《精修版貴州省貴陽(yáng)市九年級(jí)數(shù)學(xué)競(jìng)賽講座 03第三講 充滿活力的韋達(dá)定理》由會(huì)員分享,可在線閱讀,更多相關(guān)《精修版貴州省貴陽(yáng)市九年級(jí)數(shù)學(xué)競(jìng)賽講座 03第三講 充滿活力的韋達(dá)定理(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理
一元二次方程的根與系數(shù)的關(guān)系,通常也稱為韋達(dá)定理,這是因?yàn)樵摱ɡ硎怯?6世紀(jì)法國(guó)最杰出的數(shù)學(xué)家韋達(dá)發(fā)現(xiàn)的.
韋達(dá)定理簡(jiǎn)單的形式中包含了豐富的數(shù)學(xué)內(nèi)容,應(yīng)用廣泛,主要體現(xiàn)在:
運(yùn)用韋達(dá)定理,求方程中參數(shù)的值;
運(yùn)用韋達(dá)定理,求代數(shù)式的值;
利用韋達(dá)定理并結(jié)合根的判別式,討論根的符號(hào)特征;
利用韋達(dá)定理逆定理,構(gòu)造一元二次方程輔助解題等.
韋達(dá)定理具有對(duì)稱性,設(shè)而不求、整體代入是利用韋達(dá)定理解題的基本思路.
韋達(dá)定理,充滿活力,它與代數(shù)、
2、幾何中許多知識(shí)可有機(jī)結(jié)合,生成豐富多彩的數(shù)學(xué)問(wèn)題,而解這類問(wèn)題常用到對(duì)稱分析、構(gòu)造等數(shù)學(xué)思想方法.
【例題求解】
【例1】 已知、是方程的兩個(gè)實(shí)數(shù)根,則代數(shù)式的值為 .
思路點(diǎn)撥 所求代數(shù)式為、的非對(duì)稱式,通過(guò)根的定義、一元二次方程的變形轉(zhuǎn)化為(例
【例2】如果、都是質(zhì)數(shù),且,,那么的值為( )
A. B.或2 C. D.或2
思路點(diǎn)撥 可將兩個(gè)等式相減,得到、的關(guān)
3、系,由于兩個(gè)等式結(jié)構(gòu)相同,可視、為方程的兩實(shí)根,這樣就為根與系數(shù)關(guān)系的應(yīng)用創(chuàng)造了條件.
注:應(yīng)用韋達(dá)定理的代數(shù)式的值,一般是關(guān)于、的對(duì)稱式,這類問(wèn)題可通過(guò)變形用+、表示求解,而非對(duì)稱式的求值常用到以下技巧:
(1)恰當(dāng)組合;
(2)根據(jù)根的定義降次;
(3)構(gòu)造對(duì)稱式.
【例3】 已知關(guān)于的方程:
(1)求證:無(wú)論m取什么實(shí)數(shù)值,這個(gè)方程總有兩個(gè)相異實(shí)根.
(2)若這個(gè)方程的兩個(gè)實(shí)根、滿足,求m的值及相應(yīng)的、.
思路點(diǎn)撥 對(duì)于(2),先判定、
4、的符號(hào)特征,并從分類討論入手.
【例4】 設(shè)、是方程的兩個(gè)實(shí)數(shù)根,當(dāng)m為何值時(shí),有最小值?并求出這個(gè)最小值.
思路點(diǎn)撥 利用根與系數(shù)關(guān)系把待求式用m的代數(shù)式表示,再?gòu)呐浞椒ㄈ胧?,?yīng)注意本例是在一定約束條件下(△≥0)進(jìn)行的.
注:應(yīng)用韋達(dá)定理的前提條件是一元二次方程有兩個(gè)實(shí)數(shù)根,即應(yīng)用韋達(dá)定理解題時(shí),須滿足判別式△≥0這一條件,轉(zhuǎn)化是一種重要的數(shù)學(xué)思想方法,但要注意轉(zhuǎn)化前后問(wèn)題的等價(jià)性.
