轎車前輪主動轉(zhuǎn)向系統(tǒng)機械結(jié)構(gòu)設(shè)計[齒輪齒條轉(zhuǎn)向]
轎車前輪主動轉(zhuǎn)向系統(tǒng)機械結(jié)構(gòu)設(shè)計齒輪齒條轉(zhuǎn)向,齒輪齒條轉(zhuǎn)向,轎車,前輪,主動,轉(zhuǎn)向,系統(tǒng),機械,結(jié)構(gòu)設(shè)計,齒輪,齒條
本科學(xué)生畢業(yè)論文轎車前輪主動轉(zhuǎn)向系統(tǒng)機械結(jié)構(gòu)設(shè)計院系名稱: 汽車與交通工程學(xué)院 專業(yè)班級: 車輛工程B07-3班 學(xué)生姓名: 郭天辰 指導(dǎo)教師: 田 芳 職 稱: 實驗師 The Graduation Design for Bachelors DegreeDesign of the Mechanical Institutions of the Front-Wheel Active Steering SystemCandidate:Guo TianchenSpecialty:Construction MachineryClass:Vehicle engineering B07-3Supervisor:Tian FangHeilongjiang Institute of Technology2011-06Harbin畢業(yè)設(shè)計(論文)開題報告設(shè)計(論文)題目:轎車前輪主動轉(zhuǎn)向系統(tǒng)機械結(jié)構(gòu)設(shè)計院 系 名 稱:汽車與交通工程學(xué)院專 業(yè) 班 級: 車輛工程07-3 學(xué) 生 姓 名: 郭天辰 導(dǎo) 師 姓 名: 田芳 開 題 時 間: 2011-03-02 指導(dǎo)委員會審查意見: 簽字: 年 月 日 畢業(yè)設(shè)計(論文)開題報告學(xué)生姓名郭天辰系部汽車與交通工程學(xué)院專業(yè)、班級車輛07-3班指導(dǎo)教師姓名田芳職稱實驗員從事專業(yè)汽車運用技術(shù)是否外聘是否題目名稱轎車前輪主動轉(zhuǎn)向系統(tǒng)機械結(jié)構(gòu)設(shè)計一、課題研究現(xiàn)狀、選題目的和意義汽車上用來改變或恢復(fù)其行駛方向的專設(shè)機構(gòu)稱為汽車轉(zhuǎn)向系統(tǒng)。汽車的轉(zhuǎn)向系統(tǒng)是用來改變汽車行駛方向和保持汽車直線行駛的機構(gòu),轉(zhuǎn)向操縱機構(gòu)主要由轉(zhuǎn)向盤、轉(zhuǎn)向軸、轉(zhuǎn)向管柱等組成。轉(zhuǎn)向器將轉(zhuǎn)向盤的轉(zhuǎn)動變?yōu)檗D(zhuǎn)向搖臂的擺動或齒條軸的直線往復(fù)運動,并對轉(zhuǎn)向操縱力進(jìn)行放大的機構(gòu)。轉(zhuǎn)向器一般固定在汽車車架或車身上,轉(zhuǎn)向操縱力通過轉(zhuǎn)向器后一般還會改變傳動方向。在汽車轉(zhuǎn)向行駛時,保證各轉(zhuǎn)向輪之間有協(xié)調(diào)的轉(zhuǎn)角關(guān)系,機械轉(zhuǎn)向系依靠駕駛員的手力轉(zhuǎn)動轉(zhuǎn)向盤,經(jīng)轉(zhuǎn)向器和轉(zhuǎn)向傳動機構(gòu)使轉(zhuǎn)向輪偏轉(zhuǎn)。轉(zhuǎn)向器屬于汽車系統(tǒng)中的關(guān)鍵部件,它在汽車系統(tǒng)中占有重要位置,因而它的發(fā)展同時也反映了汽車工業(yè)的發(fā)展,它的規(guī)模和質(zhì)量也成為了衡量汽車工業(yè)發(fā)展水平的重要標(biāo)志之一。作為汽車的一個重要組成部分,汽車轉(zhuǎn)向系統(tǒng)是決定汽車主動安全性的關(guān)鍵總成,如何設(shè)計汽車的轉(zhuǎn)向特性,使汽車具有良好的操縱性能,始終是各汽車生產(chǎn)廠家和科研機構(gòu)的重要研究課題。特別是在車輛高速化、駕駛?cè)藛T非職業(yè)化、車流密集化的今天,針對更多不同水平的駕駛?cè)巳?,汽車的操縱設(shè)計顯得尤為重要。前輪主動轉(zhuǎn)向系統(tǒng)與其控制技術(shù)的有機結(jié)合有效的提高了汽車行駛的安全性和穩(wěn)定性,極大地提高了汽車的使用性能,二者相輔相成,缺一不可。本次設(shè)計主要是通過對主動轉(zhuǎn)向特性的分析,熟悉主動轉(zhuǎn)向系統(tǒng)控制器的工作原理,設(shè)計轎車前輪主動轉(zhuǎn)向系統(tǒng)機械結(jié)構(gòu),并對其部分零件進(jìn)行有效性的校核,完成轉(zhuǎn)向系統(tǒng)的機械部分的設(shè)計。自從汽車發(fā)明以來,駕駛轉(zhuǎn)向的傳動裝置通常都是固定的,方向盤與前輪的轉(zhuǎn)向角度比始終一成不變。如果采用直接轉(zhuǎn)向,駕駛者在過急彎時就不需要大幅轉(zhuǎn)動方向盤,但是在高速行駛時,方向盤細(xì)微的動作都將會影響到行駛穩(wěn)定性;反過來說,轉(zhuǎn)向系統(tǒng)越是間接,車輛在高速公路上的行駛穩(wěn)定性就越高,但是必須犧牲過彎時的操控性。所以,傳統(tǒng)的轉(zhuǎn)向系統(tǒng)都必須在安全性與舒適性之間做出權(quán)衡。而主動轉(zhuǎn)向系統(tǒng)保留了傳統(tǒng)轉(zhuǎn)向系統(tǒng)中的機械構(gòu)件,包括轉(zhuǎn)向盤、轉(zhuǎn)向柱、齒輪齒條轉(zhuǎn)向機以及轉(zhuǎn)向橫拉桿等。其最大特點就是在轉(zhuǎn)向盤和齒輪齒條轉(zhuǎn)向機之間的轉(zhuǎn)向柱上集成了一套雙行星齒輪機構(gòu),用于向轉(zhuǎn)向輪提供疊加轉(zhuǎn)向角。主動轉(zhuǎn)向系統(tǒng)通過一組雙行星齒輪機構(gòu)實現(xiàn)了獨立于駕駛員的轉(zhuǎn)向疊加功能,完美地解決了低速時轉(zhuǎn)向靈活輕便與高速時保持方向穩(wěn)定性的矛盾,并在此基礎(chǔ)上通過轉(zhuǎn)向干預(yù)來防止極限工況下車輛轉(zhuǎn)向過多的趨勢,進(jìn)一步提高了車輛的穩(wěn)定性。同時,該系統(tǒng)能方便地與其他動力學(xué)控制系統(tǒng)進(jìn)行集成控制,為今后汽車底盤一體化控制奠定了良好的基礎(chǔ)。主動轉(zhuǎn)向系統(tǒng)的的雙行星齒輪機構(gòu)包括左右左右兩副行星齒輪機構(gòu),公用一個行星架進(jìn)行動力傳遞,左側(cè)的主動太陽輪與轉(zhuǎn)向盤相連,將轉(zhuǎn)向盤上輸入的轉(zhuǎn)向角經(jīng)由行星架傳遞給右側(cè)的行星齒輪副,而右側(cè)的行星齒輪具有兩個轉(zhuǎn)向舒服自由度,一個是行星架傳遞的轉(zhuǎn)向盤轉(zhuǎn)角,另一個是由伺服電機疊加轉(zhuǎn)角輸入。右側(cè)的太陽輪作為輸出軸,其輸出的轉(zhuǎn)向角度是由轉(zhuǎn)向盤轉(zhuǎn)向角度與伺服電動驅(qū)動的行星架轉(zhuǎn)動方向與轉(zhuǎn)向盤相同,增加了后者的實際轉(zhuǎn)向角度,高速時,伺服電動機電機驅(qū)動的行星架與轉(zhuǎn)向盤轉(zhuǎn)向相反,疊加后減少了實際的轉(zhuǎn)向角度,轉(zhuǎn)向過程變得更為間接,提高了汽車的穩(wěn)定性和安全性。轉(zhuǎn)動車輪所用的力量,并不是由電動機決定,而是由獨立的轉(zhuǎn)向助力系統(tǒng)與傳統(tǒng)的轉(zhuǎn)向裝置一同決定的。主動式轉(zhuǎn)向系統(tǒng)的其他組成部件還包括判定當(dāng)前駕駛條件和駕駛者指令的獨立控制單元和多個傳感器。