【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無(wú)水印,高清圖,,壓縮包內(nèi)文檔可直接點(diǎn)開(kāi)預(yù)覽,需要原稿請(qǐng)自助充值下載,請(qǐng)見(jiàn)壓縮包內(nèi)的文件及預(yù)覽,所見(jiàn)才能所得,請(qǐng)細(xì)心查看有疑問(wèn)可以咨詢(xún)QQ:414951605或1304139763
中文譯文
2螺桿壓縮機(jī)的幾何形狀
(2.12)
簡(jiǎn)介部分A1D1在主轉(zhuǎn)子的圓形半徑,0<T<θ2。
(2.13)
C1D1段出現(xiàn)作為一個(gè)次擺線(xiàn)在主轉(zhuǎn)子所產(chǎn)生的圓的半徑r4在大門(mén)口轉(zhuǎn)子。曲線(xiàn)是從門(mén)轉(zhuǎn)子坐標(biāo)通過(guò)相同的嚙合過(guò)程。
圓C2D2是:
(2.14)
現(xiàn)在,當(dāng)主旋翼的所有片段都是已知的,它們被用來(lái)作為源曲線(xiàn)。門(mén)轉(zhuǎn)子葉現(xiàn)在會(huì)被完全產(chǎn)生在上一節(jié)中描述的嚙合過(guò)程。
雖然本質(zhì)上是簡(jiǎn)單的,演示文件包含所有功能用現(xiàn)代的螺桿轉(zhuǎn)子型線(xiàn)。壓力角同時(shí),扁平和圓形輪廓的裂片不為零。這是至關(guān)重要的成功的制造。輪廓由曲線(xiàn)和不產(chǎn)生點(diǎn)。這進(jìn)一步增強(qiáng)了其可制造性。通過(guò)改變其參數(shù),C,R,R0,R2,R3和R4,各種曲線(xiàn)可以產(chǎn)生,一些正柵極轉(zhuǎn)子力矩,有的適合低壓力比,和其他人高壓縮比壓縮。配置文件是完全計(jì)算機(jī)化,可以用于演示,教學(xué)和發(fā)展的目的。
2.4.2 SKBK剖面
圖2.6 SKBK剖面
1977 SKBK剖面是第一個(gè)在公開(kāi)的俄羅斯文獻(xiàn)中出現(xiàn)的現(xiàn)代的輪廓,如圖2.6所示。簡(jiǎn)介了相同的布局和序列段,除了演示文件事實(shí)上,R2和R3線(xiàn)段所取代AB和AF的產(chǎn)生。這可以很容易地實(shí)現(xiàn)如果在演示型R2和R3趨于零。同樣的演示文件,SKBK型材偏心圓在主旋翼的圓形葉,給出了壓力角不同在節(jié)圓的面積為零。這進(jìn)一步使其易于制造和柵極轉(zhuǎn)子力矩的穩(wěn)定性。這一特點(diǎn)的SKBK簡(jiǎn)介已經(jīng)至少出版了五年前的開(kāi)關(guān)磁阻電機(jī)轉(zhuǎn)子的專(zhuān)利“D”它聲稱(chēng)相同的特征。然而,由于在平面葉邊主門(mén)轉(zhuǎn)子由點(diǎn)和在柵極和主要產(chǎn)生轉(zhuǎn)子分別從E位于柵極轉(zhuǎn)子的齒圈,在節(jié)圓上的壓力角的平面?zhèn)葹榱?。這是不允許的通過(guò)銑削或磨削除非型材制造該剖面。
2.4.3傅聲簡(jiǎn)介
圖 2.7 傅聲剖面
傅聲曲線(xiàn),如圖2.7所示,是幾乎一樣的示威者,但有一個(gè)特點(diǎn)。線(xiàn)段AB是一個(gè)橢圓。
