《(山西專用)2019中考數(shù)學(xué)二輪復(fù)習(xí) 專題八 函數(shù)與幾何的動(dòng)態(tài)探究題習(xí)題》由會(huì)員分享,可在線閱讀,更多相關(guān)《(山西專用)2019中考數(shù)學(xué)二輪復(fù)習(xí) 專題八 函數(shù)與幾何的動(dòng)態(tài)探究題習(xí)題(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、專題八 函數(shù)與幾何的動(dòng)態(tài)探究題
1.如圖,已知拋物線y=ax2-23ax-9a與坐標(biāo)軸交于A,B,C三點(diǎn),其中C(0,3),∠BAC的平分線AE交y軸于點(diǎn)D,交BC于點(diǎn)E,過點(diǎn)D的直線l與射線AC,AB分別交于點(diǎn)M,N.
(1)直接寫出a的值,點(diǎn)A的坐標(biāo)及拋物線的對稱軸;
(2)點(diǎn)P為拋物線的對稱軸上一動(dòng)點(diǎn),若△PAD為等腰三角形,求出點(diǎn)P的坐標(biāo);
(3)求證:當(dāng)直線l繞點(diǎn)D轉(zhuǎn)動(dòng)時(shí),1AM+1AN為定值,并求出該定值.
2.(2018·曲靖)如圖:在平面直角坐標(biāo)系中,直線l:y=13x-43與x軸交于點(diǎn)A,經(jīng)過點(diǎn)A的拋物線y=ax2-3x+c的對稱軸是直線x=32.
2、
(1)求拋物線的解析式;
(2)平移直線l,使其經(jīng)過原點(diǎn)O,得到直線m,點(diǎn)P是直線l上任意一點(diǎn),PB⊥x軸于點(diǎn)B,PC⊥y軸于點(diǎn)C,若點(diǎn)E在線段OB上,點(diǎn)F在線段OC的延長線上,連接PE,PF,且PF=3PE,求證:PE⊥PF;
(3)若(2)中的點(diǎn)P坐標(biāo)為(6,2),點(diǎn)E是x軸上的點(diǎn),點(diǎn)F是y軸上的點(diǎn),當(dāng)PE⊥PF時(shí),拋物線上是否存在點(diǎn)Q,使四邊形PEQF是矩形?如果存在,請求出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.
3.如圖,拋物線y=ax2+bx(a≠0)過點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0)
3、,當(dāng)t=2時(shí),AD=4.
(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)t為何值時(shí),矩形ABCD的周長有最大值?最大值是多少?
4.(2018·長沙)如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=mx(m為常數(shù),m>1,x>0)的圖象經(jīng)過點(diǎn)P(m,1)和Q(1,m),直線PQ與x軸、y軸分別交于C、D兩點(diǎn).點(diǎn)M(x,y)是該函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M分別作x軸和y軸的垂線,垂足分別為A、B.
(1)求∠OCD的度數(shù);
(2)當(dāng)m=3,1
4、?請說明你的理由.
5.(2018·成都)如圖,在平面直角坐標(biāo)系xOy中,以直線x=52為對稱軸的拋物線y=ax2+bx+c與直線l:y=kx+m(k>0)交于A(1,1)、B兩點(diǎn),與y軸交于點(diǎn)C(0,5),直線l與y軸交于點(diǎn)D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)直線l與拋物線的對稱軸的交點(diǎn)為F,G是拋物線上位于對稱軸右側(cè)的一點(diǎn),若AFFB=34,且△BCG與△BCD的面積相等,求點(diǎn)G的坐標(biāo);
(3)若在x軸上有且只有一點(diǎn)P,使∠APB=90°,求k的值.
答案精解精析
1.解析 (1)a=-13,點(diǎn)A的坐標(biāo)為(-3,0),
5、對稱軸為直線x=3.
將點(diǎn)C(0,3)代入解析式得-9a=3,∴a=-13,∴y=-13x2+233x+3.令-13x2+233x+3=0,整理得x2-23x-9=0,解得x1=33,x2=-3,∴點(diǎn)A的坐標(biāo)為(-3,0),點(diǎn)B的坐標(biāo)為(33,0),對稱軸為直線x=3
(2)由(1)得OA=3,又OC=3,
∴tan∠CAO=COAO=3,
∴∠CAO=60°,
∴∠DAO=30°,
∴DO=1,AD=2,
∴D(0,1).
