(名師導學)2020版高考數(shù)學總復習 第十章 直線與圓、圓錐曲線 第64講 圓的方程練習 理(含解析)新人教A版

上傳人:Sc****h 文檔編號:119227712 上傳時間:2022-07-14 格式:DOCX 頁數(shù):15 大小:2.39MB
收藏 版權申訴 舉報 下載
(名師導學)2020版高考數(shù)學總復習 第十章 直線與圓、圓錐曲線 第64講 圓的方程練習 理(含解析)新人教A版_第1頁
第1頁 / 共15頁
(名師導學)2020版高考數(shù)學總復習 第十章 直線與圓、圓錐曲線 第64講 圓的方程練習 理(含解析)新人教A版_第2頁
第2頁 / 共15頁
(名師導學)2020版高考數(shù)學總復習 第十章 直線與圓、圓錐曲線 第64講 圓的方程練習 理(含解析)新人教A版_第3頁
第3頁 / 共15頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(名師導學)2020版高考數(shù)學總復習 第十章 直線與圓、圓錐曲線 第64講 圓的方程練習 理(含解析)新人教A版》由會員分享,可在線閱讀,更多相關《(名師導學)2020版高考數(shù)學總復習 第十章 直線與圓、圓錐曲線 第64講 圓的方程練習 理(含解析)新人教A版(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第64講 圓的方程 夯實基礎 【p146】 【學習目標】 1.掌握圓的標準方程和一般方程,會用圓的方程及其幾何性質(zhì)解題. 2.能根據(jù)所給條件選取適當?shù)姆匠绦问?,利用待定系?shù)法求出圓的方程,解決與圓有關的問題. 【基礎檢測】 1.當圓x2+y2+2x+2ky+2k2=0的面積最大時,圓心坐標是(  ) A.(0,-1) B.(-1,0) C.(1,-1) D.(-1,1) 【解析】因為x2+y2+2x+2ky+2k2=0,所以(x+1)2+(y+k)2=1-k2,因此圓面積為(1-k2)π,∴k=0時圓面積最大,此時圓心坐標為(-1,0). 【答案】B 2.若點(2a,

2、a+1)在以(0,1)為圓心,半徑為的圓內(nèi),則實數(shù)a的取值范圍是(  ) A.(-1,1) B.(0,1) C.D. 【解析】由題意,4a2+a2<5, 即a2<1, 解之得:-1<a<1. 【答案】A 3.方程ax2+ay2-4(a-1)x+4y=0表示圓,則a的取值范圍是(  ) A.a(chǎn)∈RB.a(chǎn)≠1且a∈R C.a(chǎn)≠0且a∈RD.a(chǎn)∈(0,4] 【解析】∵a≠0時,方程為+=,由a2-2a+2>0恒成立,∴a≠0且a∈R時方程表示圓. 【答案】C 4.圓C是以直線l:(2m+1)x+(m+1)y+2m=0的定點為圓心,半徑r=4的圓,則圓C的方程為(  ) A

3、.(x+2)2+(y-2)2=16B.(x-2)2+(y-2)2=16 C.(x-2)2+(y+2)2=16D.(x+2)2+(y+2)2=16 【解析】由(2m+1)x+(m+1)y+2m=0有(2x+y+2)m+(x+y)=0,所以直線過定點(-2,2),則所求圓的方程為(x+2)2+(y-2)2=16. 【答案】A 5.在平面直角坐標系中,三點O(0,0),A(2,4),B(6,2),則三角形OAB的外接圓方程是________. 【解析】設三角形OAB的外接圓方程是x2+y2+Dx+Ey+F=0, 由點O(0,0),A(2,4),B(6,2)在圓上, 可得解得 所以三角

4、形的外接圓的方程為x2+y2-6x-2y=0. 【答案】x2+y2-6x-2y=0 【知識要點】 1.圓的定義 平面內(nèi)與定點的距離等于定長的點的集合,其中定點是圓心,定長為半徑. 2.圓的方程 (1)圓的標準方程 圓心是(a,b),半徑是r的圓的標準方程是__(x-a)2+(y-b)2=r2__. 當圓心在(0,0)時,方程為__x2+y2=r2__. (2)圓的一般方程x2+y2+Dx+Ey+F=0可變形為+=____. 故有:①當D2+E2-4F>0時,方程表示以____為圓心,以____為半徑的圓; ②當D2+E2-4F=0時,方程表示一個點____; ③當D2+

