《2021-2022年二年級(jí)數(shù)學(xué) 奧數(shù)講座 找規(guī)律(二)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2021-2022年二年級(jí)數(shù)學(xué) 奧數(shù)講座 找規(guī)律(二)(13頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2021-2022年二年級(jí)數(shù)學(xué) 奧數(shù)講座 找規(guī)律(二)
例1 仔細(xì)觀察下面的圖形,找出變化規(guī)律,猜猜在第3組的右框空白格內(nèi)填一個(gè)什么樣的圖?
解:仔細(xì)觀察圖7—1,可知:
第1組左邊是個(gè)大菱形,右邊是個(gè)小菱形。
第2組左邊是個(gè)大三角形,右邊是個(gè)小三角形。
其規(guī)律是:每組中左右兩邊圖形的形狀相同,大小不同。都是左邊的圖形大,右邊的圖形小。
猜出答案:第3組中右邊空白格內(nèi)應(yīng)填個(gè)小長(zhǎng)方形。(如圖7—3)。
仔細(xì)觀察圖7—2可知:
第1組左邊是個(gè)圓,而且左半圓涂有陰影線。右邊是左邊的陰影半圓順時(shí)針旋轉(zhuǎn)后放置的。
第2組左邊是個(gè)等腰三角形,而
2、且左半部(直角三角形)涂有陰影線,右邊是左邊陰影直角三角形順時(shí)針旋轉(zhuǎn)后放置的。
其規(guī)律是:每組的右邊格內(nèi)的圖形都是左邊圖形左邊的一半,順時(shí)針旋轉(zhuǎn)放置后成為右邊圖形。
猜出答案:第3組中右框內(nèi)應(yīng)填個(gè)陰影小長(zhǎng)方形。如圖7—4示。
例2 按順序仔細(xì)觀察圖7—5、7—6的形狀,猜一猜第3組的“?”處應(yīng)填什么圖?
解:圖7—5的?處應(yīng)填○▲。注意觀察第1組和第2組,每組都是由三對(duì)小圖形組成;而每對(duì)小圖形都是由一個(gè)“空白”的和一個(gè)“黑色”的小圖形組成;而且它倆的排列順序都是“空白”的在左邊,“黑色”的在右邊。
再按著第1、第2、第3組的順序觀察下去,可發(fā)現(xiàn)每對(duì)小圖形在
3、各組中的位置的變化規(guī)律:它們都在向左移動(dòng),當(dāng)一對(duì)小圖形移動(dòng)到最左邊后,下一步它就回到了最右邊。按這個(gè)移動(dòng)規(guī)律,可知圖7—5中第3組“?”處應(yīng)填:○▲。
圖7—6的?處應(yīng)填□△0。仔細(xì)觀察可發(fā)現(xiàn)第1組和第2組中間的部分都是由三個(gè)小圖形構(gòu)成的。構(gòu)成的規(guī)律是:當(dāng)你按照第1、第2、第3組的順序觀察時(shí),6個(gè)小圖形都在向左移動(dòng),而且移動(dòng)的同時(shí)又在重新分組和組合,但排列順序保持不變,當(dāng)某一個(gè)小圖形移動(dòng)到了最左邊時(shí),下一步它就回到了最右邊。按這個(gè)規(guī)律可知圖7—6中第3組中間“?”處是:□△0。
例3 觀察圖7—7的變化,請(qǐng)先回答:在方框(4)中應(yīng)畫出怎樣的圖形?
再答按(1)、(2)、(3)
4、、……的順序數(shù)下去,第(10)個(gè)方框中是怎樣的圖形?
解:先按(1)、(2)、(3)、……的順序仔細(xì)觀察,可發(fā)現(xiàn):
方框中的箭頭是按逆時(shí)針?lè)较蛐D(zhuǎn)的;方框中的其他小圖形,如△、□和○也都是按逆時(shí)針?lè)较蛐D(zhuǎn)的。
也就是說(shuō),方框連同內(nèi)部的所有小圖形作為一個(gè)整體在按逆時(shí)針?lè)较蛐D(zhuǎn)。
因此,方框(4)中的小圖形應(yīng)畫成圖7—8狀。再按已找到的規(guī)律,進(jìn)一步可發(fā)現(xiàn)圖形的變化是有“周期性”的,也就是說(shuō),每過(guò)4個(gè)方框后,同樣的圖形又重新出現(xiàn)一次。如,你可看到第(1)和第(5)是完全一樣的;因此,你可以想像得到,第(2)和第(6)及第(10)個(gè)圖形應(yīng)當(dāng)是完全一樣的。即第(10)
5、個(gè)方框中的圖形應(yīng)是圖7—9所示的樣子。
例4 觀察圖7—10的變化,請(qǐng)先回答:
第(4)、(8)個(gè)圖中,黑點(diǎn)在什么地方?
