory produced many arithmetic in digital ways .
Evaluating a excellently arithmetic which commercial and big area expand , not only need from the miscarriage of justice rate of normal regulations, refused to judge a rate, opposite accuracy, refused to ascend a rate etc. parameter to evaluate, a good cal arithmetic includes various, for example: Can enough filter in addition to fingerprint noise? Adapt different angle to press to press? Adapt different fingerprint quality? Whether in consideration of does the high speed match? Can filter a remnants remaining fingerprint information? Whether can order in the as far as possible little characteristic under identify? Adapt a fingerprint dissimilarity the variety of the season? Can handle a too dry or moist fingerprint? Can adapt a dissimilarity to press the pressure degree? Occupy a quite a little memory? Whether very low to the dependence of system? Whether can good movement under various different operation environments? Can conveniently transplant to go to single slice machine system? Can run out the quantity little characteristic to express a fingerprint information? Does the customer feel very comfortable? Whether the development system opened very much to expand a market? Whether through a great deal of test of fingerprint database? Can let the customer experience a transparent test? Have low-down business threshold? Whether have excellent of 1:N performance? Does the software connect whether matches international norm or not? Can adapt the portrait of different quality? Can provide to connect for customer good development? Etc.
The principle of fingerprint identifies arithmetic is after the image was picked up which is a high quality and has to be converted into an useful format for it. If image is ash degree, opposite more shallow part will be abandon, but opposite deeper part be become black. The pixel of ridge is been thin by 5-8 to arrive a pixel, so ability the precision position the ridge break point and diverged. Such as: A arithmetic possibility at inspectional image pick and get rid of a detail of the two close detail, because these two details neared too much, because of the scar formation, sweat liquid or dust cause of detail abnormality, the arithmetic is incapable for the dint to these circumstances. Perhaps, one fork to be located on an island form scar perpendicular cut through 2-3 ridges on(may be a false detail) perhaps a ridge.