2011年高考數(shù)學(xué)一輪復(fù)習(xí)必備 直線和平面平行及平面與平

上傳人:zhan****gclb 文檔編號(hào):92001397 上傳時(shí)間:2022-05-18 格式:DOC 頁數(shù):4 大小:246.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2011年高考數(shù)學(xué)一輪復(fù)習(xí)必備 直線和平面平行及平面與平_第1頁
第1頁 / 共4頁
2011年高考數(shù)學(xué)一輪復(fù)習(xí)必備 直線和平面平行及平面與平_第2頁
第2頁 / 共4頁
2011年高考數(shù)學(xué)一輪復(fù)習(xí)必備 直線和平面平行及平面與平_第3頁
第3頁 / 共4頁

本資源只提供3頁預(yù)覽,全部文檔請(qǐng)下載后查看!喜歡就下載吧,查找使用更方便

5 積分

下載資源

資源描述:

《2011年高考數(shù)學(xué)一輪復(fù)習(xí)必備 直線和平面平行及平面與平》由會(huì)員分享,可在線閱讀,更多相關(guān)《2011年高考數(shù)學(xué)一輪復(fù)習(xí)必備 直線和平面平行及平面與平(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第73課時(shí):第九章 直線、平面、簡(jiǎn)單幾何體——直線和平面平行及平面與平面平行 課題:直線和平面平行及平面與平面平行 一.復(fù)習(xí)目標(biāo): 1.了解直線和平面的位置關(guān)系;掌握直線和平面平行的判定定理和性質(zhì)定理. 2.了解平面和平面的位置關(guān)系;掌握平面和平面平行的判定定理和性質(zhì)定理. 二.課前預(yù)習(xí): 1.已知直線、和平面,那么的一個(gè)必要不充分的條件是( ) , , 且 、與成等角 2.、表示平面,、表示直線,則的一個(gè)充分條件是 ( ) ,且 ,且 ,且

2、 ,且 3.已知平面平面,是外一點(diǎn),過點(diǎn)的直線與分別交于點(diǎn),過點(diǎn)的直線與分別交于點(diǎn),且,,,則的長為( ) 或 4.空間四邊形的兩條對(duì)角線,,則平行于兩對(duì)角線的截面四邊形的周長的取值范圍是 .答案:(8,12) 三.例題分析: 例1.正方體ABCD—A1B1C1D1中. (1)求證:平面A1BD∥平面B1D1C; (2)若E、F分別是AA1,CC1的中點(diǎn),求證:平面EB1D1∥平面FBD. 證明:(1)由B1B∥DD1,得四邊形BB1D1D是平行四邊形, A

3、1 A B1 B C1 C D1 D G E F ∴B1D1∥BD, 又BD ?平面B1D1C,B1D1平面B1D1C, ∴BD∥平面B1D1C. 同理A1D∥平面B1D1C. 而A1D∩BD=D, ∴平面A1BD∥平面B1CD. (2)由BD∥B1D1,得BD∥平面EB1D1. 取BB1中點(diǎn)G,∴AE∥B1G. 從而得B1E∥AG,同理GF∥AD. ∴AG∥DF. ∴B1E∥DF. ∴DF∥平面EB1D1. ∴平面EB1D1∥平面FBD. 說明 要證“面面平面”只要證“線面平面”,要證“線面平行”,只要證“線線平面”,故問題最終轉(zhuǎn)化為證

4、線與線的平行. 例2.如圖,已知M、N、P、Q分別是空間四邊形ABCD的邊AB、BC、CD、DA的中點(diǎn). 求證:(1)線段MP和NQ相交且互相平分;(2)AC∥平面MNP,BD∥平面MNP. 證明:(1) ∵M(jìn)、N是AB、BC的中點(diǎn),∴MN∥AC,MN=AC. ∵P、Q是CD、DA的中點(diǎn),∴PQ∥CA,PQ=CA. ∴MN∥QP,MN=QP,MNPQ是平行四邊形. ∴□MNPQ的對(duì)角線MP、NQ相交且互相平分. (2)由(1),AC∥MN.記平面MNP(即平面MNPQ)為α.顯然AC?α. B A D C P N Q M 否則,若ACìα, 由A∈α

5、,M∈α,得B∈α; 由A∈α,Q∈α,得D∈α,則A、B、C、D∈α, 與已知四邊形ABCD是空間四邊形矛盾. 又∵M(jìn)Nìα,∴AC∥α, 又AC ?α,∴AC∥α,即AC∥平面MNP. 同理可證BD∥平面MNP. 小結(jié): 例3.已知正四棱錐的底面邊長為,側(cè)棱長為,點(diǎn)分別在和上,并且,平面,求線段的長. 解:延長交延長線于點(diǎn),連,可證得∥,由與相似及已知求得。在等腰中,求出,又在中,由余弦定理求得。 ∵,∴,∴. 四.課后作業(yè): 1.設(shè)線段是夾在兩平行平面間的兩異面線段,點(diǎn),,若分別為的中點(diǎn),則有 ( )

6、 2.是兩個(gè)不重合平面,是兩條不重合直線,那么的一個(gè)充分條件是( C ) ,,且, ,,且 ,,且 ,,且 3.在正四棱柱中,分別為棱的中點(diǎn),是的中點(diǎn),點(diǎn)在四邊形及其內(nèi)部運(yùn)動(dòng),則滿足條件 時(shí),有平面.(點(diǎn)在線段上) 4.在長方體中,經(jīng)過其對(duì)角線的平面分別與棱、相交于兩點(diǎn),則四邊形的形狀為 .(平行四邊形) 5.如圖,A,B,C,D四點(diǎn)都在平面a,b外,它們?cè)赼內(nèi)的射影A1,B1,C1,D1是平行四邊形的四個(gè)頂點(diǎn),在b內(nèi)的射影A2,B2,C2,D2在一條直線上,求證:ABCD是平行四邊形. 證明:∵

7、A,B,C,D四點(diǎn)在b內(nèi)的射影A2,B2,C2,D2在一條直線上, ∴A,B,C,D四點(diǎn)共面. A B C D B1 1 D1 C1 1 α 1 A1 B2 A2 C2 D2 2 2 2 2 β 又A,B,C,D四點(diǎn)在a內(nèi)的射影A1,B1,C1,D1是平行四邊形的四個(gè)頂點(diǎn), ∴平面ABB1A1∥平面CDD1C1. ∴AB,CD是平面ABCD與平面ABB1A1,平面CDD1C1的交線. ∴AB∥CD. 同理AD∥BC. ∴四邊形ABCD是平行四邊形. 6.若一直線與一個(gè)平面平行,則過平面內(nèi)的一點(diǎn)且與這條直線平行的直線必在此平面內(nèi). 解:如圖,設(shè),,.由, ∴它們確定一個(gè)平面,設(shè),可證, 在平面內(nèi),過點(diǎn)存在,, ∴與重合,即. 7.點(diǎn)是所在平面外一點(diǎn),分別是、、的重心,求證:(1)平面平面;(2)求. 證明:(1)如圖,分別取的中點(diǎn), 連結(jié), ∵分別是、、的重心, ∴分別在上, 且. 在中,,故, 又為的邊的中點(diǎn),, ∴,∴平面,同理平面 ∴平面平面. (2)由(1)知,, ∴. 4 用心 愛心 專心

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!