主動前輪轉(zhuǎn)向系統(tǒng)隨著汽車技術(shù)的發(fā)展受到國內(nèi)外的重視,同濟(jì)大學(xué)和北京科技大學(xué)都對主動前輪轉(zhuǎn)向系統(tǒng)有著深入的研究,隨著汽車技術(shù)的發(fā)展和人們對于汽車安全性能要求的提高,會有更多的技術(shù)運用到主動前輪轉(zhuǎn)向系統(tǒng)當(dāng)中來。在國外,上世紀(jì)60年代就已經(jīng)開始了對主動轉(zhuǎn)向系統(tǒng)的研究,而近幾年這項技術(shù)才從理論階段應(yīng)用于實車上。比較典型的就是德國寶馬公司和ZF公司開發(fā)的一套主動前輪系統(tǒng),此系統(tǒng)已經(jīng)裝備于部分寶馬3系和5系車之上。寶馬的轉(zhuǎn)向系統(tǒng)主要是主動轉(zhuǎn)向控制器通過對駕駛員輸入的方向盤轉(zhuǎn)角的疊加/減的控制實現(xiàn)轉(zhuǎn)向傳動比的改變的。低速時,電動馬達(dá)的作用與駕駛者轉(zhuǎn)動方向盤的方向一致,可以減少對轉(zhuǎn)向力的需求。一直行駛至中速狀態(tài)之前,它將提供比傳統(tǒng)轎車更直接的轉(zhuǎn)向傳動比,轉(zhuǎn)向操作保持輕松省力。在高速時電動馬達(dá)的運轉(zhuǎn)方向與駕駛者轉(zhuǎn)動方向盤方向相反,這就減少了前輪轉(zhuǎn)向角度,使轉(zhuǎn)向更直接。此系統(tǒng)完美地解決了汽車低速轉(zhuǎn)向輕便與高速轉(zhuǎn)向穩(wěn)重的矛盾,有效地抑制側(cè)向干擾,提高了整車穩(wěn)定性。此套主動轉(zhuǎn)向系統(tǒng)可以根據(jù)車速變化而不斷改變轉(zhuǎn)向系統(tǒng)中主動齒輪與被動齒條的傳動比。通常一般轎車的轉(zhuǎn)向傳動比是16:1和18:1之間,例如50km/h時,當(dāng)轉(zhuǎn)動方向盤10度時,前輪即可轉(zhuǎn)動1度,而普通轎車需要轉(zhuǎn)動16-18度才能讓前輪轉(zhuǎn)動1度。反之,在高速時,例如,當(dāng)車速達(dá)到200km/h時,帶有主動轉(zhuǎn)向系統(tǒng)的汽車轉(zhuǎn)動方向盤20度才能讓前輪轉(zhuǎn)動1度。除了可變傳動比設(shè)計外,穩(wěn)定性控制功能是寶馬主動轉(zhuǎn)向系統(tǒng)最大的特點。危險工況下該系統(tǒng)通過獨立于駕駛員的轉(zhuǎn)向干預(yù)來穩(wěn)定車輛,通過主動改變駕駛員給定的轉(zhuǎn)向盤轉(zhuǎn)角使得車輛響應(yīng)盡可能與理想的車輛響應(yīng)特性相一致。主動轉(zhuǎn)向系統(tǒng)還有很重要的一點就是更安全,這一點主要體現(xiàn)在車輛高速行駛中的突然轉(zhuǎn)向。例如在公路上高速行駛時突然變線以超越另一輛車然后回到車道時,或者高速行駛中突然發(fā)現(xiàn)前方有障礙物需要急轉(zhuǎn)彎時,很容易出現(xiàn)轉(zhuǎn)向不足或者轉(zhuǎn)向過度,車輛將偏離自己預(yù)定的方向,可能失去控制。在這種情況下,通常寶馬車系的主動轉(zhuǎn)向系統(tǒng)通過干預(yù)制動過程控制車輛的穩(wěn)定,行車速度將大幅度降低,增加能量的損耗。而主動式轉(zhuǎn)向系統(tǒng)從轉(zhuǎn)向一開始就會判斷轉(zhuǎn)向后出現(xiàn)的情況,通過電子控制的機械調(diào)控器自動修正轉(zhuǎn)向角度,干預(yù)降低偏航情況的發(fā)生。而此系統(tǒng)不必像在其他車輛中那樣干預(yù)駕駛,保證車輛行駛的平穩(wěn)性。本設(shè)計通過整合已有的的設(shè)計,通過努力,閱讀大量的文獻(xiàn),掌握轉(zhuǎn)向系統(tǒng)機械部分設(shè)計的基本步驟和要求,以及制圖的步驟和規(guī)則,掌握轉(zhuǎn)向系統(tǒng)機械部分的相關(guān)設(shè)計方法,以及進(jìn)一步更扎實汽車設(shè)計基本知識,學(xué)會使用CAD進(jìn)行基本二維制圖,同時提高分析問題和解決問題的能力。轉(zhuǎn)向系統(tǒng)機械部分的設(shè)計有利于提高汽車的整體性能,同時提高我們綜合運用知識的能力和技能。通過課題的設(shè)計,積累相關(guān)理論知識,通過設(shè)計還可以系統(tǒng)的培養(yǎng)工程文化素養(yǎng),有利于未來的發(fā)展。二、設(shè)計(論文)的基本內(nèi)容、擬解決的主要問題設(shè)計的基本內(nèi)容:1.現(xiàn)代汽車轉(zhuǎn)向系統(tǒng)簡述。蝸桿滾輪式,蝸桿指銷式,齒輪齒條式等。2.轉(zhuǎn)向系統(tǒng)機械部分的結(jié)構(gòu)特點。3.主動轉(zhuǎn)向系統(tǒng)的現(xiàn)狀及優(yōu)點。主動轉(zhuǎn)向系統(tǒng)機械部分基本結(jié)構(gòu),工作原理等。4.轉(zhuǎn)向操縱機構(gòu)和轉(zhuǎn)向器的計算設(shè)計。轉(zhuǎn)向器的結(jié)構(gòu)選擇等。5.主動轉(zhuǎn)向系統(tǒng)機械結(jié)構(gòu)主要性能參數(shù)的計算。轉(zhuǎn)向系統(tǒng)的效率,轉(zhuǎn)向系統(tǒng)的傳動比,剛度等6.進(jìn)行相關(guān)零件的校核。7.根據(jù)計算結(jié)果,繪制CAD二維圖紙。擬解決的主要問題:1.轉(zhuǎn)向系機械結(jié)構(gòu)形式的選擇。2.主要性能參數(shù)初選。3.主動轉(zhuǎn)向系統(tǒng)機械結(jié)構(gòu)主要性能參數(shù)計算。4.相關(guān)零件的強度校核。三、技術(shù)路線(研究方法)轉(zhuǎn)向器結(jié)構(gòu)選擇基礎(chǔ)數(shù)據(jù)計算主要參數(shù)選擇校核編寫說明書并繪制CAD二維圖紙根據(jù)題目查閱相關(guān)資料否轉(zhuǎn)向系統(tǒng)的效率轉(zhuǎn)向系統(tǒng)的傳動率與傳動比轉(zhuǎn)向系統(tǒng)的剛度齒輪齒條式轉(zhuǎn)向器的設(shè)計轉(zhuǎn)向操縱機構(gòu)設(shè)計計算主動轉(zhuǎn)向系統(tǒng)設(shè)計四、進(jìn)度安排1)調(diào)研、查閱參考資料,了解轉(zhuǎn)向器的功能、主要結(jié)構(gòu)。撰寫開題報告。 第2周(3月1日3月11日)(2)開題。第2周(3月11日)(3)分析并確定轉(zhuǎn)向器的具體結(jié)構(gòu)形式,主要零部件及相互位置關(guān)系。根據(jù)給定的設(shè)計參數(shù),按照有關(guān)的設(shè)計要求和順序進(jìn)行具體結(jié)構(gòu)尺寸參數(shù)計算及其他有關(guān)參數(shù)的選配,針對給定的設(shè)計參數(shù)優(yōu)選轉(zhuǎn)向器的總體方案。第3周(3月12日3月20日)(4)進(jìn)行轉(zhuǎn)向器零部件的設(shè)計計算。第45周(3月21日4月2日)(5)完成部分設(shè)計圖紙,折合0# 圖紙1張,完成說明書初稿。第6周8周(4月3日4月22日)(6)中期檢查。第8周(4月22日)(7)完成轉(zhuǎn)向器裝配圖、主要零件圖,完成設(shè)計說明書 第913周(4月23日5月27日)(8)設(shè)計及說明書初稿提交。第13周(5月27日)(9)畢業(yè)設(shè)計審核、修改。 