第(10)、(18)個(gè)圖中,黑點(diǎn)在什么地方?
解:(1)按圖7—10中(1)、(2)、(3)、……的順序仔細(xì)觀察,可發(fā)現(xiàn)黑點(diǎn)位置的變化規(guī)律:
在(1)中,黑點(diǎn)在最上面第一條橫線上;
在(2)中,黑點(diǎn)下降了一格,在上面第二條橫線上;
在(3)中,黑點(diǎn)又下降了一格,在中間一條線上了。
按黑點(diǎn)位置的這種變化可推測(cè)出:
在(4)中,黑點(diǎn)又下降一格,它的位置應(yīng)如圖7—11所示。
繼續(xù)觀察下去:
在(5)中,黑點(diǎn)
6、下降到最下面的一條橫線上;
在(6)中,黑點(diǎn)開始往上升一格;
在(7)中,黑點(diǎn)再上升一格,按著黑點(diǎn)位置的這種變化可推測(cè)出:
在(8)中,黑點(diǎn)又上升一格,它的位置應(yīng)如圖7—12所示。
?。?)進(jìn)一步仔細(xì)觀察圖7—10(1)~(9),可發(fā)現(xiàn)黑點(diǎn)位置變化的“周期性”規(guī)律:也就是說(shuō),每隔8個(gè)小圖,黑點(diǎn)又回到原來(lái)的位置。
因?yàn)?+8=10,2+8+8=18。
所以第(10)、(18)個(gè)小圖中,黑點(diǎn)的位置應(yīng)與第(2)個(gè)小圖相同,見圖7—13所示。
附送:
2021-2022年二年級(jí)數(shù)學(xué) 奧數(shù)講座 數(shù)數(shù)與計(jì)數(shù)(二)
例1 數(shù)一數(shù),圖3-1中共有多少點(diǎn)?
7、
解:(1)方法1:如圖3-2所示從上往下一層一層數(shù):
第一層 1個(gè)
第二層 2個(gè)
第三層 3個(gè)
第四層 4個(gè)
第五層 5個(gè)
第六層 6個(gè)
第七層 7個(gè)
第八層 8個(gè)
第九層 9個(gè)
第十層 10個(gè)
第十一層 9個(gè)
第十二層 8個(gè)
第十三層 7個(gè)
第十四層 6個(gè)
第十五層 5個(gè)
第十六層 4個(gè)
第十七層 3個(gè)
第十八層 2個(gè)
第十九層 1個(gè)
總數(shù)1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1
=(1+2+3+4+5+6+7+8+
8、9+10)+(9+8+7+6+5+4+3+2+1)
=55+45=100(利用已學(xué)過(guò)的知識(shí)計(jì)算)。
?。?)方法2:如圖3-3所示:從上往下,沿折線數(shù)
第一層 1個(gè)
第二層 3個(gè)
第三層 5個(gè)
第四層 7個(gè)
第五層 9個(gè)
第六層 11個(gè)
第七層 13個(gè)
第八層 15個(gè)
第九層 17個(gè)
第十層 19個(gè)
總數(shù):1+3+5+7+9+11+13+15+17+19=100(利用已學(xué)過(guò)的知識(shí)計(jì)算)。
?。?)方法3:把點(diǎn)群的整體轉(zhuǎn)個(gè)角度,成為如圖3-4所示的樣子,變成為10行10列的點(diǎn)陣。顯然點(diǎn)的總數(shù)為10×10=100(
9、個(gè))。
想一想:
?、贁?shù)數(shù)與計(jì)數(shù),有時(shí)有不同的方法,需要多動(dòng)腦筋。
?、谟煞椒?和方法3得出下式:
1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10
即等號(hào)左邊這樣的一串?dāng)?shù)之和等于中間數(shù)的自乘積。由此我們猜想:
1=1×1
1+2+1=2×2
1+2+3+2+1=3×3
1+2+3+4+3+2+1=4×4
1+2+3+4+5+4+3+2+1=5×5
1+2+3+4+5+6+5+4+3+2+1=6×6
1+2+3+4+5+6+7+6+5+4+3+2+1=7×7
1+2+3+4+5
10、+6+7+8+7+6+5+4+3+2+1=8×8
1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=9×9
1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10
這樣的等式還可以一直寫下去,能寫出很多很多。
同學(xué)們可以自己檢驗(yàn)一下,看是否正確,如果正確我們就發(fā)現(xiàn)了一條規(guī)律。
③由方法2和方法3也可以得出下式:
1+3+5+7+9+11+13+15+17+19=10×10。
即從1開始的連續(xù)奇數(shù)的和等于奇數(shù)個(gè)數(shù)的自乘積。由此我們猜想:
1+3=2×2
1+3+5=3×3
1+3+5+
11、7=4×4
1+3+5+7+9=5×5
1+3+5+7+9+11=6×6
1+3+5+7+9+11+13=7×7
1+3+5+7+9+11+13+15=8×8
1+3+5+7+9+11+13+15+17=9×9
1+3+5+7+9+11+13+15+17+19=10×10
還可往下一直寫下去,同學(xué)們自己檢驗(yàn)一下,看是否正確,如果正確,我們就又發(fā)現(xiàn)了一條規(guī)律。
例2 數(shù)一數(shù),圖3-5中有多少條線段?