5、E2-4F<0時,方程不表示任何圖形. (3)點P(x0,y0)與圓(x-a)2+(y-b)2=r2(r>0)的位置關系: ①若(x0-a)2+(y0-b)2>r2,則點P在圓外; ②若(x0-a)2+(y0-b)2=r2,則點P在圓上; ③若(x0-a)2+(y0-b)2

6、(4,0),(0,2),(0,-2)三點,(4,0),(0,-2)兩點的垂直平分線方程為y+1=-2(x-2), 令y=0,解得x=,圓心為,半徑為. 【答案】+y2= 根據(jù)下列條件,求圓的方程. (1)經(jīng)過P(-2,4)、Q(3,-1)兩點,并且在x軸上截得的弦長等于6; (2)圓心在直線y=-4x上,且與直線l:x+y-1=0相切于點P(3,-2). 【解析】(1)設圓的方程為x2+y2+Dx+Ey+F=0, 將P,Q兩點的坐標分別代入得 又令y=0,得x2+Dx+F=0.③ 設x1,x2是方程③的兩根, 由|x1-x2|=6有D2-4F=36,④ 由①、②、④解

7、得D=-2,E=-4,F(xiàn)=-8,或D=-6,E=-8,F(xiàn)=0. 故所求圓的方程為 x2+y2-2x-4y-8=0,或x2+y2-6x-8y=0. (2)法一:如圖,設圓心(x0,-4x0),依題意得=1, ∴x0=1,即圓心坐標為(1,-4),半徑r=2, 故圓的方程為(x-1)2+(y+4)2=8. 法二:設所求方程為(x-x0)2+ (y-y0)2=r2, 根據(jù)已知條件得 解得 因此所求圓的方程為(x-1)2+(y+4)2=8. 【點評】(1)直接法:根據(jù)圓的幾何性質(zhì),直接求出圓心坐標和半徑,進而寫出方程. (2)待定系數(shù)法 ①若已知條件與圓心(a,b)和

8、半徑r有關,則設圓的標準方程,依據(jù)已知條件列出關于a,b,r的方程組,從而求出a,b,r的值; ②若已知條件沒有明確給出圓心或半徑,則選擇圓的一般方程,依據(jù)已知條件列出關于D、E、F的方程組,進而求出D、E、F的值. 考點2 與圓有關的最值問題、范圍問題 已知M為圓C:x2+y2-4x-14y+45=0上任意一點,且點Q(-2,3). (1)求|MQ|的最大值和最小值; (2)若M(m,n),求的最大值和最小值. 【解析】(1)由圓C:x2+y2-4x-14y+45=0, 可得(x-2)2+(y-7)2=8, 所以圓心C的坐標為(2,7),半徑r=2. 又|QC|==4>2,

9、即點Q在圓C外, 所以|MQ|max=4+2=6, |MQ|min=4-2=2. (2)可知表示直線MQ的斜率, 設直線MQ的方程為y-3=k(x+2), 即kx-y+2k+3=0,則=k. 由直線MQ與圓C有交點, 所以≤2, 可得2-≤k≤2+, 所以的最大值為2+,最小值為2-. 【點評】與圓有關的最值問題的常見類型及解題策略 (1)與圓有關的長度或距離的最值問題的解法.一般根據(jù)長度或距離的幾何意義,利用圓的幾何性質(zhì)數(shù)形結(jié)合求解. (2)與圓上點(x,y)有關代數(shù)式的最值的常見類型及解法.①形如u=型的最值問題,可轉(zhuǎn)化為過點(a,b)和點(x,y)的直線的斜率的最