第1416周(5月28日6月17日)(10)畢業(yè)設(shè)計答辯。 第17周(6月18日6月 20日)五、參考文獻(xiàn)1 蔣勵,余卓平,高曉杰.寶馬主動轉(zhuǎn)向技術(shù)概述J.汽車技術(shù),2006.42 王望予主編.汽車設(shè)計,第四版M. 北京:機械工業(yè)出版社,20053 陳家瑞主編.汽車構(gòu)造M. 北京:人民交通出版社,2002.34 劉惟信主編.汽車設(shè)計M. 北京:清華大學(xué)出版社,20065 機械設(shè)計手冊編委會.機械設(shè)計手冊,第3卷M. 北京:機械工業(yè)出版社,2004.86 李秀珍主編.機械設(shè)計基礎(chǔ)M. 北京:機械工業(yè)出版,2005.17 機械設(shè)計手冊編委會.機械設(shè)計手冊,齒輪傳動M. 北京:機械工業(yè)出版社,2007.38 陳曉南,楊培林主編.機械設(shè)計基礎(chǔ)M. 北京:科學(xué)出版社,2007.29 張策主編,機械原理與機械設(shè)計M. 北京:機械工業(yè)出版社,2004.910 饒振鋼編著.行星傳動機構(gòu)設(shè)計M. 北京:國防工業(yè)出版社,1994.6六、備注指導(dǎo)教師意見:簽字: 年 月 日SY-025-BY-2畢業(yè)設(shè)計(論文)任務(wù)書學(xué)生姓名郭天辰系部汽車與交通工程學(xué)院專業(yè)、班級車輛07-3班指導(dǎo)教師姓名田芳職稱實驗員從事專業(yè)汽車運用技術(shù)是否外聘是否題目名稱轎車前輪主動轉(zhuǎn)向系統(tǒng)機械結(jié)構(gòu)設(shè)計一、設(shè)計(論文)目的、意義主動轉(zhuǎn)向系統(tǒng)保留了傳統(tǒng)轉(zhuǎn)向系統(tǒng)中的機械構(gòu)件,包括轉(zhuǎn)向盤、轉(zhuǎn)向柱、齒輪齒條轉(zhuǎn)向機以及轉(zhuǎn)向橫拉桿等。其最大特點就是在轉(zhuǎn)向盤和齒輪齒條轉(zhuǎn)向機之間的轉(zhuǎn)向柱上集成了一套雙行星齒輪機構(gòu),用于向轉(zhuǎn)向輪提供疊加轉(zhuǎn)向角。主動轉(zhuǎn)向系統(tǒng)通過一組雙行星齒輪機構(gòu)實現(xiàn)了獨立于駕駛員的轉(zhuǎn)向疊加功能,完美地解決了低速時轉(zhuǎn)向靈活輕便與高速時保持方向穩(wěn)定性的矛盾,并在此基礎(chǔ)上通過轉(zhuǎn)向干預(yù)來防止極限工況下車輛轉(zhuǎn)向過多的趨勢,進(jìn)一步提高了車輛的穩(wěn)定性。同時,該系統(tǒng)能方便地與其他動力學(xué)控制系統(tǒng)進(jìn)行集成控制,為今后汽車底盤一體化控制奠定了良好的基礎(chǔ)。本設(shè)計是通過合理整合已有的設(shè)計,閱讀大量文獻(xiàn),掌握機械設(shè)計的基本步驟和要求,以及傳統(tǒng)機械制圖的步驟和規(guī)則,掌握制動器總成的相關(guān)設(shè)計方法,以及進(jìn)一步扎實汽車設(shè)計基本知識,學(xué)會用CAD進(jìn)行基本二維制圖,同時提高分析問題和解決問題的能力。二、設(shè)計(論文)內(nèi)容、技術(shù)要求(研究方法) 對轎車前輪主動轉(zhuǎn)向系統(tǒng)的機械結(jié)構(gòu)及工作原理進(jìn)行分析,并根據(jù)選定的技術(shù)參數(shù)進(jìn)行主動轉(zhuǎn)向系統(tǒng)機械結(jié)構(gòu)進(jìn)行設(shè)計。設(shè)計主要內(nèi)容包括轉(zhuǎn)向系統(tǒng)主要參數(shù)的確定,齒輪齒條式轉(zhuǎn)向器的設(shè)計,主動轉(zhuǎn)向控制器的設(shè)計,同時進(jìn)行必要的運動分析和強度校核。要求:1、查閱相關(guān)資料,學(xué)習(xí)使用相關(guān)軟件。2、計算參數(shù),設(shè)計結(jié)構(gòu),利用計算機輔助設(shè)計軟件繪圖。3、編寫設(shè)計說明書。說明書內(nèi)容完整,格式規(guī)范。4、結(jié)構(gòu)設(shè)計合理,圖面清晰。三、設(shè)計(論文)完成后應(yīng)提交的成果1設(shè)計說明書一份。說明書字?jǐn)?shù):15000字以上。2圖紙:折合0號圖3張。四、設(shè)計(論文)進(jìn)度安排(1)調(diào)研、查閱參考資料,了解轉(zhuǎn)向器的功能、主要結(jié)構(gòu)。撰寫開題報告。 第2周(3月1日3月11日)(2)開題。第2周(3月11日)(3)分析并確定轉(zhuǎn)向器的具體結(jié)構(gòu)形式,主要零部件及相互位置關(guān)系。根據(jù)給定的設(shè)計參數(shù),按照有關(guān)的設(shè)計要求和順序進(jìn)行具體結(jié)構(gòu)尺寸參數(shù)計算及其他有關(guān)參數(shù)的選配,針對給定的設(shè)計參數(shù)優(yōu)選轉(zhuǎn)向器的總體方案。第3周(3月12日3月20日)(4)進(jìn)行轉(zhuǎn)向器零部件的設(shè)計計算。第45周(3月21日4月2日)(5)完成部分設(shè)計圖紙,折合0# 圖紙1張,完成說明書初稿。第6周8周(4月3日4月22日)(6)中期檢查。第8周(4月22日)(7)完成轉(zhuǎn)向器裝配圖、主要零件圖,完成設(shè)計說明書 第913周(4月23日5月27日)(8)設(shè)計及說明書初稿提交。第13周(5月27日)(9)畢業(yè)設(shè)計審核、修改。 第1416周(5月28日6月17日)(10)畢業(yè)設(shè)計答辯。 第17周(6月18日6月 20日)五、主要參考資料1 蔣勵,余卓平,高曉杰.寶馬主動轉(zhuǎn)向技術(shù)概述J.汽車技術(shù),2006.42 王望予主編.汽車設(shè)計,第四版M. 北京:機械工業(yè)出版社,20053 陳家瑞主編.汽車構(gòu)造M. 北京:人民交通出版社,2002.34 劉惟信主編.汽車設(shè)計M. 北京:清華大學(xué)出版社,20065 機械設(shè)計手冊編委會.機械設(shè)計手冊,第3卷M. 北京:機械工業(yè)出版社,2004.86 李秀珍主編.機械設(shè)計基礎(chǔ)M. 北京:機械工業(yè)出版,2005.17 機械設(shè)計手冊編委會.機械設(shè)計手冊,齒輪傳動M. 北京:機械工業(yè)出版社,2007.38 陳曉南,楊培林主編.機械設(shè)計基礎(chǔ)M. 北京:科學(xué)出版社,2007.29 張策主編,機械原理與機械設(shè)計M. 北京:機械工業(yè)出版社,2004.910 饒振鋼編著.行星傳動機構(gòu)設(shè)計M. 北京:國防工業(yè)出版社,1994.6六、備注指導(dǎo)教師簽字:年 月 日教研室主任簽字: 年 月 日黑龍江工程學(xué)院本科生畢業(yè)設(shè)計摘 要轎車前輪主動轉(zhuǎn)向系統(tǒng)可以確保車輛在任何速度下都能提供理想的轉(zhuǎn)向操控,同時加強了轎車在高速行駛狀態(tài)下的安全性,提高了駕駛員在駕駛汽車時候的靈活性和舒適性,而且相比于傳統(tǒng)的轉(zhuǎn)向器,主動轉(zhuǎn)向系統(tǒng)更加可靠,故障率更低。本設(shè)計以現(xiàn)有主動轉(zhuǎn)向系統(tǒng)裝置為基礎(chǔ),參考先進(jìn)的主動轉(zhuǎn)向系統(tǒng)的設(shè)計原理和已有汽車的相關(guān)數(shù)據(jù),重新設(shè)計齒輪齒條式轉(zhuǎn)向器及相匹配的主動轉(zhuǎn)向系統(tǒng)機械部分的結(jié)構(gòu)方案,并對相關(guān)的部分進(jìn)行強度校核。