《數(shù)字信號(hào)處理》復(fù)習(xí)習(xí)題.doc

上傳人:小** 文檔編號(hào):13274138 上傳時(shí)間:2020-06-11 格式:DOC 頁(yè)數(shù):26 大小:638.68KB
收藏 版權(quán)申訴 舉報(bào) 下載
《數(shù)字信號(hào)處理》復(fù)習(xí)習(xí)題.doc_第1頁(yè)
第1頁(yè) / 共26頁(yè)
《數(shù)字信號(hào)處理》復(fù)習(xí)習(xí)題.doc_第2頁(yè)
第2頁(yè) / 共26頁(yè)
《數(shù)字信號(hào)處理》復(fù)習(xí)習(xí)題.doc_第3頁(yè)
第3頁(yè) / 共26頁(yè)

下載文檔到電腦,查找使用更方便

5 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《《數(shù)字信號(hào)處理》復(fù)習(xí)習(xí)題.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《《數(shù)字信號(hào)處理》復(fù)習(xí)習(xí)題.doc(26頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 《數(shù)字信號(hào)處理》復(fù)習(xí)思考題、習(xí)題(一) 一、選擇題 1.信號(hào)通常是時(shí)間的函數(shù),數(shù)字信號(hào)的主要特征是:信號(hào)幅度取 ;時(shí)間取 。 A.離散值;連續(xù)值 B.離散值;離散值 C.連續(xù)值;離散值 D.連續(xù)值;連續(xù)值 2.一個(gè)理想采樣系統(tǒng),采樣頻率Ws=10p,采樣后經(jīng)低通G(jW)還原,;設(shè)輸入信號(hào):,則它的輸出信號(hào)y(t)為: 。 A.; B. ; C.;

2、 D. 無(wú)法確定。 3.一個(gè)理想采樣系統(tǒng),采樣頻率Ws=8p,采樣后經(jīng)低通G(jW)還原,;現(xiàn)有兩輸入信號(hào):,,則它們相應(yīng)的輸出信號(hào)y1(t)和y2(t): 。 A.y1(t)和y2(t)都有失真; B. y1(t)有失真,y2(t)無(wú)失真; C.y1(t)和y2(t)都無(wú)失真; D. y1(t)無(wú)失真,y2(t)有失真。 4.凡是滿足疊加原理的系統(tǒng)稱為線性系統(tǒng),亦即: 。 A. 系統(tǒng)的輸出信號(hào)是輸入信號(hào)的線性疊加 B. 若輸入信號(hào)可以分解為若干子信號(hào)的線性疊加,則系統(tǒng)的輸出信

3、號(hào)是這些子信號(hào)的系統(tǒng)輸出信號(hào)的線性疊加。 C. 若輸入信號(hào)是若干子信號(hào)的復(fù)合,則系統(tǒng)的輸出信號(hào)是這些子信號(hào)的系統(tǒng)輸出信號(hào)的復(fù)合。 D. 系統(tǒng)可以分解成若干個(gè)子系統(tǒng),則系統(tǒng)的輸出信號(hào)是這些子系統(tǒng)的輸出信號(hào)的線性疊加。 5.時(shí)不變系統(tǒng)的運(yùn)算關(guān)系T[]在整個(gè)運(yùn)算過(guò)程中不隨時(shí)間變化,亦即 。 A. 無(wú)論輸入信號(hào)如何,系統(tǒng)的輸出信號(hào)不隨時(shí)間變化 B. 無(wú)論信號(hào)何時(shí)輸入,系統(tǒng)的輸出信號(hào)都是完全一樣的 C. 若輸入信號(hào)延時(shí)一段時(shí)間輸入,系統(tǒng)的輸出信號(hào)除了有相應(yīng)一段時(shí)間延時(shí)外完全相同。 D. 系統(tǒng)的運(yùn)算關(guān)系T[]與時(shí)間無(wú)關(guān) 6.一離散系統(tǒng),當(dāng)其輸入為x(n)時(shí),輸出為y(n)=7x2(

4、n-1),則該系統(tǒng)是: 。 A.因果、非線性系統(tǒng) B. 因果、線性系統(tǒng) C.非因果、線性系統(tǒng) D. 非因果、非線性系統(tǒng) 7.一離散系統(tǒng),當(dāng)其輸入為x(n)時(shí),輸出為y(n)=3x(n-2)+3x(n+2),則該系統(tǒng)是: 。 A.因果、非線性系統(tǒng) B. 因果、線性系統(tǒng) C.非因果、線性系統(tǒng) D. 非因果、非線性系統(tǒng) 8.一離散序列x(n),若其Z變換X(z)存在,而且X(z)的收斂域?yàn)椋?,則x(n)為: 。 A.

5、因果序列 B. 右邊序列 C.左邊序列 D. 雙邊序列 9.已知x(n)的Z變換為X(z),則x(n+n0)的Z變換為: 。 A. B. C. D. 10.離散序列x(n)為實(shí)、偶序列,則其頻域序列X(k)為: 。 A.實(shí)、偶序列 B. 虛、偶序列 C.實(shí)、奇序列 D. 虛、奇序列 11.序列的付氏變換是 的周期函數(shù),周期為

6、 。 A. 時(shí)間;T B. 頻率;π C. 時(shí)間;2T D. 角頻率;2π 12.若x(n)是一個(gè)因果序列,Rx-是一個(gè)正實(shí)數(shù),則x(n)的Z變換X(z)的收斂域?yàn)? 。 A. B. C. D. 13.DFT的物理意義是:一個(gè) 的離散序列x(n)的離散付氏變換X(k)為x(n)的付氏變換在區(qū)間[0,2π]上的 。 A. 收斂;等間隔采樣 B. N點(diǎn)有

