新編全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題11 空間幾何體含解析

上傳人:痛*** 文檔編號(hào):64131379 上傳時(shí)間:2022-03-21 格式:DOC 頁(yè)數(shù):20 大小:813KB
收藏 版權(quán)申訴 舉報(bào) 下載
新編全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題11 空間幾何體含解析_第1頁(yè)
第1頁(yè) / 共20頁(yè)
新編全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題11 空間幾何體含解析_第2頁(yè)
第2頁(yè) / 共20頁(yè)
新編全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題11 空間幾何體含解析_第3頁(yè)
第3頁(yè) / 共20頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《新編全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題11 空間幾何體含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編全國(guó)通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題11 空間幾何體含解析(20頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、【走向高考】(全國(guó)通用)20xx高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題11 空間幾何體一、選擇題1(20xx河北衡水中學(xué)三調(diào)) 如圖正方形OABC的邊長(zhǎng)為1 cm,它是水平放置的一個(gè)平面圖形的直觀圖,則原圖形的周長(zhǎng)是()A8 cmB6 cmC2(1) cmD2(1) cm答案A解析 由直觀圖得,原圖形是如圖所示的平行四邊形OABC,其中AOOB,可得OA1,OB2OB2,故AB3,原圖形的周長(zhǎng)為:2(31)8.方法點(diǎn)撥空間幾何體的直觀圖畫(huà)法規(guī)則空間幾何體直觀圖的畫(huà)法常采用斜二測(cè)畫(huà)法用斜二測(cè)畫(huà)法畫(huà)平面圖形的直觀圖規(guī)則為“軸夾角45(或135),平行長(zhǎng)不變,垂直長(zhǎng)減半”2(文)某四棱錐的底

2、面為正方形,其三視圖如圖所示,則該四棱錐的體積等于()A1B2C3D4答案B解析由三視圖知,該幾何體底面是正方形,對(duì)角線長(zhǎng)為2,故邊長(zhǎng)為,幾何體是四棱錐,有一條側(cè)棱與底面垂直,其直觀圖如圖,由條件知PC,AC2,PA3,體積V()232.(理)(20xx新鄉(xiāng)、許昌、平頂山調(diào)研)在三棱錐PABC中,PA平面ABC,ACBC,D為側(cè)棱PC上的一點(diǎn),它的正視圖和側(cè)視圖如圖所示,則下列命題正確的是()AAD平面PBC,且三棱錐DABC的體積為BBD平面PAC,且三棱錐DABC的體積為CAD平面PBC,且三棱錐DABC的體積為DAD平面PAC,且三棱錐DABC的體積為答案C解析PA平面ABC,PABC,

3、又ACBC,PAACA,BC平面PAC,又AD平面PAC,BCAD,由正視圖可知,ADPC,又PCBCC,AD平面PBC,且VDABCVPABC4(44).方法點(diǎn)撥1.空間幾何體的三視圖畫(huà)法規(guī)則三視圖的正視圖、側(cè)視圖、俯視圖分別是從物體的正前方、正左方、正上方看到的物體輪廓線的正投影圍成的平面圖形,三視圖的畫(huà)法規(guī)則為“長(zhǎng)對(duì)正、高平齊、寬相等”2識(shí)讀三視圖時(shí),要特別注意觀察者的方位與三視圖的對(duì)應(yīng)關(guān)系和虛實(shí)線3(文)(20xx洛陽(yáng)市期末)一個(gè)幾何體的三視圖如圖所示,其中俯視圖與側(cè)視圖均為半徑是1的圓,則這個(gè)幾何體的體積是()A. B.C D.答案C解析由三視圖知,該幾何體是一個(gè)球切去后所得的幾何體

4、,故其體積為:V13,選C.(理)(20xx河南八市質(zhì)檢)已知某幾何體的三視圖如圖所示,那么這個(gè)幾何體的外接球的表面積為()A4B12C2D4答案B解析根據(jù)三視圖可知該幾何體是一個(gè)四棱錐D1ABCD,它是由正方體ABCDA1B1C1D1切割出來(lái)的,所以外接球的直徑2RBD12,所以R,所以S4R212.方法點(diǎn)撥在分析空間幾何體的三視圖問(wèn)題時(shí),先根據(jù)俯視圖確定幾何體的底面,然后根據(jù)正(主)視圖或側(cè)(左)視圖確定幾何體的側(cè)棱與側(cè)面的特征,調(diào)整實(shí)線和虛線所對(duì)應(yīng)的棱、面的位置,特別注意由各視圖中觀察者與幾何體的相對(duì)位置與圖中的虛實(shí)線來(lái)確定幾何體的形狀4(20xx唐山市一模)某幾何體的三視圖如圖所示,則