(may be scar formation or dust)All this possible details want to be abandon in this processing. Once a point is indeed settle down, its position be origin(0, 0) of X, Y axile, in the detail the point of the fixed position process, or the place ridge be square upward of the terminal point have a corner.(the circs when the arch break up point appeared will be more complicated)
指紋確認(rèn)
Salil Prabhakar, Anil Jain
指紋匹配:
在所有的生物技術(shù)之中,指紋識別技術(shù)已經(jīng)被成功地應(yīng)用于很多場合。每個(gè)人都知道指紋具有唯一不可變的特性。一個(gè)人的指紋是由手指的表面上一系列脊和溝做成的。指紋的獨(dú)特性是由脊和溝的式樣和細(xì)節(jié)點(diǎn)決定,細(xì)節(jié)點(diǎn)是發(fā)生一個(gè)脊分叉或一個(gè)脊終止時(shí)的當(dāng)?shù)氐奶卣鼽c(diǎn)。
指紋匹配技術(shù)可以分為兩種: 基于細(xì)節(jié)的和基于相互關(guān)系的。以細(xì)節(jié)為基礎(chǔ)的技術(shù)首先發(fā)現(xiàn)細(xì)節(jié)點(diǎn),然后在手指上映射出他們的相對位置。然而,當(dāng)使用這種方法時(shí)還有一些困難,當(dāng)指紋質(zhì)量低的時(shí)候,正確地吸取細(xì)節(jié)點(diǎn)很困難。這一方法也不考慮全球的指紋的脊和溝的式樣。以相互關(guān)系為基礎(chǔ)的方法能夠克服以細(xì)節(jié)為基礎(chǔ)方法的一些困難。然而,它也有一些自己的缺點(diǎn)。以相互關(guān)系為基礎(chǔ)的技術(shù)需要精確定位登記點(diǎn)而且被圖像翻譯和旋轉(zhuǎn)所影響。
基于細(xì)節(jié)的指紋匹配在匹配不同尺寸(未注冊的) 的細(xì)節(jié)式樣的指紋方面有問題,當(dāng)?shù)氐募菇Y(jié)構(gòu)不能完全地?fù)碛屑?xì)節(jié)的特點(diǎn)。 我們正在嘗試為指紋取得更多的當(dāng)?shù)財(cái)?shù)據(jù)并且產(chǎn)生一個(gè)固定的長度密碼。這時(shí)匹配將會變成像希望的那樣計(jì)算在這二個(gè)密碼之間的歐幾里得幾何距離的相對簡單工作。
我們正在發(fā)展更強(qiáng)健的在指紋圖像中去除噪音性強(qiáng),遞送準(zhǔn)確性強(qiáng),實(shí)時(shí)性強(qiáng)的運(yùn)算法則。一個(gè)商業(yè)的指紋確認(rèn)系統(tǒng)需要非常低的錯誤率 (FAR) 一個(gè)可以接受的錯誤比率.(FAR)這對于任何的一項(xiàng)技術(shù)都是一個(gè)難點(diǎn)。我們正在研究各種不同的相配技術(shù)來增加系統(tǒng)的準(zhǔn)確性。在一個(gè)實(shí)時(shí)的應(yīng)用環(huán)境中或在傳感器中,系統(tǒng)的執(zhí)行時(shí)間變的越來越重要。我們也是把我們的系統(tǒng)實(shí)地試驗(yàn)在少數(shù)用戶上一段時(shí)間來評估我們的系統(tǒng)。
指紋分類:
每天大量的指紋被收集存儲應(yīng)用在不同的場合,例如法醫(yī),通路控制和駕駛員執(zhí)照登記。以指紋為基礎(chǔ)的自動識別系統(tǒng)需要輸入一個(gè)與數(shù)據(jù)庫中相匹配的指紋 (聯(lián)邦調(diào)查局?jǐn)?shù)據(jù)庫大約包含七千萬個(gè)指紋!)。為了減少搜尋時(shí)間和計(jì)算的復(fù)雜性,需要對這些指紋按正確和一致的方式分類,以便輸入指紋時(shí)只需要在數(shù)據(jù)庫中找到其中匹配的一個(gè)子集而已。