7、限長(zhǎng);N點(diǎn)等間隔采樣 C. N點(diǎn)有限長(zhǎng);取值 C.無(wú)限長(zhǎng);N點(diǎn)等間隔采樣 14.以N為周期的周期序列的離散付氏級(jí)數(shù)是 。 A.連續(xù)的,非周期的 B.連續(xù)的,以N為周期的 C.離散的,非周期的 D.離散的,以N為周期的 15.一個(gè)穩(wěn)定的線性時(shí)不變因果系統(tǒng)的系統(tǒng)函數(shù)H(z)的收斂域?yàn)? 。 A. B. C. D. 16.兩個(gè)有限長(zhǎng)序列x1(n)和x2(n),長(zhǎng)度分別為N1和N

8、2,若x1(n)與x2(n)循環(huán)卷積后的結(jié)果序列為x(n),則x(n)的長(zhǎng)度為: 。 A. N=N1+N2-1 B. N=max[N1,N2] C. N=N1 D. N=N2 17.用DFT對(duì)一個(gè)32點(diǎn)的離散信號(hào)進(jìn)行譜分析,其譜分辨率決定于譜采樣的點(diǎn)數(shù)N,即 ,分辨率越高。 A. N越大 B. N越小 C. N=32 D. N=64 18.一有限長(zhǎng)序列x(n)的DFT為X(k),則x(n)可表達(dá)為: 。 A. B. C.

9、 D. 19.頻域采樣定理告訴我們:如果有限長(zhǎng)序列x(n)的點(diǎn)數(shù)為M,頻域采樣點(diǎn)數(shù)為N,則只有當(dāng) 時(shí),才可由頻域采樣序列X(k)無(wú)失真地恢復(fù)x(n)。 A. N=M B. N

10、列x(n),其定義域?yàn)?5n<,若其Z變換存在,則其Z變換X(z)的收斂域?yàn)椋? 。 A. B. C. D. 22.已知x(n)的Z變換為X(z),則x(-n)的Z變換為: 。 A.X(z-1) B. X*(z*) C. X*(z-1) D. X(-z) 23.離散序列x(n)滿足x(n)=x(N-n);則其頻域序列X(k)有: 。 A.X(k)=-X(k)

11、 B. X(k)=X*(k) C.X(k)=X*(-k) D. X(k)=X(N-k) 24.在基2DIT—FFT運(yùn)算中通過(guò)不斷地將長(zhǎng)序列的DFT分解成短序列的DFT,最后達(dá)到2點(diǎn)DFT來(lái)降低運(yùn)算量。若有一個(gè)64點(diǎn)的序列進(jìn)行基2DIT—FFT運(yùn)算,需要分解 次,方能完成運(yùn)算。 A.32 B.6 C.16 D. 8 25.在基2 DIT—FFT運(yùn)算時(shí),需要對(duì)輸入序列進(jìn)行倒序,若進(jìn)行計(jì)算的序列點(diǎn)數(shù)N=16,倒序前信號(hào)點(diǎn)序號(hào)為8,則倒序后該信號(hào)

12、點(diǎn)的序號(hào)為 。 A. 8 B. 16 C. 1 D. 4 26.在時(shí)域抽取FFT運(yùn)算中,要對(duì)輸入信號(hào)x(n)的排列順序進(jìn)行“擾亂”。在16點(diǎn)FFT中,原來(lái)x(9)的位置擾亂后信號(hào)為: 。 A. x(7) B. x(9) C. x(1) D. x(15) 二、概念填空題 1.系統(tǒng)的因果性是指系統(tǒng)n時(shí)刻輸出只取決于n時(shí)刻以及n時(shí)刻以前的輸入序列,而和n時(shí)刻以后的輸入序列無(wú)關(guān)。線性時(shí)不變系統(tǒng)具有因果性的充分必要條件是:h(n)=0,n<0。 2.為

13、對(duì)某模擬信號(hào)作譜分析,以10kHz的速率對(duì)其進(jìn)行采樣,采樣點(diǎn)的間隔為T=s,若計(jì)算1024個(gè)采樣點(diǎn)的DFT來(lái)進(jìn)行信號(hào)的譜分析,則該信號(hào)的觀察時(shí)寬TP=s,信號(hào)頻譜分辨率(譜樣點(diǎn)之間的間隔)Hz。 3.系統(tǒng)的穩(wěn)定性是指:若系統(tǒng)的輸入有界,則系統(tǒng)的輸出也是有界的。線性時(shí)不變系統(tǒng)穩(wěn)定的充分必要條件是系統(tǒng)的單位脈沖響應(yīng)絕對(duì)可和,用公式表示為。 4.基2DIT—FFT或DIF—FFT算法在時(shí)域或頻域通過(guò)將長(zhǎng)序列的DFT 不斷地分解成若干個(gè)短序列的DFT,并利用旋轉(zhuǎn)因子的周期性和對(duì)稱性來(lái)減少DFT的運(yùn)算次數(shù)。 三、判斷說(shuō)明題 1.一離散系統(tǒng),當(dāng)其輸入為x(n)時(shí),輸出為y(n)=7x2(n-1)

14、,試判斷該系統(tǒng)是否為線性系統(tǒng)?并簡(jiǎn)述理由。 答:1、判斷:不是 簡(jiǎn)述:因?yàn)橄到y(tǒng)不滿足疊加原理。例如:而,即:,不滿足疊加原理。 2.一個(gè)N點(diǎn)DFT,其中,當(dāng)采用基2 DIT—FFT計(jì)算時(shí),其復(fù)數(shù)乘法次數(shù)最多為,試判斷是否正確?并說(shuō)明理由。 答:判斷:正確 簡(jiǎn)述:采用DIT—FFT運(yùn)算,共分解成級(jí),每級(jí)有N/2個(gè)蝶形,每個(gè)蝶形需要一次復(fù)數(shù)乘法,所以共需要復(fù)數(shù)運(yùn)算。 3.設(shè)有二個(gè)離散序列h(n)和x(n),序列長(zhǎng)分別為M和N,且N>>M,試問(wèn)直接采用循環(huán)卷積的方法計(jì)算h(n)*x(n)能否節(jié)省運(yùn)算量?并說(shuō)明理由。 答:判斷:不能 簡(jiǎn)述:用循環(huán)卷積計(jì)算線性卷積需要對(duì)短序列補(bǔ)許