設(shè)P(3,m),因?yàn)椤鱌AD為等腰三角形,則
①當(dāng)PD=AD時(shí),∵PD2=(3)2+(m-1)2,
∴(3)2+(m-1)2=22,∴m=0或m=2(
6、舍去),
∴P(3,0).
②當(dāng)PA=PD時(shí),PA2=PD2,∴(3+3)2+m2=(3)2+(m-1)2,
得m=-4,∴P(3,-4).
③當(dāng)AD=AP時(shí),∵APmin=23>AD,
∴此種情況不存在.
綜上,當(dāng)P為(3,0)或(3,-4)時(shí),△PAD為等腰三角形.
(3)證明:設(shè)M,N所在直線的函數(shù)解析式為yMN=k1x+b1,A,C所在直線的函數(shù)解析式為yAC=k2x+3.
∵D(0,1)在直線MN上,A(-3,0)在直線AC上,
∴yMN=k1x+1,yAC=3x+3,
∴N-1k1,0,AN=-1k1+3=
3k1-1k1.
∵M(jìn)是直線MN與直線AC的交點(diǎn),
7、
∴(k1-3)xM=2,xM=2k1-3,
∴AM=23+2k1-3=2(3k1-1)k1-3,
∴1AM+1AN=k1-32(3k1-1)+k13k1-1=k1-32(3k1-1)+2k12(3k1-1)=3(3k1-1)2(3k1-1)
=32.∴1AM+1AN為定值,該定值為32.
2.解析 (1)由題意知y=x2-3x-4.
(2)∵直線l:y=13x-43平移得到直線m,
∴直線m的解析式為y=13x.如圖,
又∵P在直線m上,∴可設(shè)P(3a,a),
∴PC=3a,PB=a,
∵cos∠CPF=PCPF,
cos∠BPE=PBPE,
∴cos∠CPF=3
8、a3PE=aPE,
cos∠BPE=aPE,
∴cos∠CPF=cos∠BPE,
∴∠CPF=∠BPE,
又∵∠BPE+∠CPE=90°,
∴∠CPF+∠CPE=90°,
∴PE⊥PF.
(3)∵P(6,2),∴B(6,0),可設(shè)E(a,0),
情形①當(dāng)E在B的左邊,即a<6時(shí),
BE=6-a,
∵△PBE∽△PCF,
∴PBPC=BECF,
∴26=6-aCF,∴CF=18-3a,
由題意知,當(dāng)E在B的左側(cè)時(shí),F一定在C的上方,
∴F(0,20-3a),
∴P(6,2),E(a,0),F(0,20-3a),
可設(shè)Q(xQ,yQ),
當(dāng)四邊形PEQF是矩形時(shí),
9、
∠FPE=90°,
∴只需四邊形PEQF是平行四邊形(四邊形順序固定,一種圖形).
∵四邊形PEQF為矩形,
∴xE+xF=xQ+xP,yE+yF=yQ+yP?a+0=xQ+6,0+20-3a=yQ+2
?xQ=a-6,yQ=18-3a,
∴Q(a-6,18-3a).
又∵Q在拋物線y=x2-3x-4上,
∴代入拋物線可得a1=4,a2=8,∵a<6,
∴a=4,∴Q(-2,6).
情形②,當(dāng)E在B的右側(cè),即a>6時(shí),
BE=a-6,
∵△PBE∽△PCF,
∴PBPC=BECF,
∴26=a-6CF,∴CF=3a-18,
由題意知,當(dāng)E在B的右側(cè)時(shí),F一定在C
10、的下方,
∴F(0,20-3a),
∴P(6,2),E(a,0),F(0,20-3a),
可設(shè)Q(xQ,yQ),
當(dāng)四邊形PECF是矩形時(shí),
∠FPE=90°,
∴只需四邊形PEQF是平行四邊形(四邊形順序固定,一種圖形),
∵四邊形PEQF為矩形,
∴xE+xF=xQ+xP,yE+yF=yQ+yP?a+0=xQ+6,0+20-3a=yQ+2?
xQ=a-6,yQ=18-3a,
∴Q(a-6,18-3a),
又∵Q在拋物線y=x2-3x-4上,
代入拋物線可得a1=4,a2=8.
∵a>6,∴a=8,∴Q(2,-6).
綜上,滿足條件的Q的坐標(biāo)為(-2,6),(2,
11、-6).
3.解析 (1)∵當(dāng)t=2時(shí),AD=4.