2.4.4“超”的文件
“超”的配置文件幾乎是為傅聲分布相同,除了線(xiàn)段AB,這是在主轉(zhuǎn)子代替橢圓雙曲線(xiàn)傅聲原來(lái)的輪廓。然而,盡管有這樣的一個(gè)小的差異,“超”是一個(gè)更好的輪廓給較大的螺桿壓縮機(jī)的位移,一較短的密封線(xiàn)和較強(qiáng)的轉(zhuǎn)子葉柵。日立的輪廓有相同的布局為“超”的文件。
2. 4 .5“σ”剖面
“σ”是一個(gè)相對(duì)舊的配置文件。它誕生于20世紀(jì)年底年代作為對(duì)SRM授予獨(dú)占許可證的Aerzener德國(guó)。其他的德國(guó)汽車(chē)制造商,如GHH和凱瑟爾因此,需要開(kāi)發(fā)自己的配置文件?!唉摇?顯示在圖。2.8是一個(gè)美麗的和高效的配置文件。然而,新的和更好的資料現(xiàn)在可用。平面一側(cè)的“σ”葉一樣的示威者概要文件,但是圓邊的概要文件生成從平面?zhèn)鹊男欧獾膱A圈,它涉及平面和圓邊,半徑的提前給予。這是一個(gè)可以接受的方法配置生成的如果沒(méi)有更多的一般是已知的,但嚴(yán)重限制了生成過(guò)程。有幾個(gè)修改“σ”剖面。其中的一個(gè),這是這里提出,由一條直線(xiàn)圓邊的BC2大門(mén)口轉(zhuǎn)子。這種改性大大提高了剖面,它是比原來(lái)少有限。
圖2.8 西格瑪剖面
2.4.6“氣旋”剖面
“氣旋”顯示在圖2.9是一個(gè)概要文件由康普艾開(kāi)發(fā)。布局和序列的剖面段沒(méi)有完全不同的演示,但“氣旋”介紹了parabolae代替圈在公元前片段,GH和JH。 的一個(gè)有趣特性“氣旋”剖面是“負(fù)面”轉(zhuǎn)矩在大門(mén)口轉(zhuǎn)子導(dǎo)致轉(zhuǎn)子接觸的平面一邊的轉(zhuǎn)子。
圖2.9 Cyclon概況
2 .4 .7對(duì)稱(chēng)剖面
對(duì)稱(chēng)剖面,顯示在圖。2.10是非常簡(jiǎn)單的,由三個(gè)圈主轉(zhuǎn)子在中心位置無(wú)論是在轉(zhuǎn)子中心或在節(jié)圓的主要轉(zhuǎn)子。因?yàn)槿χ鬓D(zhuǎn)子與轉(zhuǎn)子中心的中心要么或節(jié)圓,他們只生成圈了門(mén)轉(zhuǎn)子與中心無(wú)論是在轉(zhuǎn)子中心,或在轉(zhuǎn)子齒節(jié)圓。因此不足為奇的是這是第一次嗎螺桿轉(zhuǎn)子概要文件生成過(guò)。段D1E1是一個(gè)圓的半徑r1w?與其中心r0的轉(zhuǎn)子軸,而段E1F1是一個(gè)圓的半徑r0的。段F1A1是一個(gè)圓圈的半徑r。兩個(gè),最后兩段有其中心在轉(zhuǎn)子螺距圓。進(jìn)一步段類(lèi)似于給定的對(duì)稱(chēng)。
圖2.10 對(duì)稱(chēng)圓形輪廓
有一個(gè)巨大的對(duì)稱(chēng)剖面面積不包括它從水中憋氣任何壓縮機(jī)應(yīng)用程序中一個(gè)高或中度壓力比是涉及。然而,對(duì)稱(chēng)剖面表現(xiàn)令人驚奇的好低壓力壓縮機(jī)的應(yīng)用程序。更詳細(xì)的圓形輪廓可以發(fā)現(xiàn)在馬戈利斯,1978.
