《(東營(yíng)專版)2019年中考數(shù)學(xué)復(fù)習(xí) 第五章 四邊形 第二節(jié) 矩形、菱形、正方形要題隨堂演練》由會(huì)員分享,可在線閱讀,更多相關(guān)《(東營(yíng)專版)2019年中考數(shù)學(xué)復(fù)習(xí) 第五章 四邊形 第二節(jié) 矩形、菱形、正方形要題隨堂演練(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
矩形、菱形、正方形
要題隨堂演練
1.(2018·臨沂中考)如圖,點(diǎn)E,F(xiàn),G,H分別是四邊形ABCD邊AB,BC,CD,DA的中點(diǎn).則下列說法:
①若AC=BD,則四邊形EFGH為矩形
②若AC⊥BD,則四邊形EFGH為菱形;
③若四邊形EFGH是平行四邊形,則AC與BD互相平分;
④若四邊形EFGH是正方形,則AC與BD互相垂直且相等.
其中正確的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
2.(2018·內(nèi)江中考)如圖,將矩形ABCD沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)E處,BE交AD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為(
2、 )
A.31° B.28° C.62° D.56°
3.(2018·萊蕪中考)如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點(diǎn)F在DE的延長(zhǎng)線上,∠BFE=90°,連接AF,CF,CF與AB交于G.有以下結(jié)論:
①AE=BC;②AF=CF;③BF2=FG·FC;④EG·AE=BG·AB.
其中正確的個(gè)數(shù)是( )
A.1 B.2 C.3 D .4
4.(2018·湖州中考)如圖,已知菱形ABCD,對(duì)角線AC,BD相交于點(diǎn)O.若tan∠BAC=,AC=6,則BD的長(zhǎng)是______.
5.(2018·濰坊中考)如圖,正方
3、形ABCD的邊長(zhǎng)為1,點(diǎn)A與原點(diǎn)重合,點(diǎn)B在y軸的正半軸上,點(diǎn)D在x軸的負(fù)半軸上,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至正方形AB′C′D′的位置,B′C′與CD相交于點(diǎn)M,則點(diǎn)M的坐標(biāo)為________.
6.(2018·濟(jì)南中考)如圖,矩形EFGH的四個(gè)頂點(diǎn)分別落在矩形ABCD的各條邊上,AB=EF,F(xiàn)G=2,GC=3.有以下四個(gè)結(jié)論:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH的面積是4.其中一定成立的是__________.(把所有正確結(jié)論的序號(hào)都填在橫線上)
7.(2018·湘潭中考)如圖,在正方形ABCD中,AF=BE,AE與DF相交于點(diǎn)O.
(1)求證:△DAF≌△ABE;
(2)求∠AOD的度數(shù).
參考答案
1.A 2.D 3.C
4.2 5.(-1,) 6.①②④
7.(1)證明:∵四邊形ABCD是正方形,
∴∠DAB=∠ABC=90°,AD=AB.
在△DAF和△ABE中,
∴△DAF≌△ABE(SAS).
(2)解:由(1)知,△DAF≌△ABE,
∴∠ADF=∠BAE.
∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,
∴∠AOD=180°-(∠ADF+∠DAO)=90°.
3