15、多零點(diǎn),使N≈M,這樣將增大運(yùn)算量;應(yīng)采用分段處理的方法計(jì)算,例如采用重疊相加法或重疊保存法計(jì)算,方可節(jié)省運(yùn)算量。 4.只要因果序列x(n)具有收斂的Z變換,則其“序列的付氏變換”就一定存在。判斷該說(shuō)法是否正確?并簡(jiǎn)述原因。 答:判斷:不正確 簡(jiǎn)述:“序列的富氏變換”為單位圓上的Z變換,因此,不僅要求序列Z變換存在,而且還要求序列在單位圓上(︱z︱=1)的Z變換存在。 5.只要因果序列x(n)的“序列的富氏變換”存在,則該序列的DFT就一定存在。判斷該說(shuō)法是否正確?并簡(jiǎn)述理由。 答:判斷:不正確 簡(jiǎn)述:序列的富氏變換存在,可能是收斂的無(wú)限長(zhǎng)序列,而DFT定義的序列是有限長(zhǎng)的,因

16、此序列的富氏變換存在不能保證其DFT存在。 6.序列x(n)的DFT就是該序列的頻譜。此提法是否正確?說(shuō)明理由。 答:判斷:不正確 簡(jiǎn)述:有限長(zhǎng)序列的DFT是該序列在頻域(單位圓上)的N點(diǎn)取樣,而不是全部頻譜。 7.一離散序列x(n),若其Z變換X(z)存在,而且X(z)的收斂域?yàn)椋?,判斷x(n)是否為因果序列?并簡(jiǎn)述理由。 答:判斷:是 簡(jiǎn)述:由收斂域知該序列Z變換收斂域在半徑為Rx-的圓的外部,故序列是右邊序列;又因?yàn)槭諗坑虬撄c(diǎn),所以該序列是因果序列。 8..一離散系統(tǒng),當(dāng)其輸入為x(n)時(shí),輸出為y(n)=x(n)+8,試判斷該系統(tǒng)是否為線性系統(tǒng)?并簡(jiǎn)述理由。 答:

17、判斷:不是 簡(jiǎn)述:因?yàn)橄到y(tǒng)不滿足疊加原理。例如:而,即:,不滿足疊加原理。 9.離散序列x(n)為實(shí)、偶序列,試判斷其頻域序列X(k)的虛實(shí)性和奇偶性。 答:判斷:X(k)仍為實(shí)、偶序列 簡(jiǎn)述:由DFT的共軛對(duì)稱性可以證明該結(jié)論。 四、計(jì)算應(yīng)用題 1.求序列x(n)= (0<|a|<1)的Z變換和收斂域。 解: 在上式中:; 所以: 2.設(shè)有一個(gè)線性時(shí)不變因果系統(tǒng),用下列差分方程描述: y(n)=y(n-1)+y(n-2)+x(n-1) 1) 求這個(gè)系統(tǒng)的系統(tǒng)函數(shù)H(z),并指出H(z)的收斂域; 2) 求出這個(gè)系統(tǒng)的單

18、位脈沖響應(yīng)h(n); 3) 判斷這個(gè)系統(tǒng)是否為穩(wěn)定系統(tǒng)。 解:1)對(duì)差分方程兩邊求Z變換,得: (1-z-1-z-2)Y(z)=z-1X(z) 收斂域?yàn)椋? 2)由Z反變換,對(duì)H(z)方程兩邊同除z,有: ,容易求出A=0.4472;B=-0.4472 從而可得:,由Z反變換得: 3)由線性時(shí)不變系統(tǒng)穩(wěn)定性的充要條件知,系統(tǒng)為不穩(wěn)定系統(tǒng)。 3.設(shè)一個(gè)N點(diǎn)序列x(n)的DFT為X(k),試證明x*((-n))NRN(n)的DFT為X*(k)。 證: 4.一欲作頻譜分析的模擬信號(hào)以10kHz的速率被取樣,且計(jì)算了10

19、24個(gè)取樣的DFT,試完成: (1) 說(shuō)明該DFT的物理意義; (2)求出該DFT兩頻率樣點(diǎn)之間的頻率間隔。 解:(1)DFT是一個(gè)有限長(zhǎng)離散信號(hào)的信號(hào)譜的頻域等間隔取樣。 (2) 5.求序列x(n)=- anu(-n-1)(|a|<1)的Z變換和收斂域。 解: 收斂域: 6.設(shè)有一16點(diǎn)序列x(0),x(1),x(2),,x(15),用Couley—Tukey算法做基2FFT運(yùn)算時(shí)需對(duì)輸入序列進(jìn)行“碼位倒置”,試寫出倒序方法和倒序后的序列順序。 解:按照“碼位倒置”方法,容易求得擾亂后的序列順序?yàn)椋? x(0),x(8),x(4),x(12),x(2),x(10

20、),x(6),x(14),x(1),x(9),x(5),x(13),x(3),x(11),x(7),x(15) 7.設(shè)h(n)是某線性時(shí)不變系統(tǒng)的單位脈沖響應(yīng),試證明對(duì)任意輸入x(n),其輸出y(n)為: 解:∵ ∴由時(shí)不變特性,有: 而又因?yàn)閷?duì)任意序列,有: 由線性性,有: 8.試證明:若x(n)是實(shí)偶對(duì)稱的,即x(n)=x(N-n);則其頻域序列X(k)也是實(shí)偶對(duì)稱的。 解:因?yàn)椋? k=0,1,…,N-1 由于x(n)是關(guān)于N的實(shí)偶序列,而是關(guān)于N的奇序列,