10、值問題;②形如t=ax+by型的最值問題,可轉(zhuǎn)化為動直線的截距的最值問題;③形如(x-a)2+(y-b)2型的最值問題,可轉(zhuǎn)化為動點到定點(a,b)的距離平方的最值問題. 考點3 與圓有關的綜合問題 已知圓C過點P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關于直線x+y+2=0對稱. (1)求圓C的方程; (2)設Q為圓C上的一個動點,求·的最小值; (3)過點P作兩條相異直線分別與圓C相交于A,B,且直線PA和直線PB的傾斜角互補,O為坐標原點,試判斷直線OP和AB是否平行?請說明理由. 【解析】(1)設圓心C(a,b), 則解得 又點P(1,1)在圓C

11、上,故圓C的方程為x2+y2=2. (2)設Q(x,y),則x2+y2=2, ·=(x-1,y-1)·(x+2,y+2) =x2+y2+x+y-4=x+y-2. 所以·的最小值為-4(可由線性規(guī)劃或三角代換求得). (3)由題意知,直線PA和直線PB的斜率存在,且互為相反數(shù),故可設PA:y-1=k(x-1), 則PB:y-1=-k(x-1),由, 得(1+k2)x2+2k(1-k)x+(1-k)2-2=0, 因為點P的橫坐標x=1一定是該方程的解, 故可得xA=, 同理,xB=, 所以kAB== ==1=kOP, 所以直線AB和OP一定平行. 【點評】(1)兩圓關于

12、某直線對稱,其圓心對稱,半徑相等. (2)通過坐標計算數(shù)量積,等價轉(zhuǎn)化為求函數(shù)最值. (3)通過“設而不求”的思想處理. 方法總結(jié)  【p147】 1.在求圓的方程時,應根據(jù)題意,合理選擇圓的方程形式.圓的標準方程突出了圓心坐標和半徑,便于作圖使用;圓的一般方程是二元二次方程的形式,便于代數(shù)運算;而圓的參數(shù)方程在求范圍和最值時應用廣泛.同時,在選擇方程形式時,應熟悉它們的互化.如果問題中給出了圓心與圓上的點兩坐標之間的關系或圓心的特殊位置時,一般用標準方程;如果給出圓上的三個點的坐標,一般用一般方程. 2.在二元二次方程中x2和y2的系數(shù)相等并且沒有xy項,只是表示圓的必要條件而不是

13、充分條件. 3.在解決與圓有關的問題時,要充分利用圓的幾何性質(zhì),這樣會使問題簡化.涉及與圓有關的最值問題或范圍問題時應靈活、恰當運用參數(shù)方程. 走進高考  【p148】 1.(2017·全國卷Ⅲ)已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓. (1)證明:坐標原點O在圓M上; (2)設圓M過點P(4,-2),求直線l與圓M的方程. 【解析】(1)設A,B,l:x=my+2, 由可得y2-2my-4=0,則y1y2=-4. 又x1=,x2=,故x1x2==4. 因此OA的斜率與OB的斜率之積為·==-1, 所以OA⊥OB. 故

14、坐標原點O在圓M上. (2)由(1)可得y1+y2=2m,x1+x2=m+4=2m2+4. 故圓心M的坐標為,圓M的半徑r=, 由于圓M過點P(4,-2),因此·=0, 故+=0, 即x1x2-4+y1y2+2+20=0. 由(1)可得y1y2=-4,x1x2=4, 所以2m2-m-1=0,解得m=1或m=-. 當m=1時,直線l的方程為x-y-2=0,圓心M的坐標為(3,1),圓M的半徑為,圓M的方程為+=10. 當m=-時,直線l的方程為2x+y-4=0,圓心M的坐標為,圓M的半徑為,圓M的方程為+=. 2.(2018·全國卷Ⅱ)設拋物線C:y2=4x的焦點為F,過F且

15、斜率為k(k>0)的直線l與C交于A,B兩點,|AB|=8. (1)求l的方程; (2)求過點A,B且與C的準線相切的圓的方程. 【解析】(1)由題意得F(1,0),l的方程為y=k(x-1)(k>0). 設A(x1,y1),B(x2,y2). 由得k2x2-(2k2+4)x+k2=0. Δ=16k2+16>0,故x1+x2=. 所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=. 由題設知=8,解得k=-1(舍去),k=1. 因此l的方程為y=x-1. (2)由(1)得AB的中點坐標為(3,2),所以AB的垂直平分線方程為y-2=-(x-3),即y=-x+5.