2 4 8 SRM”“剖面
“一個(gè)”的SRM概要顯示在圖2.11。它保留了所有有利的特性的對(duì)稱(chēng)剖面喜歡它的簡(jiǎn)單,同時(shí)避免其主要缺點(diǎn),即大水中憋氣區(qū)。主要的目標(biāo)是降低了氣孔面積是通過(guò)允許提示點(diǎn)的主要和門(mén)轉(zhuǎn)子產(chǎn)生他們的同行,trochoids在門(mén)和主旋翼分別。“一個(gè)”剖面主要由轉(zhuǎn)子和圈了門(mén)一行通過(guò)大門(mén)口轉(zhuǎn)子軸。主曲線(xiàn)的設(shè)置包括:D2C2,這是一個(gè)圓形的門(mén)轉(zhuǎn)子與中心門(mén)口節(jié)圓,C2B2,這是一個(gè)圓在大門(mén)口轉(zhuǎn)子,該中心位于外的節(jié)圓區(qū)域。這是一個(gè)新的功能實(shí)施的一些問(wèn)題在一代的主旋翼同行,因?yàn)閿?shù)學(xué)用于配置生成當(dāng)時(shí)通用傳動(dòng)裝置不足。這偏心保證壓力角的轉(zhuǎn)子球不同于零,導(dǎo)致它的易于制造。段是一個(gè)圓形的英航轉(zhuǎn)子以其中心門(mén)在節(jié)圓。扁平的葉邊的主要和門(mén)出現(xiàn)生成hypocycloids epi /由分G和H的門(mén)主轉(zhuǎn)子分別。是一個(gè)徑向線(xiàn)GF2門(mén)口的轉(zhuǎn)子。這帶來(lái)了同樣的制造業(yè)的好處前面提到的圓偏心在對(duì)面的葉側(cè)。F2E2是一個(gè)圓的中心在大門(mén)口音高和最后,E2D2是一個(gè)圓的中心在門(mén)軸。更多的細(xì)節(jié)在”一個(gè)“剖面將被Amosov et al出版。1977和剩余的,1979。
“A”配置文件是一個(gè)很好的例子,一個(gè)好的和簡(jiǎn)單的想法如何進(jìn)化成一個(gè)復(fù)雜的結(jié)果。因此,“A”剖面是不斷遭受這導(dǎo)致變化的“C”剖面。這主要是生成改善剖面可制造性。最后,一個(gè)完全新的配置文件,“D”剖面生成了一個(gè)新的發(fā)展介紹在剖面?zhèn)鲃?dòng)裝置和增加門(mén)轉(zhuǎn)子扭矩。
盡管其最終形式的復(fù)雜性的“A”剖面出現(xiàn)的最受歡迎的螺桿壓縮機(jī)剖面,特別是在其專(zhuān)利過(guò)期。
圖 2.11 “A”概要SRM
2. 4 .9 SRM“D”剖面
SRM的“D”剖面,顯示在圖2.12,生成完全由圓圈從轉(zhuǎn)子的中心距圈。類(lèi)似于示威者,C2D2是一個(gè)偏心圓的半徑r3上大門(mén)口轉(zhuǎn)子。B1C1是一個(gè)偏心圓的半徑r1,再加上小圓弧的半徑A1J1 r2,位置在主轉(zhuǎn)子。G2H2是一個(gè)小圓弧轉(zhuǎn)子和E2F2的門(mén)是一個(gè)圓弧的門(mén)轉(zhuǎn)子。F2G2是一個(gè)相對(duì)大的圓弧轉(zhuǎn)子產(chǎn)生的門(mén)相應(yīng)的曲線(xiàn)的最小曲率在主轉(zhuǎn)子。兩個(gè)圓弧,B2C2和F2G2確保大曲率半徑的節(jié)圓面積。這避免了高應(yīng)力在轉(zhuǎn)子接觸區(qū)。
圖 2.12 SRM“D”剖面
2.4.10 SRM“G”剖面
“G”概要的介紹,并通過(guò)SRM在年代末作為替換為“D”轉(zhuǎn)子和圖2.13所示。相比“D”的“G”轉(zhuǎn)子,轉(zhuǎn)子具有獨(dú)特特征的兩個(gè)額外的圓圈兩葉的齒頂區(qū)域的主旋翼,靠近節(jié)圓。這個(gè)特性提高了轉(zhuǎn)子接觸,此外,生成較短密封線(xiàn)。這可以從圖2.13,一個(gè)轉(zhuǎn)子具有“G”剖面只有在它的平的面特征通過(guò)段提出了H1I1。
圖 2.13 SRM“G”剖面
2. 4 .11城市“N”架產(chǎn)生轉(zhuǎn)子剖面
“N”是計(jì)算轉(zhuǎn)子架代過(guò)程。這種區(qū)分他們從任何其他人。在這種情況下,大水中憋氣區(qū),這是一個(gè)特點(diǎn)生成齒條的轉(zhuǎn)子,是克服通過(guò)生成高壓力側(cè)架通過(guò)轉(zhuǎn)子共軛過(guò)程。這削弱了單一的適當(dāng)?shù)那€(xiàn)放在架子上。這樣一架然后用于分析兩個(gè)主要的和門(mén)的轉(zhuǎn)子。該方法及其擴(kuò)展使用通過(guò)作者創(chuàng)建許多不同的轉(zhuǎn)子概要,其中一些使用通過(guò)Stosic et al。,1986年,Hanjalic和Stosic,1994。 其中一個(gè)應(yīng)用程序的架在Stosic描述生成程序,1996。下面是一個(gè)簡(jiǎn)短的描述生成一架“N”轉(zhuǎn)子剖面,典型的家庭的轉(zhuǎn)子概要設(shè)計(jì)高效的壓縮空氣,常見(jiàn)的制冷劑和一系列過(guò)程氣體。生成的轉(zhuǎn)子通過(guò)組合架轉(zhuǎn)子一代的過(guò)程,它的特點(diǎn)是這樣的它可以很容易地修改進(jìn)一步優(yōu)化性能對(duì)于任何特定的應(yīng)用程序。
英文原文
2 Screw Compressor Geometry
x01 = (r1i ? r3) cos ψ2 + r3 cos t
y01 = ?(r1i ? r3) sinψ2 + r3 sin t (2.12)
Profile portion A1D1 is a circle of radius r2 on the main rotor, 0 < t < θ2.
x01 = r1e ? r2 cos t
y01 = r2 sin t (2.13)
Segment C1D1 emerges as a trochoid on the main rotor generated by the circle of radius r4 on the gate rotor, ?θ4 ? τ1 < t < ?π ? τ1. The trochoid is obtained from the gate rotor coordinates through the same meshing procedure.
The circle C2D2 is:
x02 = (r2e ? r4) cos τ1 + r4 cos t