設(shè)計的主要內(nèi)容包括:轉(zhuǎn)向系統(tǒng)主要參數(shù)的確定,齒輪齒條轉(zhuǎn)向器的設(shè)計,主動轉(zhuǎn)向控制器的設(shè)計,其中主動轉(zhuǎn)向是設(shè)計中的難點,采用星星齒輪機構(gòu)來實現(xiàn)主動轉(zhuǎn)向的控制,最后運用Auto CAD軟件進(jìn)行二維圖紙的繪制。 關(guān)鍵詞:轉(zhuǎn)向器;主動轉(zhuǎn)向;前輪;機械設(shè)計;行星齒輪ABSTRACTActive steering system can ensure vehicles in any speed can provide the ideal steering control, while strengthening the cars in the safety of high-speed condition, improved driver when driving a car the flexibility and comfort, and compared with conventional methods, active steering system more reliable, failure to even lower.This design is based on the front-wheel existing active steering system, reference information of advanced active steering system and related data of some cars, redesign the theory of steering system with gear and rack and matching active steering system structure scheme of mechanical part. Design of the main content includes: the main steering system of parameters, the design of steering gear rack, active steering the controller design, including active steering is the difficulty in the design, use the stars to implement active steering gear control, finally I use Auto CAD software for the 2D drawingsKey words: redirector; active steering; front wheel; mechanical design; planetary gearII黑龍江工程學(xué)院本科生畢業(yè)設(shè)計第1章 緒 論主動轉(zhuǎn)向系統(tǒng)保留了傳統(tǒng)轉(zhuǎn)向系統(tǒng)中的機械構(gòu)件,包括轉(zhuǎn)向盤、轉(zhuǎn)向柱、齒輪齒條轉(zhuǎn)向機以及轉(zhuǎn)向橫拉桿等。其最大特點就是在轉(zhuǎn)向盤和齒輪齒條轉(zhuǎn)向機之間的轉(zhuǎn)向柱上集成了一套雙行星齒輪機構(gòu),用于向轉(zhuǎn)向輪提供疊加轉(zhuǎn)向角。主動轉(zhuǎn)向系統(tǒng)通過一組雙行星齒輪機構(gòu)實現(xiàn)了獨立于駕駛員的轉(zhuǎn)向疊加功能,完美地解決了低速時轉(zhuǎn)向靈活輕便與高速時保持方向穩(wěn)定性的矛盾,并在此基礎(chǔ)上通過轉(zhuǎn)向干預(yù)來防止極限工況下車輛轉(zhuǎn)向過多的趨勢,進(jìn)一步提高了車輛的穩(wěn)定性。同時,該系統(tǒng)能方便地與其他動力學(xué)控制系統(tǒng)進(jìn)行集成控制,為今后汽車底盤一體化控制奠定了良好的基礎(chǔ)。 與常規(guī)轉(zhuǎn)向系統(tǒng)的顯著差別在于,主動轉(zhuǎn)向系統(tǒng)不僅能夠?qū)D(zhuǎn)向力矩進(jìn)行調(diào)節(jié),而且還可以對轉(zhuǎn)向角度進(jìn)行調(diào)整,使其與當(dāng)前的車速達(dá)到完美匹配。其中的總轉(zhuǎn)角等于駕駛員轉(zhuǎn)向盤轉(zhuǎn)角和伺服電機轉(zhuǎn)角之和。低速時,伺服電機驅(qū)動的行星架轉(zhuǎn)動方向與轉(zhuǎn)向盤轉(zhuǎn)動相同,疊加后增加了實際的轉(zhuǎn)向角度,可以減少轉(zhuǎn)向力的需求。高速時,伺服電機驅(qū)動的行星架轉(zhuǎn)動方向與轉(zhuǎn)向盤轉(zhuǎn)動相反,疊加后減少了實際的轉(zhuǎn)向角度,轉(zhuǎn)向過程會變得更為間接,提高了汽車的穩(wěn)定性和安全性。1.1轉(zhuǎn)向系統(tǒng)綜述1、蝸桿曲柄銷式轉(zhuǎn)向器它是以蝸桿為主動件,曲柄銷為從動件的轉(zhuǎn)向器。蝸桿具有梯形螺紋,手指狀的錐形指銷用軸承支承在曲柄上,曲柄與轉(zhuǎn)向搖臂軸制成一體。轉(zhuǎn)向時,通過轉(zhuǎn)向盤轉(zhuǎn)動蝸桿、嵌于蝸桿螺旋槽中的錐形指銷一邊自轉(zhuǎn),一邊繞轉(zhuǎn)向搖臂軸做圓弧運動,從而帶動曲柄和轉(zhuǎn)向垂臂擺動,再通過轉(zhuǎn)向傳動機構(gòu)使轉(zhuǎn)向輪偏轉(zhuǎn)。這種轉(zhuǎn)向器通常用于轉(zhuǎn)向力較大的載貨汽車上。 2、循環(huán)球式轉(zhuǎn)向器循環(huán)球式:這種轉(zhuǎn)向裝置是由齒輪機構(gòu)將來自轉(zhuǎn)向盤的旋轉(zhuǎn)力進(jìn)行減速,使轉(zhuǎn)向盤的旋轉(zhuǎn)運動變?yōu)闇u輪蝸桿的旋轉(zhuǎn)運動,滾珠螺桿和螺母夾著鋼球嚙合,因而滾珠螺桿的旋轉(zhuǎn)運動變?yōu)橹本€運動,螺母再與扇形齒輪嚙合,直線運動再次變?yōu)樾D(zhuǎn)運動,使連桿臂搖動,連桿臂再使連動拉桿和橫拉桿做直線運動,改變車輪的方向。 這是一種古典的機構(gòu),現(xiàn)代轎車已大多不再使用,但又被最新方式的助力轉(zhuǎn)向裝置所應(yīng)用。它的原理相當(dāng)于利用了螺母與螺栓在旋轉(zhuǎn)過程中產(chǎn)生的相對移動,而在螺紋與螺紋之間夾入了鋼球以減小阻力,所有鋼球在一個首尾相連的封閉的螺旋曲線內(nèi)循環(huán)滾動,循環(huán)球式故而得名。3、齒輪齒條式轉(zhuǎn)向器它是一種最常見的轉(zhuǎn)向器。其基本結(jié)構(gòu)是一對相互嚙合的小齒輪和齒條。轉(zhuǎn)向軸帶動小齒輪旋轉(zhuǎn)時,齒條便做直線運動。有時,靠齒條來直接帶動橫拉桿,就可使轉(zhuǎn)向輪轉(zhuǎn)向。所以,這是一種最簡單的轉(zhuǎn)向器。它的優(yōu)點是結(jié)構(gòu)簡單,成本低廉,轉(zhuǎn)向靈敏,體積小,可以直接帶動橫拉桿。在汽車上得到廣泛應(yīng)用。 1.2主動轉(zhuǎn)向系統(tǒng)特點自從汽車發(fā)明以來,駕駛轉(zhuǎn)向的傳動裝置通常都是固定的,方向盤與前輪的轉(zhuǎn)向角度比始終一成不變。