5、該幾何體的體積為()A. B.C8D8答案C解析由三視圖知原幾何體是棱長(zhǎng)為2的正方體中挖掉一個(gè)圓錐,VV正方體V圓錐222(12)28.方法點(diǎn)撥1.求幾何體的表面積與體積問(wèn)題,熟記公式是關(guān)鍵,應(yīng)多角度全方位的考慮(1)給出幾何體的形狀、幾何量求體積或表面積,直接套用公式(2)用三視圖給出幾何體,先依據(jù)三視圖規(guī)則想象幾何體的形狀特征,必要時(shí)畫(huà)出直觀圖,找出其幾何量代入相應(yīng)公式計(jì)算(3)用直觀圖給出幾何體,先依據(jù)線、面位置關(guān)系的判定與性質(zhì)定理討論分析幾何體的形狀特征,再求體積或表面積(4)求幾何體的體積常用等積轉(zhuǎn)化的方法,轉(zhuǎn)換原則是其高易求,底面在幾何體的某一面上,求不規(guī)則幾何體的體積,主要用割補(bǔ)

6、法2涉及球與棱柱、棱錐的切、接問(wèn)題時(shí),一般過(guò)球心及多面體中的特殊點(diǎn)或線作截面,把空間問(wèn)題化歸為平面問(wèn)題,再利用平面幾何知識(shí)尋找?guī)缀误w中元素間的關(guān)系3若球面上四點(diǎn)P、A、B、C構(gòu)成的線段PA、PB、PC兩兩垂直,一般先將四棱錐PABCD補(bǔ)成球的內(nèi)接長(zhǎng)方體,利用4R2PA2PB2PC2解決問(wèn)題5(文)(20xx山東文,9)已知等腰直角三角形的直角邊的長(zhǎng)為2,將該三角形繞其斜邊所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為()A. B.C2D4答案B解析考查1.旋轉(zhuǎn)體的幾何特征;2.幾何體的體積由題意知,該等腰直角三角形的斜邊長(zhǎng)為2,斜邊上的高為,所得旋轉(zhuǎn)體為同底等高的兩個(gè)全等圓錐,所以,其體

7、積為2()2,故選B.(理)(20xx山東理,7)在梯形ABCD中,ABC,ADBC,BC2AD2AB2.將梯形ABCD繞AD所在的直線旋轉(zhuǎn)一周所形成的曲面圍成的幾何體的體積為()A. B.C.D2答案C解析梯形ABCD繞AD所在直線旋轉(zhuǎn)一周所形成的曲面圍成的幾何體是一個(gè)底面半徑為1,高為2的圓柱挖去一個(gè)底面半徑為1,高為1的圓錐所得的組合體;所以該組合體的體積為VV圓柱V圓錐1221212.故選C.6(文)(20xx安徽理,7)一個(gè)多面體的三視圖如圖所示,則該多面體的表面積為()A21B18C21D18答案A解析如圖,還原直觀圖為棱長(zhǎng)為2的正方體截去兩個(gè)角,其6個(gè)面都被截去了一個(gè)直角邊長(zhǎng)為1

8、的等腰直角三角形,表面增加了兩個(gè)邊長(zhǎng)為的正三角形,故其表面積S6(2211)()2221.(理)一個(gè)半徑為1的球體經(jīng)過(guò)切割后,剩下部分幾何體的三視圖如圖所示,則剩下部分幾何體的表面積為()A. B.C4 D.答案D解析由三視圖知該幾何體是一個(gè)球體,保留了下半球,上半球分為四份,去掉了對(duì)頂?shù)膬煞?,故表面積為球的表面積,去掉球表面積加上6個(gè)的圓面積S4R2(4R2)6R2R2,又R1,S.方法點(diǎn)撥注意復(fù)合體的表面積計(jì)算,特別是一個(gè)幾何體切割去一部分后剩余部分的表面積計(jì)算要弄清增加和減少的部分7(文)(20xx福建文,9)某幾何體的三視圖如圖所示,則該幾何體的表面積等于()A82B112C142D1