21、所以有: 亦即:為實(shí)序列; 又有: 9.設(shè)N點(diǎn)實(shí)序列x(n)=-x(N-n),X(k)=DFT[x(n)],試證明X(k)是純虛序列,而且滿足X(k)=-X(N-k)。 解:因?yàn)椋? k=0,1,…,N-1 由于x(n)是關(guān)于N的奇序列,而是關(guān)于N的偶序列,所以有:, 亦即:為純虛序列; 又有: 所以: 10.設(shè)x(n)是有限長(zhǎng)復(fù)序列,X(k)是它的DFT。 試證明DFT[x*(n)]=X*(-k)和DFT[x*(-n)]= X*(k)。 解:1) 2) 11.研究一個(gè)復(fù)序列x(n),x(n)=xr(n)+jxi(n),其中xr(n)和xi(

22、n)是實(shí)序列,序列x(n)的z變換X(z)在單位圓的下半部分為零,即當(dāng)時(shí),。x(n)的實(shí)部為: 試求的實(shí)部和虛部。 解:因?yàn)? 所以有: 由題設(shè)當(dāng)時(shí), ,從而有: 而已知: 所以: 由此可得: 一、思考題 1.IIR系統(tǒng)級(jí)聯(lián)型結(jié)構(gòu)的一個(gè)主要優(yōu)點(diǎn)是 。 A.實(shí)現(xiàn)簡(jiǎn)單 B.所需器件最省 C.降低有限字長(zhǎng)效應(yīng)的影響 D.無(wú)誤差積累 2.全通網(wǎng)絡(luò)是指

23、 。 A. 對(duì)任意時(shí)間信號(hào)都能通過(guò)的系統(tǒng) B. 對(duì)任意相位的信號(hào)都能通過(guò)的系統(tǒng) C. 對(duì)信號(hào)的任意頻率分量具有相同的幅度衰減的系統(tǒng) D. 任意信號(hào)通過(guò)后都不失真的系統(tǒng) 3.利用模擬濾波器設(shè)計(jì)法設(shè)計(jì)IIR數(shù)字濾波器的方法是先設(shè)計(jì)滿足相應(yīng)指標(biāo)的模擬濾波器,再按某種方法將模擬濾波器轉(zhuǎn)換成數(shù)字濾波器。脈沖響應(yīng)不變法是一種時(shí)域上的轉(zhuǎn)換方法,即它使 。 A. 模擬濾波器的頻譜與數(shù)字濾波器頻譜相同 B. 模擬濾波器結(jié)構(gòu)與數(shù)字濾波器相似 C. 模擬濾波器的頻率成分與數(shù)字濾波器頻率成分成正比 D. 模擬濾波器的沖激響應(yīng)與數(shù)字濾波器的脈沖響應(yīng)在采樣點(diǎn)處相

24、等 4.雙線性變換法的最重要優(yōu)點(diǎn)是: ;主要缺點(diǎn)是 。 A. 無(wú)頻率混疊現(xiàn)象;模擬域頻率與數(shù)字域頻率間為非線性關(guān)系 B. 無(wú)頻率混疊現(xiàn)象;二次轉(zhuǎn)換造成較大幅度失真 C. 無(wú)頻率失真;模擬域頻率與數(shù)字域頻率間為非線性關(guān)系 D. 無(wú)頻率失真;二次轉(zhuǎn)換造成較大幅度失真 5.IIR濾波器必須采用 型結(jié)構(gòu),而且其系統(tǒng)函數(shù)H(z)的極點(diǎn)位置必須在 。 A. 遞歸;單位圓外 B. 非遞歸;單位圓外 C. 非遞歸;單位圓內(nèi) D. 遞歸;單位圓內(nèi) 6.在通信領(lǐng)域

25、中,若對(duì)相位要求不敏感的場(chǎng)合,如語(yǔ)音通信等,選用 濾波器較為合適。 A.FIR型 B. IIR型 C.遞歸型 D.非遞歸型 7.IIR系統(tǒng)并聯(lián)型結(jié)構(gòu)與級(jí)聯(lián)型結(jié)構(gòu)相比較,最主要的優(yōu)點(diǎn)是 。 A. 調(diào)整零點(diǎn)方便 B. 結(jié)構(gòu)簡(jiǎn)單,容易實(shí)現(xiàn) C. 無(wú)有限字長(zhǎng)效應(yīng) D. 無(wú)誤差積累 8.在數(shù)字信號(hào)處理中,F(xiàn)IR系統(tǒng)的最主要特點(diǎn)是: 。 A. 實(shí)現(xiàn)結(jié)構(gòu)簡(jiǎn)單 B. 容易實(shí)現(xiàn)線性相位 C. 運(yùn)算量小 D

26、. 容易實(shí)現(xiàn)復(fù)雜的頻率特性 9.利用模擬濾波器設(shè)計(jì)法設(shè)計(jì)IIR數(shù)字濾波器的方法是先設(shè)計(jì)滿足相應(yīng)指標(biāo)的模擬濾波器,再按某種方法將模擬濾波器轉(zhuǎn)換成數(shù)字濾波器。雙線性變換法是一種二次變換方法,即它 。 A. 通過(guò)付氏變換和Z變換二次變換實(shí)現(xiàn) B. 通過(guò)指標(biāo)變換和頻譜變換二次變換實(shí)現(xiàn) C. 通過(guò)二次變換,使得變換后S平面與Z平面間為一種單值映射關(guān)系 D. 通過(guò)模擬頻率變換和數(shù)字頻率變換二次變換實(shí)現(xiàn) 10.由于脈沖響應(yīng)不變法可能產(chǎn)生 ;因此脈沖響應(yīng)不變法不適合用于設(shè)計(jì) 。 A. 頻率混疊