如果采用直接轉(zhuǎn)向,駕駛者在過急彎時就不需要大幅轉(zhuǎn)動方向盤,但是在高速行駛時,方向盤細(xì)微的動作都將會影響到行駛穩(wěn)定性;反過來說,轉(zhuǎn)向系統(tǒng)越是間接,車輛在高速公路上的行駛穩(wěn)定性就越高,但是必須犧牲過彎時的操控性。所以,傳統(tǒng)的轉(zhuǎn)向系統(tǒng)都必須在安全性與舒適性之間做出權(quán)衡。而主動轉(zhuǎn)向系統(tǒng)保留了傳統(tǒng)轉(zhuǎn)向系統(tǒng)中的機械構(gòu)件,包括轉(zhuǎn)向盤、轉(zhuǎn)向柱、齒輪齒條轉(zhuǎn)向機以及轉(zhuǎn)向橫拉桿等。其最大特點就是在轉(zhuǎn)向盤和齒輪齒條轉(zhuǎn)向機之間的轉(zhuǎn)向柱上集成了一套雙行星齒輪機構(gòu),用于向轉(zhuǎn)向輪提供疊加轉(zhuǎn)向角。主動轉(zhuǎn)向系統(tǒng)通過一組雙行星齒輪機構(gòu)實現(xiàn)了獨立于駕駛員的轉(zhuǎn)向疊加功能,完美地解決了低速時轉(zhuǎn)向靈活輕便與高速時保持方向穩(wěn)定性的矛盾,并在此基礎(chǔ)上通過轉(zhuǎn)向干預(yù)來防止極限工況下車輛轉(zhuǎn)向過多的趨勢,進(jìn)一步提高了車輛的穩(wěn)定性。同時,該系統(tǒng)能方便地與其他動力學(xué)控制系統(tǒng)進(jìn)行集成控制,為今后汽車底盤一體化控制奠定了良好的基礎(chǔ)。主動轉(zhuǎn)向系統(tǒng)的的雙行星齒輪機構(gòu)包括左右左右兩副行星齒輪機構(gòu),公用一個行星架進(jìn)行動力傳遞,左側(cè)的主動太陽輪與轉(zhuǎn)向盤相連,將轉(zhuǎn)向盤上輸入的轉(zhuǎn)向角經(jīng)由行星架傳遞給右側(cè)的行星齒輪副,而右側(cè)的行星齒輪具有兩個轉(zhuǎn)向舒服自由度,一個是行星架傳遞的轉(zhuǎn)向盤轉(zhuǎn)角,另一個是由伺服電機疊加轉(zhuǎn)角輸入。右側(cè)的太陽輪作為輸出軸,其輸出的轉(zhuǎn)向角度是由轉(zhuǎn)向盤轉(zhuǎn)向角度與伺服電動驅(qū)動的行星架轉(zhuǎn)動方向與轉(zhuǎn)向盤相同,增加了后者的實際轉(zhuǎn)向角度,高速時,伺服電動機電機驅(qū)動的行星架與轉(zhuǎn)向盤轉(zhuǎn)向相反,疊加后減少了實際的轉(zhuǎn)向角度,轉(zhuǎn)向過程變得更為間接,提高了汽車的穩(wěn)定性和安全性。轉(zhuǎn)動車輪所用的力量,并不是由電動機決定,而是由獨立的轉(zhuǎn)向助力系統(tǒng)與傳統(tǒng)的轉(zhuǎn)向裝置一同決定的。主動式轉(zhuǎn)向系統(tǒng)的其他組成部件還包括判定當(dāng)前駕駛條件和駕駛者指令的獨立控制單元和多個傳感器。主動轉(zhuǎn)向系統(tǒng)的整體結(jié)構(gòu)如圖1-1所示:圖1-1 主動轉(zhuǎn)向系統(tǒng)表1-1 主動轉(zhuǎn)向系統(tǒng)設(shè)計基礎(chǔ)參數(shù)表參數(shù)名稱具體參數(shù)值傳動比靜止?fàn)顟B(tài)10:1;高速狀態(tài)20:1輪胎型號 245/45 R17W軸距 2890風(fēng)阻系數(shù) 0.28整車裝備質(zhì)量 1673承載質(zhì)量 382前后配重 49.7%,50.3%最高時速 250/h轉(zhuǎn)向盤回轉(zhuǎn)總?cè)?shù)3.5圈最小轉(zhuǎn)彎直徑11.5m轉(zhuǎn)向盤直徑3791.3本章小結(jié) 本章是對傳統(tǒng)轉(zhuǎn)向器及主動轉(zhuǎn)向系統(tǒng)的綜述,了解主動轉(zhuǎn)向系統(tǒng)的發(fā)展現(xiàn)狀和特點并確定參考數(shù)據(jù)。為后面的設(shè)計奠定基礎(chǔ)。第2章 轉(zhuǎn)向系統(tǒng)主要參數(shù)的確定2.1轉(zhuǎn)向盤的直徑轉(zhuǎn)向盤的直徑根據(jù)車型的大小可在380550的標(biāo)準(zhǔn)系列內(nèi)選取。取=379mm。2.2轉(zhuǎn)向盤回轉(zhuǎn)的總?cè)?shù)轉(zhuǎn)向盤轉(zhuǎn)動的總?cè)?shù)與轉(zhuǎn)向系的角傳動比以及所要求的轉(zhuǎn)向輪最大轉(zhuǎn)角有關(guān),對貨車和轎車的轉(zhuǎn)向盤轉(zhuǎn)動總?cè)?shù)有不同的要求。不裝動力轉(zhuǎn)向的重型汽車的轉(zhuǎn)向盤轉(zhuǎn)動的總?cè)?shù)一般不宜超過7圈,而對于轎車不應(yīng)超過3.6圈2。取3.5圈。2.3轉(zhuǎn)向系的效率轉(zhuǎn)向系的效率由轉(zhuǎn)向器的效率和傳動機構(gòu)的效率決定,即 (2-1)轉(zhuǎn)向器的效率有正效率和逆效率兩種。正效率 (2-2)逆效率 (2-3)式中:作用在轉(zhuǎn)向盤上的功率; 轉(zhuǎn)向器中的摩擦功率; 作用在轉(zhuǎn)向搖臂軸上的功率。對于蝸桿類和螺桿類轉(zhuǎn)向器,如果只考慮嚙合副的摩擦損失,忽略軸承和其他地方的摩擦損失,其效率可以用下面的公式計算: (2-4) (2-5)式中:蝸桿或螺桿的導(dǎo)程角,12;摩擦角,;摩擦系數(shù),取=0.04(查得淬火鋼對淬火鋼的摩擦副摩擦系數(shù)=0.030.05,選取=0.04);則: =arctan0.04=83.452.4轉(zhuǎn)向系的傳動比2.4.1轉(zhuǎn)向時加在轉(zhuǎn)向盤上的力為了使轉(zhuǎn)向系操縱輕便,轉(zhuǎn)向時加在轉(zhuǎn)向盤上的切向力,對轎車不應(yīng)大于150200N。作用于方向盤上的手力 = (2-6)式中: 轉(zhuǎn)向阻力矩;主銷偏移矩;可用下列公式來計算汽車在瀝青或者混凝土路面上的原地轉(zhuǎn)向阻力矩=481680 Nmm式中: 輪胎和路面間的滑動摩擦系數(shù),一般取0.7; 轉(zhuǎn)向阻力矩,Nmm; 轉(zhuǎn)向軸負(fù)荷,N,;汽車的滿載質(zhì)量 =(1673+382) =2055;汽車的轉(zhuǎn)向軸載荷分配系數(shù),轉(zhuǎn)向軸為前軸,前軸載荷分配系數(shù)為49.7。20559.849.7=10213.35N輪胎氣壓,MPa;取2.5bar,即0.255MPa。則:=162.1N式中: 為轉(zhuǎn)向搖臂長;為轉(zhuǎn)向節(jié)臂長,現(xiàn)代汽車結(jié)構(gòu)中,轉(zhuǎn)向傳動機構(gòu)角傳動比;比值大約在0.851.10之間,近似認(rèn)為1;為轉(zhuǎn)向盤直徑,=379 mm;為轉(zhuǎn)向器角傳動比, =18;為轉(zhuǎn)向器正效率, =83.45%;2.4.2小齒輪最大轉(zhuǎn)矩靜止?fàn)顟B(tài)下,主動轉(zhuǎn)向控制器不工作,此時工作狀況相當(dāng)于傳統(tǒng)齒輪齒條轉(zhuǎn)向器,轉(zhuǎn)向盤與齒輪剛性連接。則齒輪轉(zhuǎn)矩 =30.8 Nm2.4.3轉(zhuǎn)向系的角傳動比轉(zhuǎn)向系的角傳動比 (2-7)式中:轉(zhuǎn)向軸的轉(zhuǎn)角增量,rad;齒條位移增量,mm;對于定傳動比的轉(zhuǎn)向器,其角轉(zhuǎn)動比可表示為: (2-8)式中:齒輪分度圓的半徑,; 齒輪分度圓的直徑; (2-9)2.4.4轉(zhuǎn)向器的角傳動比乘用車的轉(zhuǎn)向器的角傳動比在1725的范圍內(nèi)選取,一般傳統(tǒng)齒輪齒條轉(zhuǎn)向器角傳動比為18,取=18。