y02 = (r2e ? r4) sinτ1 + r4 sin t (2.14)
Now, when all the segments of the main rotor are known, they are used as source curves. The gate rotor lobe can now be generated completely by the meshing procedure described in the previous section. Although essentially simple, the Demonstrator profile contains all the features which characterize modern screw rotor profiles. The pressure angles on both, the flat and the round profile lobes are not zero. This is essential for successful manufacturing. The profile is generated by the curves and not by points. This further enhances its manufacturability. By changing its parameters, C, r, r0, r2, r3 and r4, a variety of profiles can be generated, some with positive gate rotor torque, some suitable for low pressure ratios, and others for high pressure ratio compression. The profile is fully computerized and can be used for demonstration, teaching and development purposes.
2.4.2 SKBK Profile
Amosov’s 1977 SKBK profile is the first modern Russian profile to be published in the open literature and it is shown in Fig. 2.6. The profile has the same layout and sequence of segments as the Demonstrator profile apart frothe fact that the circles r2 and r3 the substituted by cycloids and the segments AB and AF are generated by point generation. This can be readily achieved if r2 and r3 in the Demonstrator profile tend to zero. Similarly to the Demonstrator profile, SKBK profile has an eccentric circle on the round lobe of the main rotor, which gives a pressure angle far different from zero in the pitch circle area. This further ensures both its ease of manufacture and the gate rotor torque stability. This characteristic of the SKBK profile was published at least five years prior the SRM “D” rotor patents which claimed the same feature. However, since the flat lobe sides on the main and gate rotors are generated by points E and A on the gate and main rotor respectively and since E is positioned on the gate rotor pitch circle, the pressure angle at the pitch circle on the flat side is zero. This does not allow manufacturing of this profile by milling or grinding unless the profile is modified.
Fig. 2.6. SKBK Profile
Fig. 2.7. Fu Sheng Profile
2.4.3 Fu Sheng Profile
The Fu Sheng profile, as shown in Fig. 2.7, is practically the same as the Demonstrator, but has one distinguishing feature. The segment AB is an ellipse.
2.4.4 “Hyper” Profile
The “Hyper” profile is virtually the same as the Fu Sheng profile, apart from the segment AB, which is a hyperbola on the main rotor instead of the ellipse of the original Fu Sheng profile. However, despite such a small difference, the “Hyper” is a better profile giving larger screw compressor displacement, a shorter sealing line and stronger gate rotor lobes. The Hitachi profile has the same layout as the “Hyper” profile.