∴此時(shí)D點(diǎn)坐標(biāo)為(2,4),
設(shè)y=ax(x-10),把(2,4)代入拋物線方程,得4=2a(2-10),解得a=-14,
∴y=-14x(x-10)=-14x2+52x.
(2)由拋物線的對稱性,得OA=BE=t,
∴AB=10-2t,
當(dāng)x=t時(shí),y=-14t2+52t,
∴AD=-14t2+52t,
∴矩形ABCD的周長=2(AB+AD)=210-2t-14t2+52t
=-12t2+t+20
=-12(t-1)2+412,
∵-12<0,∴當(dāng)t=1時(shí),矩形ABCD的周長有最大值,為412.
4.解析 (1)設(shè)
12、直線PQ的解析式為y=kx+b(k≠0).
依題意可得mk+b=1,k+b=m,解得k=-1,b=m+1.
故直線PQ的解析式為y=-x+m+1,
∴C(m+1,0),D(0,m+1),
∴△OCD是等腰直角三角形,
∴∠OCD=45°.
(2)解法一:當(dāng)m=3,1
13、1
14、,舍去).
當(dāng)x=2時(shí),有OPOC=OMOP=PMCP成立.
故點(diǎn)M的坐標(biāo)為2,32.
(3)不能.理由如下:由題意可得,m=5時(shí),Mx,5x,
設(shè)四邊形OAMB與△OPQ的重疊部分的面積為S.易求直線OP的解析式為y=15x,直線OQ的解析式為y=5x.
分以下三種情況討論:
①當(dāng)0
15、2≤4.
此時(shí)同樣不可能有S=4.1.
解法二:S=5-12x·x5-12·5x·1x=5-x210-52x2,
令S=5-x210-52x2=4.1,化簡得,x4-9x2+25=0.
令x2=t,得t2-9t+25=0.
由于Δ=81-100=-19<0,因此該方程無解.
所以此時(shí)同樣不可能有S=4.1.
綜上所述,矩形OAMB與△OPQ重疊部分的面積不可能等于4.1.
5.解析 (1)由題可得-b2a=52,c=5,a+b+c=1,
解得a=1,b=-5,c=5,
∴拋物線的函數(shù)表達(dá)式為y=x2-5x+5.
(2)作AM⊥x軸,BN⊥x軸,垂足分別為M,N,
設(shè)
16、對稱軸與x軸交于Q點(diǎn),
則AFFB=MQQN=34.
∵M(jìn)Q=OQ-OM=32,
∴QN=2,
∴B92,114,
∴k+m=1,92k+m=114,
解得k=12,m=12,
∴直線l的解析式為y=12x+12,則D0,12.
易知直線BC的解析式為y=-12x+5.
∵S△BCD=S△BCG,
∴①DG1∥BC(G1在BC下方),直線DG1的解析式為y=-12x+12,
∴-12x+12=x2-5x+5,即2x2-9x+9=0,
∴x1=32,x2=3,
∵x>52,
∴x=3,
∴G1(3,-1).
②G在BC上方時(shí),直線G2G3與DG1關(guān)于直線BC對稱.
17、
∴直線G2G3的解析式為y=-12x+192,
∴-12x+192=x2-5x+5,
∴2x2-9x-9=0.
∴x1=9+3174,x2=9-3174,
∵x>52,
∴x=9+3174,
∴G29+3174,67-3178.
綜上所述,點(diǎn)G的坐標(biāo)為(3,-1)或9+3174,67-3178.
(3)由題意可知,k+m=1.
∴m=1-k,
∴y=kx+1-k,
∴kx+1-k=x2-5x+5,
即x2-(k+5)x+k+4=0,
∴x1=1,x2=k+4,
∴B(k+4,k2+3k+1).
取AB的中點(diǎn)O',
∵P點(diǎn)有且只有一個(gè),
∴以AB為直徑的圓與x軸只有一個(gè)交點(diǎn),
即該圓與x軸相切,且P為切點(diǎn),
連接O'P,AP,BP.
∴O'P⊥x軸,
∴P為MN的中點(diǎn),
∴Pk+52,0.
作AM⊥x軸,BN⊥x軸,垂足分別為M,N,
∵△AMP∽△PNB,
∴AMPM=PNBN,
∴AM·BN=PN·PM,
∴1×(k2+3k+1)=k+4-k+52k+52-1,即3k2+6k-5=0,Δ=96>0,
∵k>0,
∴k=-6+466=-1+263.
12