27、現(xiàn)象;高通、帶阻濾波器 B. 頻率混疊現(xiàn)象;低通、帶通濾波器 C. 時(shí)域不穩(wěn)定現(xiàn)象;高通、帶阻濾波器 D. 時(shí)域不穩(wěn)定現(xiàn)象;低通、帶通濾波器 11.一個(gè)線性相位FIR濾波器的單位脈沖響應(yīng)為奇對(duì)稱、長(zhǎng)度為奇數(shù)點(diǎn),則該濾波器適宜作: 。 A. 低通 B. 高通 C. 帶通 D. 帶阻 12.FIR濾波器主要采用 型結(jié)構(gòu),其系統(tǒng)函數(shù)H(z)不存在 。 A.非遞歸;因果性問(wèn)題 B.遞歸;因果性問(wèn)題 C. 非遞歸;穩(wěn)定性問(wèn)題 D. 遞歸;穩(wěn)定性問(wèn)題 13.在通信領(lǐng)域中,若對(duì)相

28、位要求高的場(chǎng)合,如圖象通信、數(shù)據(jù)通信等,最好選用 濾波器。 A.FIR型 B. IIR型 C.遞歸型 D.全通型 14.一個(gè)線性相位FIR濾波器的單位脈沖響應(yīng)為偶對(duì)稱、長(zhǎng)度為偶數(shù)點(diǎn),則該濾波器適宜作: 。 A.低通 B. 高通 C. 點(diǎn)阻 D. 帶阻 15.一個(gè)線性相位FIR濾波器的單位脈沖響應(yīng)為奇對(duì)稱、長(zhǎng)度為偶數(shù)點(diǎn),則該濾波器適宜作: 。 A.低通 B. 高通 C. 點(diǎn)阻 D. 帶阻 16.在數(shù)字信號(hào)處理中通常定義的數(shù)字頻率ω是歸一

29、化頻率,歸一化因子為 。 A.采樣周期 B. 模擬采樣角頻率 C. 模擬采樣頻率 D. 任意頻率 17.信號(hào)數(shù)字頻譜與模擬頻譜間的一個(gè)顯著區(qū)別在于數(shù)字頻譜具有 。 A.周期性 B. 更大的精確度 C. 更好的穩(wěn)定性 D. 更高的分辨率 18.?dāng)?shù)字信號(hào)處理存在有限字長(zhǎng)效應(yīng),適當(dāng)增加信號(hào)描述字長(zhǎng)將 。 A.增大其影響 B. 消除其影響 C. 減小其影

30、響 D. 對(duì)其無(wú)影響 二、概念填空題 1.利用付氏級(jí)數(shù)法設(shè)計(jì)FIR數(shù)字濾波器時(shí),首先由已給出的用付氏級(jí)數(shù)展開的方法求出hd(n)(理想的單位脈沖響應(yīng)),然后用RN(n)(N點(diǎn)矩形窗或N點(diǎn)矩形序列)截取該序列就得到設(shè)計(jì)濾波器的h(n)(單位脈沖響應(yīng))序列。由于截取就會(huì)產(chǎn)生誤差,這種截取誤差在頻域稱作吉布斯效應(yīng),該效應(yīng)將引起濾波器通阻帶的波動(dòng)(不平穩(wěn))性,從而使阻帶的衰減(最小衰減)減小。 2.選擇不同形狀的窗函數(shù)截取可以改善FIR濾波器的特性,常用的窗函數(shù)有:三角窗、漢寧窗、哈明窗、布萊克曼窗等,調(diào)整窗函數(shù)的長(zhǎng)度N可以有效地控制過(guò)渡帶的寬度,適當(dāng)選擇形狀的窗函

31、數(shù)可使阻帶衰減增大。 3.脈沖響應(yīng)不變法是一種時(shí)域變換方法,它使h(n)(數(shù)字濾波器單位脈沖響應(yīng))在采樣點(diǎn)上等于ha(t)(模擬濾波器沖激響應(yīng))。為了避免產(chǎn)生頻譜混疊現(xiàn)象,在設(shè)計(jì)時(shí)要求對(duì)應(yīng)的模擬濾波器帶限于折疊頻率(π/T)以內(nèi)。 4.如果FIR濾波器的單位脈沖響應(yīng)h(n)為實(shí)序列,且滿足偶對(duì)稱(奇對(duì)稱) 或奇對(duì)稱(偶對(duì)稱) ,其對(duì)稱中心在 處,則濾波器就具有嚴(yán)格的線性相位特性 。 5.利用窗函數(shù)法設(shè)計(jì)FIR濾波器時(shí),從時(shí)域出發(fā),把濾波器理想的單位脈沖響應(yīng)hd(n)用一定形狀的窗函數(shù)截取成 有限長(zhǎng)的單位脈沖響應(yīng)h(n ),以此h(n)來(lái)逼近理想的hd(n)。 6.?dāng)?shù)字濾波器計(jì)算機(jī)輔助

32、設(shè)計(jì)是一種采用某種優(yōu)化逼近方法,使設(shè)計(jì)的濾波器頻響逼近理想濾波器頻率響應(yīng),使其達(dá)到最優(yōu)濾波器特性的一種方法。 三、判斷說(shuō)明題 1.采用頻率取樣結(jié)構(gòu)實(shí)現(xiàn)FIR數(shù)字濾波器時(shí),其結(jié)構(gòu)由一個(gè)梳狀濾波器和N個(gè)一階網(wǎng)絡(luò)并聯(lián)結(jié)構(gòu)級(jí)聯(lián)構(gòu)成,因此,只要濾波器單位脈沖響應(yīng)h(n)的長(zhǎng)度N相同,對(duì)于任何頻響形狀,其濾波器結(jié)構(gòu)均相同。以上說(shuō)法是否正確?并說(shuō)明理由。 判斷:正確 簡(jiǎn)述:按照頻率采樣濾波器結(jié)構(gòu)的推導(dǎo),上述說(shuō)法是正確的,這正是頻率采樣結(jié)構(gòu)的一個(gè)優(yōu)點(diǎn)。但對(duì)于不同的頻響形狀,N個(gè)并聯(lián)一階節(jié)的支路增益H(k)不同。 2.在數(shù)字濾波器設(shè)計(jì)中常用先設(shè)計(jì)相應(yīng)的模擬濾波器Ha(s),再通過(guò)某種映射將Ha(s