2.4.5 “Sigma” Profile
The “Sigma” is a relatively old profile. It was developed in the late nineteen seventies as a response to SRM awarding an exclusive licence to Aerzener in Germany. Other German manufacturers, such as GHH and Kaeser, therefore, needed to develop their own profiles. The “Sigma”, shown in Fig. 2.8 is a beautiful and efficient profile. However, new and better profiles are now available. The flat side of the “Sigma” lobe is the same as that of the Demonstrator profile, but the round side of the profile is generated from the flat side by an envelope of circles, which touch both the flat and the round sides, the radii of which are given in advance. This is an acceptable method of profile generation if nothing more general is known, but seriously limits the generation procedure. There are several modifications of the “Sigma” profile. One of these, which is presented here, comprises a straight line BC2 on the round side of the gate rotor. This modification significantly improves the profile, which is less limited than the original.
Fig. 2.8. Sigma Profile
2.4.6 “Cyclon” Profile
The “Cyclon” shown in Fig. 2.9 is a profile developed by Compair. The layout and sequence of profile segments are not so different from the Demonstrator, but the “Cyclon” introduces parabolae instead of circles in segments BC, GH and JH. One of the interesting features of the “Cyclon” profile is the “negative” torque on the gate rotor which results in rotor contact on the flat side of the rotors.
Fig. 2.9. Cyclon Profile
2.4.7 Symmetric Profile
The Symmetric profile, shown in Fig. 2.10 is very simple and consists of three circles on the main rotor with centres positioned either on the rotor centre or on the pitch circle of the main rotor. Since the circles are on the main rotor with centres either at the rotor centre or on the pitch circle, they only generate circles on the gate rotor with centres either in the rotor centre, or on the rotor pitch circle. Is is therefore not surprising that this was the first screw rotor profile ever generated.
Segment D1E1 is a circle of radius r1w ? r0 with its centre on the rotor axis, while segment E1F1 is a circle of radius r0. Segment F1A1 is on a circle of radius r. Both, the last two segments have their centres on the rotor pitch circle. Further segments are symmetrically similar to the given ones.
Fig. 2.10. Symmetric Circular Profile
The Symmetric profile has a huge blow-hole area which excludes it from any compressor application where a high or even moderate pressure ratio is involved. However, the symmetric profile performs surprisingly well in low pressure compressor applications. More details about the circular profile can be found in Margolis, 1978.
2.4.8 SRM “A” Profile
The SRM “A” profile is shown in Fig. 2.11. It retains all the favourable features of the symmetric profile like its simplicity while avoiding its main disadvantage, namely, the large blow-hole area. The main goal of reducing the blow hole area was achieved by allowing the tip points of the main and gate rotors to generate their counterparts, trochoids on the gate and main rotor respectively. The “A” profile consists mainly of circles on the gate rotor and one line which passes through the gate rotor axis.
The set of primary curves consists of: D2C2, which is a circle on the gate rotor with the centre on the gate pitch circle, and C2B2, which is a circle on the gate rotor, the centre of which lies outside the pitch circle region. This was a new feature which imposed some problems in the generation of its main rotor counterpart, because the mathematics used for profile generation at that time was insufficient for general gearing. This eccentricity ensured that the pressure angles on the rotor pitches differ from zero, resulting in its ease of manufacture. Segment BA is a circle on the gate rotor with its centre on the pitch circle. The flat lobe sides on the main and gate rotors were generated as epi/hypocycloids by points G on the gate and H on the main rotor respectively. GF2 is a radial line at the gate rotor. This brought the same benefits to manufacturing as the previously mentioned circle eccentricity on the opposite lobe side. F2E2 is a circle with the centre on the gate pitch and finally, E2D2 is a circle with the centre on the gate axis.
More details on the “A” profile are published by Amosov et al., 1977 and by Rinder, 1979.
The “A” profile is a good example of how a good and simple idea evolved into a complicated result. Thus the “A” profile was continuously subjected to changes which resulted in the “C” profile. This was mainly generated to improve the profile manufacturability. Finally, a completely new profile, the “D” profile was generated to introduce a new development in profile gearing and to increase the gate rotor torque.
Despite the complexity of its final form the “A” profile emerged to be the most popular screw compressor profile, especially after its patent expired.