16、 設所求圓的圓心坐標為(x0,y0),則 ,解得或 因此所求圓的方程為(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144. 考點集訓  【p259】 A組題                     1.圓x2+y2-2x+6y+6=0的圓心和半徑分別為(  ) A.圓心(1,3),半徑為2B.圓心(1,-3),半徑為2 C.圓心(-1,3),半徑為4D.圓心(1,-3),半徑為4 【解析】將x2+y2-2x+6y+6=0配方得 (x-1)2+(y+3)2=4, 所以圓心為(1,-3),半徑為2. 【答案】B 2.已知兩點A(-1,3),B(3

17、,a),以線段AB為直徑的圓經(jīng)過原點,則該圓的標準方程為(  ) A.(x-1)2+(y-2)2=5B.(x-1)2+(y-2)2=40 C.(x-1)2+(y-1)2=8D.(x-1)2+(y-1)2=32 【解析】以線段AB為直徑的圓經(jīng)過原點,則OA⊥OB, 所以×=-1,a=1, 線段AB中點為(1,2),半徑r=|AB|=,所以所求圓的方程為(x-1)2+(y-2)2=5. 【答案】A 3.設圓的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,則原點與圓的位置關系是(  ) A.原點在圓上B.原點在圓外 C.原點在圓內(nèi)D.不確定 【解析】將圓的一般方

18、程化成標準方程為(x+a)2+(y+1)2=2a,因為0<a<1, 所以(0+a)2+(0+1)2-2a=(a-1)2>0, 即>,所以原點在圓外. 【答案】B 4.已知點P為直線y=x+1上的一點,M,N分別為圓C1:(x-4)2+(y-1)2=4與圓C2:x2+(y-2)2=1上的點,則|PM|-|PN|的最大值為(  ) A.4B.5C.6D.7 【解析】求得C2(0,2)關于直線y=x+1的對稱點為C(m,n), 由解得C(1,1), 由對稱性可得|PC|=|PC2|, 則|PC1|-|PC2|=|PC1|-|PC|≤|C1C|=3, 由于|PM|≤|PC1|+2,

19、|PN|≥|PC2|-1, ∴|PM|-|PN|≤|PC1|-|PC2|+3≤6, 故|PM|-|PN|的最大值為6. 【答案】C 5.已知圓O:x2+y2=1.圓O′與圓O關于直線x+y-2=0對稱,則圓O′的方程是________________. 【解析】設圓O′的圓心(a,b),因為圓O′的圓心與圓O:x2+y2=1的圓心關于直線l:x+y-2=0對稱, 所以解得a=2,b=2; 又圓的半徑為1,則所求圓的方程為:(x-2)2+(y-2)2=1. 【答案】(x-2)2+(y-2)2=1 6.已知點P(x,y)為圓x2+y2=4上的動點,則x+y的最大值為_______

20、___. 【解析】令x=2cosθ,y=2sinθ(θ∈R), 則x+y=2cosθ+2sinθ=2sin∈[-2,2]. 【答案】2 7.已知圓N的標準方程為(x-5)2+(y-6)2=a2(a>0). (1)若點M(6,9)在圓上,求a的值; (2)已知點P(3,3)和點Q(5,3),線段PQ(不含端點)與圓N有且只有一個公共點,求a的取值范圍. 【解析】(1)因為點M在圓上, 所以(6-5)2+(9-6)2=a2, 又由a>0,可得a=. (2)由兩點間距離公式可得 |PN|==, |QN|==3, 因為線段PQ(不含端點)與圓有且只有一個公共點,即P、Q兩點一

21、個在圓內(nèi)、另一個在圓外,由于3<,所以3

22、2)設切線方程為y=x和x+y=2+a, 則=2和=2, 解得a=±或a=1±2, ∴切線方程為y=±x和x+y=3±2. B組題 1.已知點P(3,2),若點A在圓C:(x-1)2+(y+2)2=4上運動,點B在y軸上運動,則|+|的最小值為________. 【解析】法一:設A(x1,y1),B(0,y2),則+=(x1-6,y1+y2-4). 若設r=|+|,則由題意可得(x1-6)2+(y1+y2-4)2=r2.即點A在以D(6,4-y2)為圓心,以r為半徑的圓D:(x-6)2+(y+y2-4)2=r2上. 由圓C與圓D有公共點A可得r+2≥|CD|=≥5,從而r≥3.