33、)轉(zhuǎn)換成數(shù)字濾波器的系統(tǒng)函數(shù)H(z)的方法設(shè)計(jì)。為了保證轉(zhuǎn)換后的H(z)仍滿足技術(shù)指標(biāo)要求,要求轉(zhuǎn)換關(guān)系必須滿足:因果穩(wěn)定的模擬濾波器轉(zhuǎn)換成數(shù)字濾波器后,仍是因果穩(wěn)定的。有人將上述要求改述為:轉(zhuǎn)換關(guān)系應(yīng)使S平面的左半平面轉(zhuǎn)換到Z平面的單位圓內(nèi)。上述說(shuō)法是否一致?并說(shuō)明理由。 判斷:一致 簡(jiǎn)述:由于對(duì)模擬濾波器而言,因果穩(wěn)定系統(tǒng)傳遞函數(shù)Ha(s)的極點(diǎn)均在S平面的左半平面,只要轉(zhuǎn)換關(guān)系滿足使S平面的左半平面轉(zhuǎn)換到Z平面的單位圓內(nèi),就保證了轉(zhuǎn)換后數(shù)字濾波器系統(tǒng)函數(shù)H(z)的極點(diǎn)全部在Z平面的單位圓內(nèi),從而保證了系統(tǒng)的因果穩(wěn)定性。 3.IIR濾波器采用遞歸型結(jié)構(gòu)實(shí)現(xiàn),又稱為遞歸濾波器;FI

34、R采用非遞歸型結(jié)構(gòu)實(shí)現(xiàn),又稱為非遞歸濾波器。試判斷此說(shuō)法是否正確?并說(shuō)明理由。 判斷:不對(duì) 簡(jiǎn)述:正確的表述應(yīng)為:IIR濾波器只能采用遞歸型結(jié)構(gòu)實(shí)現(xiàn);FIR濾波器一般采用非遞歸型結(jié)構(gòu)實(shí)現(xiàn),但也可使結(jié)構(gòu)中含有遞歸支路。就是說(shuō)濾波器結(jié)構(gòu)與特性沒(méi)有必然的聯(lián)系。 4.在數(shù)字濾波器設(shè)計(jì)中常用先設(shè)計(jì)相應(yīng)的模擬濾波器Ha(s),再通過(guò)某種映射將Ha(s)轉(zhuǎn)換成數(shù)字濾波器的系統(tǒng)函數(shù)H(z)的方法設(shè)計(jì)。為了保證轉(zhuǎn)換后的H(z)仍滿足技術(shù)指標(biāo)要求,要求轉(zhuǎn)換關(guān)系必須滿足:模擬域的頻率轉(zhuǎn)換成數(shù)字域的頻率。有人將上述要求改述為:轉(zhuǎn)換關(guān)系應(yīng)使S平面的jΩ軸轉(zhuǎn)換到Z平面的單位圓上。上述說(shuō)法是否一致?并說(shuō)明理由。

35、 判斷:一致 簡(jiǎn)述:由于對(duì)模擬域而言,其頻率軸就是S平面的虛軸jΩ軸,而對(duì)數(shù)字域來(lái)說(shuō),其頻率軸是Z平面的單位圓,因此兩者是一致的。 四、計(jì)算應(yīng)用題 1.設(shè)某濾波器的系統(tǒng)函數(shù)為: 1)若用級(jí)聯(lián)型結(jié)構(gòu)實(shí)現(xiàn),畫出系統(tǒng)的結(jié)構(gòu)流圖; 2)若用直接Ⅱ型結(jié)構(gòu)實(shí)現(xiàn),畫出系統(tǒng)的結(jié)構(gòu)流圖。 解:1)容易將H(z)寫成級(jí)聯(lián)型的標(biāo)準(zhǔn)形式如下: 顯見,該系統(tǒng)的級(jí)聯(lián)結(jié)構(gòu)由一個(gè)直接Ⅱ型一階節(jié)和一個(gè)直接Ⅱ型二階節(jié)級(jí)聯(lián)而成,因此容易畫出該系統(tǒng)的級(jí)聯(lián)型結(jié)構(gòu)圖如圖A-1所示。 2)容易將H(z)寫成直接Ⅱ型的標(biāo)準(zhǔn)形式如下: 從而容易畫出該系統(tǒng)的直接Ⅱ型結(jié)構(gòu)圖如圖A-2所示。 圖A—1

36、圖A—2 2.設(shè)某FIR系統(tǒng)的系統(tǒng)函數(shù)為: 1) 求出該系統(tǒng)的h(n),并作圖表示; 2) 寫出描述該系統(tǒng)的差分方程; 3) 判斷該系統(tǒng)的因果性和穩(wěn)定性。 解:1)由FIR系統(tǒng)函數(shù)表述關(guān)系,容易寫出該系統(tǒng)的單位脈沖相應(yīng)為: 畫出h(n)的圖形如圖A—3所示。 0 1 2 3 4 5 6 2 1 1/3 0 0 1/5 n 圖A—3 2)由系統(tǒng)函數(shù)容易求出系統(tǒng)的差分方程為: 所以有: 對(duì)上式兩邊求Z反變換,可得: 3)由線性時(shí)不變系統(tǒng)因果性和穩(wěn)定性的充分必要條件,容易判斷知:該系統(tǒng)為因果穩(wěn)定系統(tǒng)