2.4.9 SRM “D” Profile
The SRM “D” profile, shown in Fig. 2.12, is generated exclusively by circles with the centres off the rotor pitch circles. Similar to the Demonstrator, C2D2 is an eccentric circle of radius r3 on the gate rotor. B1C1 is an eccentric circle of radius r1, which, together with the small circular arc A1J1 of radius r2, is positioned on the main rotor. G2H2 is a small circular arc on the gate rotor and E2F2 is a circular arc on the gate rotor. F2G2 is a relatively large circular arc on the gate rotor which produces a corresponding curve of the smallest possible curvature on the main rotor.
Both circular arc, B2C2 and F2G2 ensure a large radius of curvature in the pitch circle area. This avoids high stresses in the rotor contact region.
Fig. 2.11. SRM “A” Profile
Fig. 2.12. SRM “D” Profile
2.4.10 SRM “G” Profile
The “G” profile was introduced by SRM in the late nineteen nineties as a replacement for the “D” rotor and is shown in Fig. 2.13. Compared with the “D” rotor, the “G” rotor has the unique feature of two additional circles in the addendum area on both lobes of the main rotor, close to the pitch circle.
This feature improves the rotor contact and, additionally, generates shorter sealing lines. This can be seen in Fig. 2.13, where a rotor featuring “G” profile characteristics only on its flat side through segment H1I1 is presented.
Fig. 2.13. SRM “G” Profile
2.4.11 City “N” Rack Generated Rotor Profile
“N” rotors are calculated by a rack generation procedure. This distinguishes them from any others. In this case, the large blow-hole area, which is a characteristic of rack generated rotors, is overcome by generating the high pressure side of the rack by means of a rotor conjugate procedure. This undercuts the single appropriate curve on the rack. Such a rack is then used for profiling both the main and the gate rotors. The method and its extensions were used by the authors to create a number of different rotor profiles, some of them used by Stosic et al., 1986, and Hanjalic and Stosic, 1994. One of the applications of the rack generation procedure is described in Stosic, 1996.
The following is a brief description of a rack generated “N” rotor profile, typical of rotor profiles designed for the efficient compression of air, common refrigerants and a number of process gases. The rotors are generated by the combined rack-rotor generation procedure whose features are such that it may be readily modified further to optimize performance for any specific application.