2.5 本章小結(jié) 本章主要根據(jù)以選擇的數(shù)據(jù),確定基本的轉(zhuǎn)向系統(tǒng)參數(shù),其中包括轉(zhuǎn)向盤的直徑轉(zhuǎn)向盤回轉(zhuǎn)的總?cè)?shù) 轉(zhuǎn)向系的效率,轉(zhuǎn)向系的傳動比。 第3章 齒輪齒條式轉(zhuǎn)向器的設(shè)計計算3.1齒輪齒條結(jié)構(gòu)的幾何設(shè)計主動小齒輪采用斜齒圓柱小齒輪,采用變位齒輪。法向模數(shù)在23mm之間取值,取2mm(GB/T13571987)。齒數(shù)多在58之間取值,取=6。由于避免根切的最小齒數(shù)為=17;主動齒輪只能采用變位齒輪方案變位系數(shù) =;=1,則=0.529。齒輪螺旋角多在915之間取值,取=12。壓力角即法向齒形角取標(biāo)準(zhǔn)值20。轉(zhuǎn)向盤最大轉(zhuǎn)角1.75360=315。齒條齒數(shù)待定。主動小齒輪選用156材料制造,硬度58HRC 。齒條選用45鋼制造,均采用淬火處理。殼體為減輕質(zhì)量采用鋁合金壓鑄。齒輪精度初選8級。法向齒頂高系數(shù)取標(biāo)準(zhǔn)值1。法向頂隙系數(shù)取標(biāo)準(zhǔn)值0.25。3.2齒輪齒條設(shè)計及校核轉(zhuǎn)向器內(nèi)齒輪工作視為閉式傳動失效形式主要為輪齒的折斷,因此按彎曲強度設(shè)計,按接觸強度校核。1、選取齒輪材料及熱處理對于汽車齒輪采用硬齒面設(shè)計,表面硬度均應(yīng)56HRC,主動小齒輪取60HRC,淬火處理;齒條采用45鋼,表面硬度取58HRC,淬火。2、齒輪最大轉(zhuǎn)矩 =30.8 Nm3、初取載荷系數(shù)載荷有中等沖擊,斜齒輪硬齒面,=1.61.8范圍內(nèi),初取=1.7。4、選取齒寬系數(shù)及齒輪相對軸承非對稱布置,取=0.6。由式 = (3-1)得對于齒條Z(待定),則0。5、初取重合度系數(shù)及螺旋角系數(shù)初取螺旋角=12,=1.8。由式 =0.25+ (3-2)得 =0.67=0.91初取 =0.91 =0.676、初取齒數(shù),,齒形系數(shù)及應(yīng)力修正系數(shù)取=8 ,待定。由 = (3-3)得當(dāng)量齒數(shù) =8.5由于避免根切的最小齒數(shù)=17,故采用變位齒輪傳動,取變位系數(shù)=0.529。=2.45,=2.063=1.65,=1.977、確定許用彎曲疲勞應(yīng)力得 =450 MPa0.7=315MPa=430 MPa0.7=301MPa(雙向運轉(zhuǎn),數(shù)值0.7)由式 = (3-4)齒輪失效概率1/100采用一般可靠度設(shè)計,取=1.25;為應(yīng)力修正系數(shù),取=2.0假定齒輪工作壽命為5年(300天/年),單班(8h);應(yīng)力循環(huán)次數(shù)=60n;為每轉(zhuǎn)一圈,同一齒面嚙合次數(shù);n為轉(zhuǎn)速;為齒輪工作壽命則=1;n取大致為 1.75/2 r/s=0.875 r/s。則 =6052.51120003.87取 =0.97于是 = =489 MPa = =467 MPa8、按齒根彎曲疲勞應(yīng)力 =0.008267 (1)=0.008703 (2)9、確定齒輪模數(shù)由式 (3-5)代入上面兩式(1)(2)兩者最大值 2.43 mm取 =2.5 mm10、確定主要參數(shù)分度圓直徑 =20.45 mm齒寬 =0.620.45 mm =12.27 mm取 =20 ,=+510 mm,=30 mm使用系數(shù),取=1.1。11、定載荷系數(shù)(1)動載系數(shù)齒輪圓周速度 =0.05 m/s齒輪精度取為9級。 =1.03(2)齒向載荷分布系數(shù)(9級精度,淬火鋼):由式 =1.45+0.325=1.78端面重合度 =1.88-3.2(+)cos, =1.48cos12 =1.45縱向重合度 =tan=tan12=0.325從而 =1.42,=1.08則 =1.11.031.08 1.42=1.74得 需重新計算;12、驗算齒根疲勞強度用準(zhǔn)確值代入式 2.48 mm仍取=2.5 ,齒根疲勞強度足夠。 =2.5 mm 13、驗算齒面接觸疲勞強度彈性系數(shù),查得=189.8。節(jié)點區(qū)域系數(shù),查得=2.4。由式 = (3-6)得 =0.89螺旋角系數(shù) =0.99許用接觸疲勞應(yīng)力= (3-7)式中:接觸疲勞壽命系數(shù),查得=0.98;安全系數(shù),失效概率1/100,取=1;得 =1560 MPa,=1540 MPa; =1529 MPa,=1509 MPa;14、驗算齒面接觸強度 =,則1;故 =189.82.450.890.99=1492 Mpa1509 MPa由于(取兩齒材料較弱者進(jìn)行比較),故接觸強度足夠。對于方向盤從中間位置到向左或向右轉(zhuǎn)向輪極限位置回轉(zhuǎn)總?cè)?shù)為1.75圈。故對于齒條行程=1.752 (3-7)= (3-8)對于齒條,理論上;(=,=) (3-9)1.752則 3.5 因此,=28。齒條長 (3-10)即 =225 mm 3.3 本章小結(jié) 為了配合主動轉(zhuǎn)向系統(tǒng)的機械部分,本章通過對轉(zhuǎn)向系統(tǒng)常規(guī)數(shù)據(jù)的選擇,設(shè)計齒輪齒條機,并對相關(guān)的零件進(jìn)行了強度校核。保證使用強度。 第4章 主動轉(zhuǎn)向控制器的設(shè)計計算4.1主動轉(zhuǎn)向控制器幾何結(jié)構(gòu)設(shè)計控制器由一個行星齒輪組組成,簡圖如圖4-1所示: 圖4-1 控制器簡圖對于左邊的主動太陽輪為1,行星輪為a(初設(shè)行星齒輪數(shù)目為=4);大齒圈c固定在轉(zhuǎn)向柱上,系桿H;右邊太陽輪為3,齒圈b內(nèi)齒與行星輪a嚙合;外齒與電機帶動的蝸桿2組成渦輪蝸桿傳動。該系統(tǒng)中活動構(gòu)件為=6;高副數(shù)目為=5;低副數(shù)目為=5,則系統(tǒng)機構(gòu)的自由度為 =3-2-=36-25-5=3其中包括電機方向的輸入和方向盤方向的輸入及太陽輪的輸出。通過計算,最終從太陽輪輸出的轉(zhuǎn)速為和的疊加。設(shè)轉(zhuǎn)速方向向左: =式中,方向向左時取“”,反之則取“+”。 其中,;。當(dāng)=0時,=,即電機未工作時,輸出即為方向盤的輸入;當(dāng)=0時,=,此時,轉(zhuǎn)向角度由電機控制。對行星齒輪組進(jìn)行設(shè)計,左右為對稱結(jié)構(gòu),設(shè)計一組即可,選擇對左邊行星輪系進(jìn)行設(shè)計。4.2主動轉(zhuǎn)向控制器行星齒輪設(shè)計計算參考普通圓柱齒輪設(shè)計方案,轉(zhuǎn)向控制器采用閉式硬齒面設(shè)計方案,失效形式主要為輪齒的折斷,因此按彎曲強度設(shè)計,接觸強度校核。齒輪采用斜齒圓柱齒輪傳動,初設(shè)螺旋角=10,在815范圍內(nèi)選。初取模數(shù)=2 mm。為了盡量不使用變位齒輪,行星輪和主動太陽輪齒數(shù)=17。初取主動太陽齒數(shù)=14;行星輪齒數(shù)=10。1、選取齒輪材料及熱處理方法采用硬齒面,大小齒輪均采用合金滲碳鋼20,滲碳淬火。