37、。 3.設(shè)某濾波器的系統(tǒng)函數(shù)為: 1)若用級(jí)聯(lián)型結(jié)構(gòu)實(shí)現(xiàn),畫出系統(tǒng)的結(jié)構(gòu)流圖; 2)若用直接Ⅱ型結(jié)構(gòu)實(shí)現(xiàn),畫出系統(tǒng)的結(jié)構(gòu)流圖。 解:1)容易將H(z)寫成級(jí)聯(lián)型的標(biāo)準(zhǔn)形式如下: 顯見,該系統(tǒng)的級(jí)聯(lián)結(jié)構(gòu)由一個(gè)直接Ⅱ型一階節(jié)和一個(gè)直接Ⅱ型二階節(jié)級(jí)聯(lián)而成,因此容易畫出該系統(tǒng)的級(jí)聯(lián)型結(jié)構(gòu)圖如圖A-4所示。 2)容易將H(z)寫成直接Ⅱ型的標(biāo)準(zhǔn)形式如下: 從而容易畫出該系統(tǒng)的直接Ⅱ型結(jié)構(gòu)圖如圖A-5所示。 圖A—4 圖A—5 4.設(shè)有一個(gè)線性時(shí)不變因果系統(tǒng),用下列差分方程描述: y(n)=y(n-1)+y(n-2)+x(n-1) 1)求這個(gè)系

38、統(tǒng)的系統(tǒng)函數(shù)H(z),畫出H(z)的零點(diǎn)和極點(diǎn)圖,并指出H(z)的收斂域; 2)出這個(gè)系統(tǒng)的單位脈沖響應(yīng)h(n);判斷這個(gè)系統(tǒng)是否為穩(wěn)定系統(tǒng); x(n) -rsinq rcosq rsinq rcosq z-1 z-1 y(n) 3)畫出這個(gè)系統(tǒng)的實(shí)現(xiàn)結(jié)構(gòu)方框圖。 解:1)對(duì)差分方程兩邊求Z變換,得: (1-z-1-z-2)Y(z)=z-1X(z) 收斂域?yàn)椋? 2)由Z反變換,對(duì)H(z)方程兩邊同除z,有: 容易求出A=0.4472;B=-0.4472。從而可得: 由Z反變換得: 3)由線性時(shí)

39、不變系統(tǒng)穩(wěn)定性的充要條件知,系統(tǒng)為不穩(wěn)定系統(tǒng)。 5.關(guān)于濾波器結(jié)構(gòu)試完成以下工作: 圖P-1 1) 數(shù)字濾波器的差分方程為: 試按下列形式畫出該濾波器的結(jié)構(gòu)流圖: (1)直接型 (2)正準(zhǔn)型 (3)級(jí)聯(lián)型 (4)并聯(lián)型 級(jí)聯(lián)型和并聯(lián)型流圖中只允許使用一階節(jié)實(shí)現(xiàn)。 2)求出圖P-1所示結(jié)構(gòu)的差分方程和系統(tǒng)函數(shù)。 解:1)對(duì)差分方程兩邊求Z變換有: 從而系統(tǒng)的系統(tǒng)函數(shù)為: 由此可畫出系統(tǒng)的直接型、正準(zhǔn)型、級(jí)聯(lián)型和并聯(lián)型如圖A-6、圖A-7、圖A-8和圖A-9所示。 A-8 z

40、-1 1/4 1/3 1/2 z-1 y(n) A-7 A-9 z-1 z-1 3/4 -1/8 1/3 y(n) 1/4 z-1 z-1 1/2 -7/3 10/3 y(n) A-6 z-1 z-1 z-1 1/3 3/4 -1/8 y(n) 2)設(shè)在圖P-1上面右邊節(jié)點(diǎn)為y1(n),則有: 對(duì)上式兩端求Z變換,有: 對(duì)上式兩端求Z變換,并做整理后有: 從而有: 從而可得,系統(tǒng)函數(shù)為: 進(jìn)而可得系統(tǒng)的差分方程為: 6.用信號(hào)流圖畫出以下系統(tǒng)函數(shù)所對(duì)應(yīng)的直接型和正準(zhǔn)型結(jié)構(gòu): 1) 2

41、) 解:1)先將系統(tǒng)函數(shù)改寫成: 從而可以容易地畫出直接型和正準(zhǔn)型結(jié)構(gòu)如圖A-10和A-11所示。 A-10 2.4 1.6 4 -4 -3 -2 z-1 z-1 z-1 z-1 z-1 z-1 y(n) 1.6 y(n) 2.4 -4 -3 -2 1.6 4 z-1 z-1 z-1 A-11 從而可以容易地畫出直接型和正準(zhǔn)型結(jié)構(gòu)如圖A-12和A-13所示。 y(n) z-1 z-1 z-1 z-1 1/4 -1/8 1/4 3/8 A-12 y(n) -1/8 1/4 z-1 z-1 1/4

42、 3/8 A-13 7.試用雙線性變換法設(shè)計(jì)一個(gè)數(shù)字巴特沃思低通濾波器,其技術(shù)指標(biāo)為: 2) 在ω≤0.5π的通帶內(nèi),衰減小于等于3dB; 3) 在0.75π≤ω≤π的阻帶范圍內(nèi),衰減大于等于15dB。 注:設(shè)T=1,給出; ;; 歸一化原型巴特沃思低通濾波器傳遞函數(shù): N=2 N=3 解:1)將數(shù)字濾波器指標(biāo)轉(zhuǎn)換為相應(yīng)的模擬濾波器指標(biāo) 2)計(jì)算模擬濾波器階數(shù)N 取N=2 3)由給出的歸一化原型巴特沃思低通濾波器傳遞函數(shù)可得所設(shè)計(jì)的模擬濾波器傳遞函數(shù)為: 4)用雙線性變