23、 法二:設A(x1,y1),B(0,y2),則+=(x1-6,y1+y2-4). 從而,|+|=≥=6-x1≥3. 法三:由點A在圓C上可設A(1+2cosθ,-2+2sinθ),B(0,t), 則+=(2cosθ-5,t+2sinθ-6). 故|+|=≥=5-2cosθ≥3. 法四:設Q為AB的中點,則+=2,過P,Q,A作y軸的垂線,垂足分別為P′,Q′,A′. 由于|PP′|≤|PQ|+|QQ′|=|PQ|+|AA′|≤|PQ|+, 因此|PQ|≥|PP′|-=,即|+|=2||≥3. 法五:設B′為點B關于點P的對稱點, 則|+|=|-|=||. 由于點B

24、′在直線x=6上,點A在圓C:(x-1)2+(y+2)2=4上可得||≥5-2=3. 法六:同法五,設A′為點A關于點P的對稱點,則|+|=|-′|=||. 由于點A′在圓C′:(x-5)2+(y-6)2=4上,點B在y軸上可得||≥5-2=3. 【答案】3 2.已知點P(x,y)是直線kx+y+4=0(k>0)上一動點,PA,PB是圓C:x2+y2-2y=0的兩條切線,A,B是切點,若四邊形PACB的最小面積是2,則k的值為________________. 【解析】因為圓C:x2+(y-1)2=1的圓心為C(0,1),半徑是r=1,所以四邊形PACB的面積為S=2S△PAC=|P

25、A|×1=,當|PC|最小,即圓心C(0,1)到直線kx+y+4=0的距離d=最小時,四邊形PACB的面積最小,由題設可得-1=4,由k>0,解之得k=2. 【答案】2 3.已知定點A(0,1),B(0,-1),C(1,0),動點P滿足:·=k||2. (1)求動點P的軌跡方程,并說明方程表示的曲線類型; (2)當k=2時,求|2+|的最大值、最小值. 【解析】(1)設動點坐標為P(x,y), 則=(x,y-1),=(x,y+1),=(1-x,-y). 因為·=k||2, 所以x2+y2-1=k[(x-1)2+y2], 整理得(1-k)x2+(1-k)y2+2kx-k-1=0

26、. 若k=1,則方程為x=1,表示過點(1,0)且平行于y軸的直線. 若k≠1,則方程為+y2=, 表示以為圓心,以為半徑的圓. (2)最大值為3+,最小值為-3. 4.在平面直角坐標系xOy中,記二次函數(shù)f(x)=x2+2x+b(x∈R)與兩坐標軸有三個交點,經(jīng)過三個交點的圓記為C. (1)求實數(shù)b的取值范圍; (2)求圓C的方程; (3)問圓C是否經(jīng)過定點(其坐標與b的值無關)?請證明你的結(jié)論. 【解析】(1)令x=0,得拋物線與y軸的交點是(0,b). 令f(x)=x2+2x+b=0, 由題意b≠0且Δ>0,解得b<1且b≠0. (2)設所求圓的一般方程為x2+y

27、2+Dx+Ey+F=0. 令y=0,得x2+Dx+F=0,這與x2+2x+b=0是同一個方程,故D=2,F(xiàn)=b. 令x=0,得y2+Ey+F=0,此方程有一個根為b, 代入得出E=-b-1. 所以圓C的方程為x2+y2+2x-(b+1)y+b=0. (3)圓C必過定點,證明如下: 假設圓C過定點(x0,y0)(x0,y0不依賴于b),將該點的坐標代入圓C的方程, 并變形為x+y+2x0-y0+b(1-y0)=0,(*) 為使(*)式對所有滿足b<1(b≠0)的b都成立, 必須有1-y0=0,結(jié)合(*)式得x+y+2x0-y0=0, 解得或 經(jīng)檢驗,點(0,1),(-2,1)均在圓C上,因此圓C過這兩定點. 備課札記 15

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!