2、齒面硬度太陽輪 6063HRC 行星輪 5863HRC3、太陽輪轉(zhuǎn)矩根據(jù)行星齒輪機構(gòu)設(shè)計,行星輪齒數(shù)小于太陽輪時即則,計算轉(zhuǎn)矩 (4-1)式中:為輸入軸轉(zhuǎn)矩;為行星輪數(shù)目;為齒數(shù)比;且 = (4-2)式中為內(nèi)傳動比,=( b為大齒圈)。對于主動轉(zhuǎn)向控制器,為使其結(jié)構(gòu)尺寸不至于過大,且加工方便簡單,初設(shè)主動太陽輪齒數(shù)=14;行星輪齒數(shù)=10。對于太陽輪分度圓直徑 =28.4 mm 行星輪 =20.3 mm則大齒圈分度圓直徑 =+2=28.4+220.3=69 mm于是齒數(shù) =34從而得出 =1.4取行星輪數(shù)目 =4則 =4.81 NM為輸入軸轉(zhuǎn)矩,即為方向盤轉(zhuǎn)矩 =30.8 NM4、初取載荷系數(shù) =1.61.8范圍內(nèi),取=1.75、選取齒寬系數(shù)及齒輪相對軸承非對稱布置,取=0.5。 由式 = (4-3)得 =0.46、初取重合度系數(shù)及螺旋角系數(shù)初設(shè)螺旋角 =10,=1.8由式 =0.25+ (4-4) 得 =0.67 得 =0.937、齒形修正系數(shù)及應(yīng)力修正系數(shù)由 =Z/得 =15;=10由于Z=17,兩者均采用變位齒輪, 取=2.75,=2.55=1.58,=1.648、確定許用彎曲疲勞應(yīng)力得 =460 MPa0.7=322MPa =420 MPa0.7=294MPa (由于齒輪雙向運轉(zhuǎn),故乘以系數(shù)0.7)由式 = (4-5)式中:為應(yīng)力修正系數(shù),=2.0;為彎曲疲勞應(yīng)力壽命系數(shù);接觸應(yīng)力變化總次數(shù) =60n式中:為每轉(zhuǎn)一圈,同一齒面嚙合次數(shù);為轉(zhuǎn)速,取大致為1r/s;為齒輪工作壽命;假定齒輪工作壽命為5年,(每年300個工作日)單班制(8h),則 =60n=6060312000=1.296 =6012212000=1.728可由 計算得 彎曲疲勞壽命系數(shù),取=0.95 ,=0.98。最小安全系數(shù),失效概率低于1/100,=1.25;可得 =489 MPa,=446 MPa9、按齒根彎曲疲勞極限應(yīng)力確定模數(shù)=0.008885 (1) =0.009377 (2)由式 (4-6)代入上面兩式(1)(2)兩者最大值 得 1.00 mm 取=1.5 mm。10、確定主要參數(shù) =18.28 mm 取整數(shù) =19 mm(便于計算)由 (4-7)得 =7.6 mm,取=8 mm。一般 =+510 mm ,=;則 =13 mm對于變位齒輪 =0.18 ,=0.41由式 (4-8) 查表=2540其行星齒輪的實際中心距 ,=18.28 mm則 =19.05 取整數(shù)=19 mm則 =18401211、定載荷系數(shù) (1)使用系數(shù) 查表 =1.1(2)動載系數(shù)齒輪圓周速度 =0.067 m/s齒輪精度取為9級。查表 =1.03(3)齒向載荷分布系數(shù)硬齒面,非對稱布置,取=0.5,=1.06。(4)齒向載荷分布系數(shù)齒輪材料為9級精度,淬火鋼。由式 = (4-9)端面重合度 =1.88-3.2(+)cos, =1.33cos18.67 =1.26縱向重合度 =tan=tan18.67=0.753得 =1.5于是 =1.11.031.06 1.5=1.8 需重新計算;12、驗算齒根疲勞強度用準(zhǔn)確值代入式(1)(=0.62,=0.91)得 0.97 mm 仍取=2.5 mm,齒根疲勞強度足夠。13、驗算齒面接觸疲勞強度 (1)彈性系數(shù),查得,=189.8。(2)節(jié)點區(qū)域系數(shù),查得,=2.11。(3)重合度系數(shù),因,從而滿足裝配條件。對于變位齒輪傳動有 22 (4-19)即 (4-20)式中: =4;變位齒輪中心距變動系數(shù) (4-21)則 =0.51齒高變動系數(shù) (4-22)且,故 0.08齒頂高 (4-23)故 =(1+0.41-0.08)1.5 =1.995 mm齒頂圓直徑 (4-24) =15.83+1.9952 =19.82 mm于是 2= =(22.17+15.83)sin45 =26.87 mm =19.82 mm即 滿足鄰接條件10。由于大齒圈工作條件不如主動齒輪與行星齒輪嚙合惡劣,當(dāng)采用同種材料,同樣的熱處理方法時,主動齒輪與行星齒輪嚙合滿足設(shè)計要求時,其肯定也同樣符合要求,故此處略去其校核步驟。4.4主動轉(zhuǎn)向控制器蝸輪蝸桿設(shè)計計算4.4.1蝸輪蝸桿傳動比的確定為保證蝸輪蝸桿有合適的傳動比,從而匹配驅(qū)動電機,需估算轉(zhuǎn)向輪偏轉(zhuǎn)角速度。假設(shè)方向盤轉(zhuǎn)速為零時,此時轉(zhuǎn)向角度由驅(qū)動電機控制,若在此時主動轉(zhuǎn)向控制器滿足可變化傳動比的變化范圍要求,由前面章節(jié)所述,方向盤轉(zhuǎn)速為零時,即時,驅(qū)動電機轉(zhuǎn)速為,太陽輪輸出轉(zhuǎn)速為,由式= (4-25)設(shè)蝸輪轉(zhuǎn)速為,則應(yīng)有 (4-26)故 = (4-27)在理想狀況下,最小轉(zhuǎn)彎半徑與轉(zhuǎn)向輪外輪最大偏轉(zhuǎn)角度的關(guān)系為: = (4-28)在車輪為絕對剛體的假設(shè)條件下,內(nèi)轉(zhuǎn)向輪偏轉(zhuǎn)角與外轉(zhuǎn)向輪偏轉(zhuǎn)角的關(guān)系式為: (4-29)式中:兩側(cè)主銷軸線與地面相交點之間的距離; 汽車軸距11;車型各項參數(shù)值:軸距 L=2890 mm ;輪距(前)=1560 mm ;最小轉(zhuǎn)彎半徑 =11.5/2=5.75 m于是,代入(4-19)式可求得 sin=75.5890.2=0.5026 =30.01則可由(4-20)式求得 =40.2考慮到駕駛員的操縱能力將方向盤轉(zhuǎn)速取為1r/s;方向盤回轉(zhuǎn)總?cè)?shù)為3.5圈的情況下,方向盤由中間位置轉(zhuǎn)至左右極限位置時歷時1.75s。則可粗略認(rèn)為轉(zhuǎn)向輪最大偏轉(zhuǎn)角速度為: =(/s)=22.98(/s)主動轉(zhuǎn)向控制器輸出角速度即為齒輪齒條轉(zhuǎn)向機輸入角速度,則它與轉(zhuǎn)向輪偏轉(zhuǎn)角速度之比即為齒輪齒條轉(zhuǎn)向機傳動比,=18,即 ;求得 =413.64(/s) =68.94(/s)則蝸輪轉(zhuǎn)速 (4-30)已知機構(gòu)中;故 r/min=28.39 r/min取電機最大轉(zhuǎn)速位250 r/min,一般工況下,電機轉(zhuǎn)速為200 r/min。當(dāng)=200 r/min時由式= (4-31)知 =16取蝸輪蝸桿傳動比為 =184.4.2蝸輪蝸桿的設(shè)計計算1、選擇材料蝸桿選用40表面淬火,表面硬度(45-55)HRC,蝸輪選用砂型鑄造,MPa;=140MPa。2。、確定,由表19-3確定蝸桿頭數(shù)=2;則由式 = (4-32)得 =182=36 =1811.73 r/min=211 r/min3、確定蝸輪轉(zhuǎn)矩最惡劣工況下,駕駛員需克服地面最大阻力矩施加在方向盤上的最大轉(zhuǎn)矩為=30.8 NM。當(dāng)方向盤轉(zhuǎn)速為零時,考慮在同樣的工況下,則蝸輪的轉(zhuǎn)矩應(yīng)為=30.8 NM。4、確定載荷系數(shù)查取,工作情況系數(shù)=1。