43、換法求出數(shù)字低通濾波器系統(tǒng)函數(shù)為: 8.用雙線性變換設(shè)計(jì)一個(gè)巴特沃思數(shù)字低通濾波器,要求: 1) 在頻率小于等于2.5Hz的通帶內(nèi),衰減小于等于3dB; 2) 在頻率大于等于50Hz的阻帶內(nèi),衰減大于等于40dB; 3) 采樣頻率fs=200Hz。 注:設(shè)T=1,給出; ;; 歸一化原型巴特沃思低通濾波器傳遞函數(shù): N=2 N=3 解:1)將濾波器指標(biāo)轉(zhuǎn)換到數(shù)字域 2)將數(shù)字濾波器指標(biāo)轉(zhuǎn)換為相應(yīng)的模擬濾波器指標(biāo) 3)計(jì)算模擬濾波器階數(shù)N 取N=2 4)由

44、給出的歸一化原型巴特沃思低通濾波器傳遞函數(shù)可得所設(shè)計(jì)的模擬濾波器傳遞函數(shù)為: 5)用雙線性變換法求出數(shù)字低通濾波器系統(tǒng)函數(shù)為: 9.設(shè)某數(shù)字濾波器的運(yùn)算速率(即取樣速率)為fsa=16kHz,對(duì)于圖P-2所示的技術(shù)指標(biāo),請(qǐng)用巴特沃思逼近、雙線性變換方法設(shè)計(jì)出該濾波器的系統(tǒng)函數(shù)H(z)。 解: 1) 將指標(biāo)轉(zhuǎn)換到數(shù)字域: 2) 將指標(biāo)轉(zhuǎn)換到設(shè)計(jì)域: 設(shè),則: 3) 設(shè)計(jì):由巴特沃思設(shè)計(jì)法: 取N=2 求的極點(diǎn),由: k=1,2 可得: 所以有: 4) 對(duì)進(jìn)行雙線性變換,求H(z):

45、 將C=2.4142代入,經(jīng)整理得: 圖P-2 10.寫出下列算法的實(shí)現(xiàn)步驟,并畫出相應(yīng)的計(jì)算機(jī)程序流程。 1)采用重疊保存法計(jì)算線性卷積,信號(hào)序列x(n),長(zhǎng)度為N1,系統(tǒng)單位脈沖響應(yīng)h(n),長(zhǎng)度為N2,而且N1>> N2。 2) 切比雪夫逼近法設(shè)計(jì)FIR濾波器過(guò)程中采用的Remez算法。 解:1)重疊保存法算法步驟為: a)先將x(n)分解成: b)利用FFT 算出: c)拋棄yi(n)的前N1-1個(gè)點(diǎn); d)將各個(gè)yi(n)順序連接起來(lái),即得到最終的卷積結(jié)果序列y(n)。 程序流程圖略。

46、 2)Remez算法步驟如下: a)在頻率子集F上等間隔地取個(gè)頻率點(diǎn),作為交錯(cuò)點(diǎn)組的初始值,然后按下式計(jì)算ρ: 式中: 利用拉格朗日插值公式(由數(shù)學(xué)上可以證明,滿足最佳一致逼近的多項(xiàng)式為拉格朗日多項(xiàng)式,可見如《數(shù)值逼近》),不求a(n)即可得到初始的: 式中: b)在子集F上,對(duì)所有頻率ω計(jì)算E(ω),判斷是否對(duì)所有頻率均有:,若是,則為交錯(cuò)點(diǎn)組,逼近結(jié)束;否則需要重新設(shè)立新的交錯(cuò)點(diǎn)組,其方法如下。 c)對(duì)前一次設(shè)定的交錯(cuò)點(diǎn)組中的每個(gè)點(diǎn),都在其附近檢查是否在某個(gè)頻率處有(通常在兩交錯(cuò)點(diǎn)間設(shè)立一定的頻率點(diǎn)密

47、度,如設(shè)立16點(diǎn)),若有,則在該點(diǎn)附近找出局部極值點(diǎn),并用這局部極值點(diǎn)代替原來(lái)的點(diǎn),待N1+2個(gè)點(diǎn)檢查完畢后,便得到一組新的交錯(cuò)點(diǎn)組。完成一次迭代。 d)用新得到的交錯(cuò)點(diǎn)組,重復(fù)1~3步,直至到達(dá)ρ的極限(是隨著迭代次數(shù)遞增的,當(dāng)ρ到達(dá)其上限時(shí),對(duì)應(yīng)的即為最佳逼近Hd(ω)的解),就確定了,結(jié)束迭代。 e)由作反變換,求得單位脈沖響應(yīng)h(n)。 程序流程圖略。 11.設(shè)某數(shù)字濾波器的運(yùn)算速率(即取樣速率)為fsa=8kHz,對(duì)于圖P-3所示的技術(shù)指標(biāo),請(qǐng)用巴特沃思逼近、雙線性變換方法設(shè)計(jì)出該濾波器的系統(tǒng)函數(shù)H(z)。 1 0 2 3 4 5 6 7 8 9 f(kHz) a(dB) 15dB 3dB 3dB 圖P-3 解:1)將指標(biāo)轉(zhuǎn)換到數(shù)字域: 2) 指標(biāo)轉(zhuǎn)換到設(shè)計(jì)域: 設(shè),則: 3) 設(shè)計(jì):由巴特沃思設(shè)計(jì)法: 取N=2 求的極點(diǎn),由: k=1,2 可得: 所以有: 4) 對(duì)進(jìn)行雙線性變換,求H(z): 將C=2.4142代入,經(jīng)整理得: 26

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!