9、5答案B解析考查三視圖和表面積由三視圖還原幾何體,該幾何體是底面為直角梯形,高為2的直四棱柱,且底面直角梯形的兩底長(zhǎng)分別為1,2,直角腰長(zhǎng)為1,斜腰為.底面積為233,側(cè)面積為224282,所以該幾何體的表面積為112,故選B.(理)某幾何體的三視圖如圖所示,則該幾何體的體積是()A1616B88C168 D.答案A解析由三視圖可知,幾何體為圓柱中挖去一個(gè)正四棱柱,所以體積V2242241616.8(文)已知一個(gè)三棱錐的正視圖與俯視圖如圖所示,則該三棱錐的側(cè)視圖面積為()A. B.C1 D.答案B解析由題意知,此三棱錐的底面為有一個(gè)角為30的直角三角形,其斜邊長(zhǎng)AC2,一個(gè)側(cè)面DAC為等腰直角

10、三角形,DE1,BF,其側(cè)視圖為直角三角形,其兩直角邊與DE、BF的長(zhǎng)度相等,面積S1.(理)某幾何體的三視圖(單位:m)如圖所示,則其表面積為()A(9632)m2B(6432)m2C(1141616)m2D(801616)m2答案D解析由三視圖知該幾何體是一個(gè)組合體,中間是一個(gè)棱長(zhǎng)為4的正方體(由正、側(cè)視圖中間部分和俯視圖知),上部是一個(gè)有一條側(cè)棱與底面垂直的四棱錐,下部是一個(gè)正四棱錐,表面積S2(444)4424(42)801616(m2)二、填空題9(文)某幾何體的三視圖如圖所示,則其體積為_(kāi)答案解析由三視圖可知,此幾何體是底面半徑為1,高為2的半個(gè)圓錐V(122).(理)(20xx天

11、津文,10)一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為_(kāi)m3.答案解析本題考查三視圖及簡(jiǎn)單幾何體的體積計(jì)算,考查空間想象能力和簡(jiǎn)單的計(jì)算能力由三視圖知,該幾何體下面是圓柱、上面是圓錐V124222.10(文)某幾何體的三視圖如圖所示,該幾何體的體積為_(kāi)答案48解析由三視圖知,該幾何體是一個(gè)組合體,其上部為長(zhǎng)方體,下部為橫放的四棱柱,其底面是上底長(zhǎng)2,下底長(zhǎng)6,高為2的等腰梯形,柱高為4,其體積V242(26)2448.(理)某幾何體的三視圖(單位:cm)如下圖,則這個(gè)幾何體的表面積為_(kāi)cm2.答案122解析由三視圖知,該幾何體為正三棱柱,底面積S12(2)2,側(cè)面積S23(22

12、)12,表面積SS1S2122cm2.三、解答題11(文)(20xx北京文,18)如圖,在三棱錐VABC中,平面VAB平面ABC,VAB為等邊三角形,ACBC且ACBC,O,M分別為AB,VA的中點(diǎn)(1)求證:VB平面MOC;(2)求證:平面MOC平面VAB;(3)求三棱錐VABC的體積分析本題主要考查線線平行、線面平行、線線垂直、線面垂直、面面垂直、三棱錐的體積公式等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、空間想象能力、邏輯推理能力、轉(zhuǎn)化能力、計(jì)算能力第一問(wèn),在三角形ABV中,利用中位線的性質(zhì)得OMVB,最后直接利用線面平行的判定得到結(jié)論;第二問(wèn),先在三角形ABC中得到OCAB,再利用面