【例5】 已知:四邊形ABCD中,AB∥CD,且AB、CD的長(zhǎng)是關(guān)于的方程的兩個(gè)根.
(1)
5、當(dāng)m=2和m>2時(shí),四邊形ABCD分別是哪種四邊形?并說(shuō)明理由.
(2)若M、N分別是AD、BC的中點(diǎn),線段MN分別交AC、BD于點(diǎn)P,Q,PQ=1,且AB
6、二次方程的兩個(gè)實(shí)根,并和滿足不等式,則實(shí)數(shù)取值范圍是 .
(2)已知關(guān)于的一元二次方程有兩個(gè)負(fù)數(shù)根,那么實(shí)數(shù)的取值范圍是 .
2.已知、是方程的兩個(gè)實(shí)數(shù)根,則代數(shù)式的值為 .
3.CD是Rt△ABC斜邊上的高線,AD、BD是方程的兩根,則△ABC的面積是 .
4
7、.設(shè)、是關(guān)于的方程的兩根,+1、+1是關(guān)于的方程的兩根,則、的值分別等于( )
A.1,-3 B.1,3 C.-1,-3 D.-1,3
5.在Rt△ABC中,∠C=90°,a、b、c分別是∠A、∠B、∠C的對(duì)邊,a、b是關(guān)于
的方程的兩根,那么AB邊上的中線長(zhǎng)是( )
A. B. C.5 D.2
6.方程恰有兩個(gè)正整數(shù)根、,則的值是( )
A.1 B.-l C. D.
7.若關(guān)于的一元
8、二次方程的兩個(gè)實(shí)數(shù)根滿足關(guān)系式:,判斷是否正確?
8.已知關(guān)于的方程.
(1) 當(dāng)是為何值時(shí),此方程有實(shí)數(shù)根;
(2)若此方程的兩個(gè)實(shí)數(shù)根、滿足:,求的值.
9.已知方程的兩根均為正整數(shù),且,那么這個(gè)方程兩根為 .
10.已知、是方程的兩個(gè)根,則的值為 .
11.△ABC的一邊長(zhǎng)為5
9、,另兩邊長(zhǎng)恰為方程的兩根,則m的取值范圍是 .
12.兩個(gè)質(zhì)數(shù)、恰好是整系數(shù)方程的兩個(gè)根,則的值是( )
A.9413 B. C. D.
13.設(shè)方程有一個(gè)正根,一個(gè)負(fù)根,則以、為根的一元二次方程為( )
A. B.
C. D.
14.如果方程的三根可以作為一個(gè)三角形的三邊之長(zhǎng),那么實(shí)數(shù)m的取值范圍是( )
A.0≤m≤1 B.m≥ C. D.≤m≤1
15.如圖,在矩形A
10、BCD中,對(duì)角線AC的長(zhǎng)為10,且AB、BC(AB>BC)的長(zhǎng)是關(guān)于的方程的兩個(gè)根.
(1)求rn的值;
(2)若E是AB上的一點(diǎn),CF⊥DE于F,求BE為何值時(shí),△CEF的面積是△CED的面積的,請(qǐng)說(shuō)明理由.
16.設(shè)m是不小于的實(shí)數(shù),使得關(guān)于的方程工有兩個(gè)不相等的實(shí)數(shù)根、.
(1) 若,求m的值.
(2) 求的最大值.
17.如圖,已知在△ABC中,∠ACB=90°,過(guò)C作CD⊥AB于D,且AD=m,BD=n,AC2:BC2=2:1;又關(guān)于x的方程兩實(shí)數(shù)根的差的平方小于192,求整數(shù)m、n的值.
18.設(shè)、、為三個(gè)不同的實(shí)數(shù),使得方程和和有一個(gè)相同的實(shí)數(shù)根,并且使方程和也有一個(gè)相同的實(shí)數(shù)根,試求的值.
參考答案
最新精品資料