初設(shè)蝸輪圓周速度3m/s,取動載荷系數(shù)=1;因載荷平穩(wěn)取齒向載荷分布系數(shù)=1;故 =1;5、確定蝸輪許用接觸應(yīng)力查得蝸輪材料,離心鑄造,蝸桿齒面硬度45HRC,得為261MPa;300 MPa,=261MPa。6、接觸疲勞應(yīng)力計算由式 (4-33)取=0.45,得=2.7。查得彈性系數(shù)=155。將各參數(shù)代入上式得 =42.9 mm由式 (4-34)得 =0.442.9=17.2 mm =1.91 mm選?。?2 mm;=22.4 mm;=11.2。7、計算圓周速度與滑動速度 = (4-35)m/s =0.04 m/s蝸桿分度圓導(dǎo)程角 (4-36) =10729由公式 = (4-37)=m/s =0.23 m/s由于3 m/s,故選取=1可用;12 m/s,蝸輪材料選取砂型鑄造可用。8、傳動效率計算=0.23 m/s時,當(dāng)量摩擦角=337。據(jù)式(2-4)嚙合效率 則 =0.739、蝸桿傳動主要尺寸計算中心距 (4-38)=47.2 mm分度圓直徑,=22.4 mm;=0.47與初設(shè)基本相符;=236 mm =72 mm蝸桿頂圓直徑;蝸輪喉圓直徑 =26.4 mm =76 mm10、彎曲疲勞強度驗算由式 (4-39)蝸輪當(dāng)量齒數(shù) (4-40) =37.74選取蝸輪齒形系數(shù)=1.81。螺旋角系數(shù) =0.93故 =MPa =21.19 MPa確定許用彎曲應(yīng)力;蝸輪材料為,雙側(cè)工作,離心鑄造,取=58 MPa;則 符合強度要求,可用。11、熱平衡計算由式 (4-41)控制器通風(fēng)條件適中,取表面?zhèn)鳠嵯禂?shù) 按下式估算殼體散熱面積 =0.089故 KW(6070)可采用其他冷卻散熱措施,加強冷卻??紤]到主動轉(zhuǎn)向控制器為間歇工作,工作條件不如計算時惡劣,通風(fēng)散熱良好,因此可考慮將熱平衡計算略去不計。4.5本章小結(jié)本章根據(jù)前面各章所得數(shù)據(jù)及校核情況,設(shè)計整個主動轉(zhuǎn)向器的機械部分,其中包括主動轉(zhuǎn)向控制器幾何結(jié)構(gòu)設(shè)計,主動轉(zhuǎn)向控制器行星齒輪設(shè)計,主動轉(zhuǎn)向控制器行星齒輪可行性設(shè)計及主動轉(zhuǎn)向控制器蝸輪蝸桿設(shè)計。并進(jìn)行強度校核。結(jié) 論本設(shè)計是依據(jù)駕駛條件,調(diào)節(jié)車輛轉(zhuǎn)向傳動比,從而增加或減小前輪的轉(zhuǎn)向角度。在低速時,電動機的作用與駕駛者轉(zhuǎn)動轉(zhuǎn)向盤的方向一致,轉(zhuǎn)向傳動比增大,可以減少駕駛者對轉(zhuǎn)向力的需求。在高速時,電動機的運轉(zhuǎn)方向與駕駛者轉(zhuǎn)動轉(zhuǎn)向盤方向相反,這減少了前輪的轉(zhuǎn)向角度,轉(zhuǎn)向傳動比減小,轉(zhuǎn)向穩(wěn)定性提高。傳動比低速時10:1,高速時為20:1,結(jié)合傳統(tǒng)齒輪齒條式轉(zhuǎn)向器,兩者組合即為具有主動轉(zhuǎn)向功能的主動轉(zhuǎn)向系統(tǒng)。主動轉(zhuǎn)向系統(tǒng)能夠確保最佳的駕乘舒適性,在車輛靜止?fàn)顟B(tài)下,方向盤止點間的操作比常規(guī)轉(zhuǎn)向系統(tǒng)的三圈多減少到了不足兩圈。因此可以更加方便地操作方向盤上的按鈕。保證了車輛的穩(wěn)定性,給駕駛員提供舒適,安全的駕駛環(huán)境。參考文獻(xiàn)1 蔣勵,余卓平,高曉杰.寶馬主動轉(zhuǎn)向技術(shù)概述J.汽車技術(shù),2006.42 王望予主編.汽車設(shè)計,第四版M. 北京:機械工業(yè)出版社,20053 陳家瑞主編.汽車構(gòu)造M. 北京:人民交通出版社,2002.34 劉惟信主編.汽車設(shè)計M. 北京:清華大學(xué)出版社,20065 機械設(shè)計手冊編委會.機械設(shè)計手冊,第3卷M. 北京:機械工業(yè)出版社,2004.86 李秀珍主編.機械設(shè)計基礎(chǔ)M. 北京:機械工業(yè)出版社,2005.17 機械設(shè)計手冊編委會.機械設(shè)計手冊,齒輪傳動M. 北京:機械工業(yè)出版社,2007.38 陳曉南,楊培林主編.機械設(shè)計基礎(chǔ)M. 北京:科學(xué)出版社,2007.29 張策主編,機械原理與機械設(shè)計M. 北京:機械工業(yè)出版社,2004.910 饒振鋼編著.行星傳動機構(gòu)設(shè)計M. 北京:國防工業(yè)出版社,1994.611 濮良貴編著.機械設(shè)計M. 北京:高等教育出版社,2006.512 孫桓編著.機械原理M. 北京:高等教育出版社,2006.513 王旭編著.機械設(shè)計課程設(shè)計M. 北京:機械工業(yè)出版社,2005.614 小林明.汽車工程手冊M. 北京:機械工業(yè)出版社,1996.615 吳宗澤.機械設(shè)計實用手冊M. 北京:化學(xué)工業(yè)出版社,1999.716 郭啟全.CADCAM基礎(chǔ)教程M. 北京:電子工業(yè)出版社,1997.917 祖業(yè)發(fā).工程制圖M. 重慶:重慶大學(xué)出版社,2001.818 劉濤.汽車設(shè)計M. 北京:北京大學(xué)出版社,2000.219 Control strategy of a novel electric power steering system integrated with active front steering function. J. Technological Science,2011,Volume 54, Number 6,Pages 1515-152020 Rudolf Limpert. BRAKE DESIGN and SAFETY. Warrendale, PA 15096,USA.Inc.199221 Sebulke A. The Two-Mass Flywheel-A Torsional Vibration Damper for the Power Train of Passanger Cars-State of the Art and Further Technical Development. (SAE 870394). SAE Transactions,1987致 謝在本文即將完成之際,首先感謝田芳老師對我的耐心指導(dǎo),幫助我一步一步的完善圖紙和說明書,給了我無微不至的關(guān)懷。還要感謝我的家人多年來對我無微不至的關(guān)懷、始終如一的支持,感謝他們對我的鼓勵和生活上的諸多照顧,感謝他們督促我接受良好的教育。同時感謝宿舍的朋友一直以來對我的關(guān)心和支持。感謝汽車系所有老師和同學(xué)的幫助和勉勵。通過這次的設(shè)計,我更深刻地了解了機械設(shè)計、機械制造的各方面知識,對汽車設(shè)計有了全新且比較全面的深刻認(rèn)識,達(dá)到了前所未有的高度,并鍛煉了獨立思考解決問題的能力。再次向田老師表示衷心的感謝!最后,向參加論文審閱、答辯的專家和老師表示感謝。附錄 AThe active steering system from BMWActive steering system of control components and engine electronic parts, dynamic stability control system (DSC) and two yaw rate sensors connected m
收藏