解:(1)我們已知,兩點(diǎn)間的直線部分是一條線段。以A點(diǎn)為共同端點(diǎn)的線段有:
AB AC AD AE AF 5條。
以B點(diǎn)為共同左
12、端點(diǎn)的線段有:
BC BD BE BF 4條。
以C點(diǎn)為共同左端點(diǎn)的線段有:
CD CE CF 3條。
以D點(diǎn)為共同左端點(diǎn)的線段有:
DE DF 2條。
以E點(diǎn)為共同左端點(diǎn)的線段有:
EF1條。
總數(shù)5+4+3+2+1=15條。
?。?)用圖示法更為直觀明了。見圖3-6。
總數(shù)5+4+3+2+1=15(條)。
想一想:①由例2可知,一條大線段上有六個(gè)點(diǎn),就有:總數(shù)=5+4+3+2+1條線段。由此猜想如下規(guī)律(見圖3-7):
還可以一直做下去??傊€段總條線是從1開始的一串連續(xù)自然數(shù)之和,其中最大的自然數(shù)比總數(shù)小1。
13、我們又發(fā)現(xiàn)了一條規(guī)律。它說(shuō)明了點(diǎn)數(shù)與線段總數(shù)之間的關(guān)系。
?、谏厦娴氖聦?shí)也可以這樣說(shuō):如果把相鄰兩點(diǎn)間的線段叫做基本線段,那么一條大線段上的基本線段數(shù)和線段總條數(shù)之間的關(guān)系是:
線段總條數(shù)是從1開始的一串連續(xù)自然數(shù)之和,其中最大的自然數(shù)等于基本線段的條數(shù)(見圖3-8)?;揪€段數(shù) 線段總條數(shù)
還可以一直寫下去,同學(xué)們可以自己試試看。
例3 數(shù)一數(shù),圖3-9中共有多少個(gè)銳角?
解:(1)我們知道,圖中任意兩條從O點(diǎn)發(fā)出的射線都組成一個(gè)銳角。
所以,以O(shè)A邊為公共邊的銳角有:
∠LAOB,∠AOC,∠AOD,∠AOE,
∠AOF共5個(gè)。
14、以O(shè)B邊為公共邊的銳角有:∠BOC,∠BOD,∠BOE,∠BOF共4個(gè)。
以O(shè)C邊為公共邊的銳角有:∠COD,∠COE,∠COF共3個(gè)。以O(shè)D邊為公共邊的銳角有:∠DOE,∠DOF共2個(gè)。以O(shè)E邊為一邊的銳角有:∠EOF只1個(gè)。
銳角總數(shù)5+4+3+2+1=15(個(gè))。
?、谟脠D示法更為直觀明了:如圖3-10所示,銳角總數(shù)為:5+4+3+2+1=15(個(gè))。
想一想:①由例3可知:由一點(diǎn)發(fā)出的六條射線,組成的銳角的總數(shù)=5+4+3+2+1(個(gè)),由此猜想出如下規(guī)律:(見圖3-11~15)
兩條射線1個(gè)角(見圖3-11)
三條射線2+1個(gè)角(見圖3-1
15、2)
四條射線3+2+1個(gè)角(見圖3-13)
五條射線4+3+2+1個(gè)角(見圖3-14)
六條射線5+4+3+2+1個(gè)角(見圖3-15)
總之,角的總數(shù)是從1開始的一串連續(xù)自然數(shù)之和,其中最大的自然數(shù)比射線數(shù)小1。
②同樣,也可以這樣想:如果把相鄰兩條射線構(gòu)成的角叫做基本角,那么有共同頂點(diǎn)的基本角和角的總數(shù)之間的關(guān)系是:
角的總數(shù)是從1開始的一串連續(xù)自然數(shù)之和,其中最大的自然數(shù)等于基本角個(gè)數(shù)。
?、圩⒁猓?和例3的情況極其相似。雖然例2是關(guān)于線段的,例3是關(guān)于角的,但求總數(shù)時(shí),它們有同樣的數(shù)學(xué)表達(dá)式。同學(xué)們可以看出,一個(gè)數(shù)學(xué)式子可以表達(dá)表面上完全不同的事物中的數(shù)量關(guān)系,這就是數(shù)學(xué)的魔力。