13、面垂直的性質(zhì)得OC平面VAB,最后利用面面垂直的判定得出結(jié)論;第三問(wèn),將三棱錐進(jìn)行等體積轉(zhuǎn)化,利用VCVABVVABC,先求出三角形VAB的面積,由于OC平面VAB,所以O(shè)C為錐體的高,利用錐體的體積公式計(jì)算出體積即可解析(1)因?yàn)镺,M分別為AB,VA的中點(diǎn),所以O(shè)MVB.又因?yàn)閂B平面MOC,所以VB平面MOC.(2)因?yàn)锳CBC,O為AB的中點(diǎn),所以O(shè)CAB.又因?yàn)槠矫鎂AB平面ABC,且OC平面ABC,平面VAB平面ABCAB所以O(shè)C平面VAB.又因?yàn)镺C平面MOC所以平面MOC平面VAB.(3)在等腰直角三角形ACB中,ACBC,所以AB2,OC1.所以等邊三角形VAB的面積SVAB

14、.又因?yàn)镺C平面VAB,所以三棱錐CVAB的體積等于OCSVAB.又因?yàn)槿忮FVABC的體積與三棱錐CVAB的體積相等,所以三棱錐VABC的體積為.(理)如圖,在四棱錐PABCD中,ABCD,ABAD,CD2AB,平面PAD底面ABCD,PAAD,E和F分別是CD、PC的中點(diǎn),求證:(1)PA底面ABCD;(2)BE平面PAD;(3)平面BEF平面PCD.解析(1)因?yàn)槠矫鍼AD底面ABCD,且PA垂直于這兩個(gè)平面的交線AD,所以PA底面ABCD.(2)因?yàn)锳BCD,CD2AB,E為CD的中點(diǎn),所以ABDE,且ABDE.所以四邊形ABED為平行四邊形所以BEAD.又因?yàn)锽E平面PAD,AD平面

15、PAD,所以BE平面PAD.(3)因?yàn)锳BAD,而且ABED為平行四邊形,所以BECD,ADCD.由(1)知PA底面ABCD.所以PACD.所以CD平面PAD.所以CDPD.因?yàn)镋和F分別是CD和PC的中點(diǎn),所以PDEF.所以CDEF,又因?yàn)镃DBE,BEEFE,所以CD平面BEF. 所以平面BEF平面PCD.12(文)在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,ABCD,AC,AB2BC2,ACFB.(1)求證:AC平面FBC;(2)求四面體FBCD的體積;(3)線段AC上是否存在點(diǎn)M,使得EA平面FDM?證明你的結(jié)論解析(1)證明:在ABC中,AC,AB2,BC1,AC

16、BC.又ACFB,AC平面FBC.(2)解:AC平面FBC,ACFC.CDFC,F(xiàn)C平面ABCD.在等腰梯形ABCD中可得BCD120,CBDC1,F(xiàn)C1.SBCD,四面體FBCD的體積為:VFBCDSBCDFC.(3)線段AC上存在點(diǎn)M,且M為AC中點(diǎn)時(shí),有EA平面FDM,證明如下:連接CE,與DF交于點(diǎn)N,連接MN.因?yàn)镃DEF為正方形,所以N為CE中點(diǎn)所以EAMN.因?yàn)镸N平面FDM,EA平面FDM,所以EA平面FDM.所以線段AC上存在點(diǎn)M,使得EA平面FDM成立(理)如圖,三棱柱ABCA1B1C1的底面是邊長(zhǎng)為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是,D是AC的中點(diǎn)(1)求證:B1C平

17、面A1BD;(2)求二面角A1BDA的大??;(3)求直線AB1與平面A1BD所成的角的正弦值解析解法一:(1)設(shè)AB1與A1B相交于點(diǎn)P,則P為AB1中點(diǎn),連接PD,D為AC中點(diǎn),PDB1C.又PD平面A1BD,B1C平面A1BD.B1C平面A1BD.(2)正三棱柱ABCA1B1C1,AA1底面ABC.又 BDAC,A1DBDA1DA就是二面角A1BDA的平面角AA1,ADAC1,tanA1DA.A1DA,即二面角A1BDA的大小是.(3)由(2)作AMA1D,M為垂足BDAC,平面A1ACC1平面ABC,平面A1ACC1平面ABCAC,BD平面A1ACC1,AM平面A1ACC1,BDAM,A