編號(hào)
無(wú)錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
相關(guān)資料
題目:圓柱型產(chǎn)品填充粉末料的自動(dòng)機(jī)設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化專(zhuān)業(yè)
學(xué) 號(hào): 0923145
學(xué)生姓名: 楊 文 浩
指導(dǎo)教師: 何雪明(職稱(chēng):副教授 )
(職稱(chēng): )
2013年5月25日
目 錄
一、畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
二、畢業(yè)設(shè)計(jì)(論文)外文資料翻譯及原文
三、學(xué)生“畢業(yè)論文(論文)計(jì)劃、進(jìn)度、檢查及落實(shí)表”
四、實(shí)習(xí)鑒定表
無(wú)錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
開(kāi)題報(bào)告
題目:圓柱型產(chǎn)品填充粉末料的自動(dòng)機(jī)設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化 專(zhuān)業(yè)
學(xué) 號(hào): 0923145
學(xué)生姓名: 楊文浩
指導(dǎo)教師: 何雪明 (職稱(chēng):副教授)
(職稱(chēng): )
2012年11月25日
課題來(lái)源
自擬
科學(xué)依據(jù)(包括課題的科學(xué)意義;國(guó)內(nèi)外研究概況、水平和發(fā)展趨勢(shì);應(yīng)用前景等)
(1)課題科學(xué)意義
我國(guó)在定量包裝設(shè)備的發(fā)展方面相對(duì)滯后,雖然自動(dòng)定量充填包裝技術(shù)在我國(guó)發(fā)展了將近二十年,從八十年代開(kāi)始,發(fā)展壯大,在定量充填的某些技術(shù)方面上發(fā)展比較成熟,但是國(guó)內(nèi)的定量充填設(shè)備生產(chǎn)企業(yè)大部分以小規(guī)模為主,產(chǎn)品設(shè)備的設(shè)計(jì)和自主研發(fā)環(huán)節(jié)非常的薄弱。定量包裝行業(yè)在過(guò)去長(zhǎng)期處于一種生產(chǎn)效率低下、關(guān)鍵技術(shù)不高的狀況,相當(dāng)一部分企業(yè)的經(jīng)驗(yàn)?zāi)J饺匀皇钦瞻嵴粘瓏?guó)外先進(jìn)技術(shù),以此降低生產(chǎn)成本。還有很多家庭作坊式的小企業(yè)依然依賴(lài)一套圖紙生存,從不投資研發(fā),這種單純的追求降低成本的發(fā)展模式,導(dǎo)致同行業(yè)之間互相抄襲,沒(méi)有自主知識(shí)產(chǎn)權(quán),嚴(yán)重破壞國(guó)內(nèi)市場(chǎng)秩序。
因此,我們當(dāng)前的任務(wù)比較艱巨,需要加大科研開(kāi)發(fā)的力度,努力采用自動(dòng)化控制技術(shù)和實(shí)現(xiàn)機(jī)電一體化作業(yè),提高機(jī)器零件的加工工藝水平,盡量保證定量充填包裝商品的準(zhǔn)確度,加強(qiáng)包裝新材料的研發(fā)和應(yīng)用,保證被包裝商品的衛(wèi)生安全,注意減少對(duì)自然環(huán)境的破壞,注意包裝材料的二次利用,開(kāi)發(fā)出運(yùn)行可靠、定量精確、生產(chǎn)效率高的自動(dòng)定量充填機(jī),改變整個(gè)定量包裝機(jī)械行業(yè)的低水平發(fā)展,滿(mǎn)足我國(guó)廣大的市場(chǎng)需求,積極拓展更加廣闊的國(guó)際市場(chǎng)。
(2)粉末填充機(jī)的研究狀況及其發(fā)展前景
我國(guó)粉末包裝機(jī)在市場(chǎng)中占有重要地位,但是暫時(shí)還沒(méi)有完全取代過(guò)去的一些傳統(tǒng)的設(shè)備,主要還是因?yàn)樗枷胂冗M(jìn)但是技術(shù)落后,一些陳舊的設(shè)備在很大程度上制約著包裝機(jī)械的進(jìn)步,很多企業(yè)已經(jīng)在嘗試研發(fā)新的粉末包裝機(jī),但是并沒(méi)有從根本上改變?cè)O(shè)備的性能。改革開(kāi)放以來(lái),隨著大量成套設(shè)備的引進(jìn)及國(guó)際間經(jīng)濟(jì)技術(shù)交流活動(dòng)的開(kāi)展, 我國(guó)科技工作者對(duì)我國(guó)粉體包裝機(jī)械給予了足夠的重視?,F(xiàn)在我國(guó)已經(jīng)能自行設(shè)計(jì)制造出多種大、中、小型粉體包裝機(jī)械。除了各種自動(dòng)計(jì)量充填機(jī)外,自動(dòng)制袋、自動(dòng)上袋、封口或縫口、印字,集裝等機(jī)械也造出了樣機(jī)。有的小袋自動(dòng)包裝機(jī)質(zhì)量很好,不僅能滿(mǎn)足國(guó)內(nèi)市場(chǎng)需要,而宜還能出口,在國(guó)際上受到了好評(píng)。有的包裝機(jī)的技術(shù)性能已趕上當(dāng)代國(guó)際先進(jìn)水平。但總的來(lái)看,在這一領(lǐng)域我國(guó)與發(fā)達(dá)國(guó)家的差距還較大。