指紋分類是一種可以預(yù)先分配一個(gè)指紋進(jìn)入已經(jīng)分類好的幾個(gè)類型之中并提供一種分度裝置的技術(shù)。指紋分類可以看作是大概的粗糙的指紋類型的相配。 一個(gè)輸入指紋首先對預(yù)先存儲的類型大致相配,然后,在詳細(xì)的分析,把他和只包含那一個(gè)類型指紋的數(shù)據(jù)庫的子集相比較。我們正在研究一種運(yùn)算法則——把指紋分類為五個(gè)類型,即螺旋狀紋、右回旋,左回旋,拱形,帳篷形。運(yùn)算法則被一個(gè)Gabor過濾器分開過濾為四個(gè)方向(0 度、 45 度、 90 度和 135 度)。這些數(shù)據(jù)被量化產(chǎn)生作為分類的指紋編碼。我們的分類以一個(gè)二階段的分類器為基礎(chǔ)。第一個(gè)階段用一個(gè)K最近的分類器和第二個(gè)階段用一組類神經(jīng)網(wǎng)路分類器。在分類器NIST-4 數(shù)據(jù)庫中測試了4,000個(gè)圖像。 對于五種類型的問題,分類的準(zhǔn)確性達(dá)到90%。對于四種類型的問題 (拱門和帳篷型組合在一個(gè)類型之內(nèi)),我們能夠達(dá)成94.8%的分類準(zhǔn)確性。當(dāng)合并不合格者選項(xiàng)時(shí),分類準(zhǔn)確性能達(dá)到為五種分類時(shí)增加到 96% 和至 97.8% ,為四種類型時(shí) 30.8% 的被拒絕。
指紋圖像增強(qiáng):
在自動指紋識別系統(tǒng)中一個(gè)重要的步驟是從輸入的指紋圖像中自動地而且可靠地吸取指紋細(xì)節(jié)。然而,這種獲取指紋細(xì)節(jié)的計(jì)算法則很嚴(yán)重地依賴輸入指紋圖像的質(zhì)量。為了確定自動指紋識別的效果,確認(rèn)系統(tǒng)是對指紋質(zhì)量的重要衡量系統(tǒng),有必要將提高指紋運(yùn)算法則的質(zhì)量作為細(xì)節(jié)提取模塊的一部分。我們已經(jīng)設(shè)計(jì)出了一個(gè)快速識別指紋的運(yùn)算法則, 能盡量地增強(qiáng)脊的清晰度,還能以輸入指紋圖像的溝結(jié)構(gòu)為基礎(chǔ),估計(jì)當(dāng)?shù)氐募苟ǚ轿缓皖l率。我們已經(jīng)使用被吸取的細(xì)節(jié)點(diǎn)的索引和在線指紋確認(rèn)系統(tǒng)來評估圖像運(yùn)算法則的表現(xiàn)。實(shí)驗(yàn)的結(jié)果表示這種運(yùn)算法則能提高和改善確認(rèn)的準(zhǔn)確性。
指紋識別技術(shù)的算法:
指紋掃描技術(shù)大體可分為兩類:確認(rèn)(identification)系統(tǒng),如 AFIS(自動指紋確認(rèn)系統(tǒng))和核對(verification)系統(tǒng),兩種系統(tǒng)主要區(qū)別在指紋模板。核對 (verification) 系統(tǒng)同樣需要獲取指紋圖象,但這種技術(shù)并不保存完整的指紋圖象,它只是通過一些算法處理把指紋的一些特定的數(shù)據(jù)保存在一個(gè)相對較小的模板( 250-1000 字節(jié))中。當(dāng)這些數(shù)據(jù)被拾取后,指紋圖象將不再被保存,也不能通過手指掃描模板來重建。為此,多年來國內(nèi)外公司及其研究機(jī)構(gòu)產(chǎn)生了許多數(shù)字化的算法。
評估一個(gè)優(yōu)秀的能夠商業(yè)化大面積推廣的指紋算法,不僅要從常規(guī)的誤判率,拒判率,相對準(zhǔn)確率,拒登率等參數(shù)來評估,一個(gè)好的算法包括有許多方面,例如:能否夠?yàn)V除指紋噪音?是否適應(yīng)不同的角度去按壓?是否適應(yīng)不同的指紋質(zhì)量?是否考慮到高速匹配?是否能夠過濾殘余指紋信息?是否能夠在盡量少的特征點(diǎn)下識別?是否適應(yīng)指紋不同季節(jié)的變化?是否能夠處理過于干燥或濕潤的指紋 ? 是否能夠適應(yīng)不同按壓力度?是否占有非常少的內(nèi)存?是否對系統(tǒng)的依賴性很低?是否能夠在各種不同的操作環(huán)境下良好的運(yùn)行 ? 是否可以方便的移植到單片機(jī)系統(tǒng)中去?是否可以用盡量少的特征表述指紋信息?客戶是否感到很舒適?是否有非常開放的開發(fā)體系來推廣市場?是否經(jīng)過大量的指紋庫的測試?是否能夠讓客戶經(jīng)歷透明的測試 ? 是否具備非常低的商業(yè)門檻 ? 是否有優(yōu)秀的 1:N 的表現(xiàn)?軟件接口是否符合國際規(guī)范?是否能適應(yīng)不同質(zhì)量的圖象?是否能夠提供給用戶良好的開發(fā)接口?等等
指紋識別技術(shù)算法的工作原理為當(dāng)一個(gè)高質(zhì)量的圖象被拾取后,它必須被轉(zhuǎn)換成一個(gè)有用的格式。如果圖象是灰度圖象,相對較淺的部分會被舍棄,而相對較深的部分被變成了黑色。脊的象素由 5 到 8 個(gè)被縮細(xì)到一個(gè)象素,這樣就能精確定位脊斷點(diǎn)和分岔了。如:一個(gè)算法可能在檢索圖象時(shí)剔除兩個(gè)鄰近細(xì)節(jié)中的一個(gè)細(xì)節(jié),因?yàn)檫@兩個(gè)細(xì)節(jié)太接近了,由于疤痕,汗液或灰塵導(dǎo)致的細(xì)節(jié)異常,算法對于這些情況是無能為力的?;蛘?,一個(gè)分岔位于一個(gè)島形痕之上(可能是錯誤細(xì)節(jié))或者一個(gè)脊垂直穿過兩到三個(gè)脊(可能是疤痕或灰塵)。所有這些可能的細(xì)節(jié)都要在這個(gè)處理過程中被舍棄。一旦一個(gè)點(diǎn)被確定下來,它的位置就是 X,Y 軸和原點(diǎn)(0 ,0),在細(xì)節(jié)點(diǎn)的定位過程中,與所在脊方向上的終點(diǎn)有一個(gè)夾角(拱形斷點(diǎn)的情況法則將更復(fù)雜)。
收藏