研究?jī)?nèi)容
① 研究粉末顆粒中的某一粒子在螺桿下料過(guò)程中的運(yùn)動(dòng)軌跡,通過(guò)數(shù)學(xué)方程描述其運(yùn)動(dòng)軌跡。
② 建立數(shù)學(xué)模型,數(shù)學(xué)模型主要描述粒子在運(yùn)動(dòng)過(guò)程中的速度變化和加速度變化。
③ 根據(jù)螺桿的運(yùn)動(dòng)軌跡方程及受力情況,對(duì)螺桿充填的效率進(jìn)行分析,通過(guò)效率分布曲線(xiàn)確定出較好的螺旋升角及螺桿轉(zhuǎn)速范圍。
④ 將粉末顆粒物料假設(shè)為流體,研究螺桿充填的機(jī)理。
擬采取的研究方法、技術(shù)路線(xiàn)、實(shí)驗(yàn)方案及可行性分析
(1)技術(shù)路線(xiàn)
首先研究粉末顆粒中的某一粒子在螺桿下料過(guò)程中的運(yùn)動(dòng)軌跡,通過(guò)數(shù)學(xué)方程描述其運(yùn)動(dòng)軌跡,建立數(shù)學(xué)模型,數(shù)學(xué)模型主要描述粒子在運(yùn)動(dòng)過(guò)程中的速度變化和加速度變化。其次根據(jù)螺桿的運(yùn)動(dòng)軌跡方程及受力情況,對(duì)螺桿充填的效率進(jìn)行分析,通過(guò)效率分布曲線(xiàn)確定出較好的螺旋升角及螺桿轉(zhuǎn)速范圍。
(2)研究方法
① 根據(jù)螺桿的運(yùn)動(dòng)軌跡方程及受力情況,對(duì)螺桿充填的效率進(jìn)行分析。
② 對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行分析處理,為粉末填充機(jī)的工作機(jī)構(gòu)動(dòng)力學(xué)模型、進(jìn)行仿真與分析作了必要的準(zhǔn)備。
(3)可行性分析
通過(guò)數(shù)學(xué)方程描述其運(yùn)動(dòng)軌跡,建立數(shù)學(xué)模型的方法運(yùn)用成熟,因此是可行的。
研究計(jì)劃及預(yù)期成果
研究計(jì)劃:
2012年11月12日-2012年11月16日:學(xué)習(xí)并翻譯一篇與畢業(yè)設(shè)計(jì)相關(guān)的英文材料
2012年11月20日-2013年1月20日:按照任務(wù)書(shū)要求查閱論文相關(guān)參考資料,填寫(xiě)畢業(yè)設(shè)計(jì)開(kāi)題報(bào)告書(shū)。
2013年1月25日-2013年2月10日:填寫(xiě)畢業(yè)實(shí)習(xí)報(bào)告。
2013年2月20日-2013年3月10日:按照要求修改畢業(yè)設(shè)計(jì)開(kāi)題報(bào)告。
2013年3月19日-2013年3月30日:根據(jù)開(kāi)題報(bào)告完成任務(wù)書(shū)。
2013年4月1日-2013年4月30日:完成總裝圖及零件圖的繪制。
2013年4月30日-2013年5月25日:畢業(yè)論文撰寫(xiě)和修改工作。
預(yù)期成果:
我國(guó)市場(chǎng)前景廣闊,產(chǎn)品質(zhì)量性能逐漸滿(mǎn)足要求,因此產(chǎn)品的發(fā)展必須由單純的追求技術(shù)上的完善,轉(zhuǎn)向產(chǎn)品外觀(guān)質(zhì)量的提高,放到與技術(shù)改進(jìn)放到同等重要的位置,通過(guò)本課題的研究,產(chǎn)品必定以合理的色彩以及人性化的結(jié)構(gòu)方式提高自己的附加值,吸引到更多地客戶(hù),加大自己產(chǎn)品的市場(chǎng)占有率,提高在行業(yè)中的競(jìng)爭(zhēng)力。本文中對(duì)充填過(guò)程分析所使用的另外一個(gè)重要方法是流體力學(xué)法,因此了解粉末顆粒物料的基本性質(zhì)對(duì)充填過(guò)程的分析還是有很大幫助的。
特色或創(chuàng)新之處
① 本課題采用實(shí)體建模的方式對(duì)設(shè)計(jì)結(jié)構(gòu)進(jìn)行強(qiáng)度分析。
② 利用積分法對(duì)結(jié)構(gòu)進(jìn)行強(qiáng)度、剛度分析,其結(jié)構(gòu)比常規(guī)的解析法更準(zhǔn)確、可靠。
已具備的條件和尚需解決的問(wèn)題
① 實(shí)驗(yàn)方案思路已經(jīng)非常明確,已經(jīng)具備建立仿真模型的能力。
② 傳動(dòng)系統(tǒng)的研究還不夠完善。
指導(dǎo)教師意見(jiàn)
指導(dǎo)教師簽名:
年 月 日
教研室(學(xué)科組、研究所)意見(jiàn)
教研室主任簽名:
年 月 日
系意見(jiàn)
主管領(lǐng)導(dǎo)簽名:
年 月 日