18、1DBDD,AM平面A1DB,連接MP,則APM就是直線AB1與平面A1BD所成的角AA1,AD1,在RtAA1D中,A1DA,AM1sin60,APAB1.sinAPM.直線AB1與平面A1BD所成的角的正弦值為.解法二:(1)同解法一(2)如圖建立空間直角坐標(biāo)系,則D(0,0,0),A(1,0,0),A1(1,0,),B(0,0),B1(0,),(1,),(1,0,)設(shè)平面A1BD的法向量為n(x,y,z)則nxyz0,nxz0,則有,得n(,0,1)由題意,知(0,0,)是平面ABD的一個(gè)法向量設(shè)n與所成角為,則cos,.二面角A1BDA的大小是.(3)由已知,得(1,),n(,0,1)

19、,設(shè)直線AB1與平面A1BD所成角為,則sin.直線AB1與平面A1BD所成的角的正弦值為.13(文)(20xx鄭州市質(zhì)檢)如圖,已知三棱柱ABCABC的側(cè)棱垂直于底面,ABAC,BAC90,點(diǎn)M,N分別為AB和BC的中點(diǎn)(1)證明:MN平面AACC;(2)設(shè)ABAA,當(dāng)為何值時(shí),CN平面AMN,試證明你的結(jié)論解析(1)取AB的中點(diǎn)E,連接ME,NE,因?yàn)镸,N分別為AB和BC的中點(diǎn),所以NEAC,MEAA又因?yàn)锳C平面AACC,AA平面AACC,所以ME平面AACC,NE平面AACC,所以平面MNE平面AACC,因?yàn)镸N平面EMN,所以MN平面AACC;(2)連接BN,設(shè)AAa,則ABAAa

20、,由題意知BCa,NCBN,因?yàn)槿庵鵄BCABC側(cè)棱垂直于底面,所以ABC平面BBCC,因?yàn)锳BAC,點(diǎn)N是BC的中點(diǎn),所以AN平面BBCC,CNAN,要使CN平面AMN,只需CNNB即可,所以CN2NB2BC2,即222a2,則時(shí),CN平面AMN.(理)(20xx天津文,17)如圖,已知AA1平面ABC,BB1AA1,ABAC3,BC2,AA1,BB12,點(diǎn)E和F分別為BC和A1C的中點(diǎn)(1)求證:EF平面A1B1BA;(2)求證:平面AEA1平面BCB1;(3)求直線A1B1與平面BCB1所成角的大小分析考查1.空間中線面位置關(guān)系的證明;2.直線與平面所成的角(1)要證明EF平面A1B1

21、BA,需在平面A1B1BA內(nèi)找到一條直線與EF平行,結(jié)合條件用中位線定理先證線線平行,再用判定定理證明;(2)先證明線面垂直,再利用面面垂直的判定定理證明;(3)先結(jié)合上面證明過(guò)程和題設(shè)條件找出線面角,再利用斜三角形知識(shí)求解;也可利用圖形特征,建立坐標(biāo)系用空間向量求解解析(1)如圖,連接A1B,在A1BC中,因?yàn)镋和F分別是BC,A1C的中點(diǎn),所以EFBA1,又因?yàn)镋F平面A1B1BA,所以EF平面A1B1BA.(2)因?yàn)锳BAC,E為BC中點(diǎn),所以AEBC,因?yàn)锳A1平面ABC,BB1AA1,所以BB1平面ABC,從而B(niǎo)B1AE,又BCBB1B,所以AE平面BCB1,又因?yàn)锳E平面AEA1,

22、所以平面AEA1平面BCB1.(3)取BB1中點(diǎn)M和B1C中點(diǎn)N,連接A1M,A1N,NE,因?yàn)镹和E分別為B1C、BC的中點(diǎn),所以NEBB1,NEBB1,故NEAA1,NEAA1,所以A1NAE,A1NAE.又因?yàn)锳E平面BCB1,所以A1N平面BCB1,從而A1B1N就是直線A1B1與平面BCB1所成角,在ABC中,可得AE2,所以A1NAE2,因?yàn)锽MAA1,BMAA1,所以A1MAB,A1MAB,又由ABBB1,有A1MBB1.在RtA1MB1中,可得A1B14,在RtA1NB1中,sinA1B1N,因此A1B1N30,所以,直線A1B1與平面BCB1所成角為30.14(文)(20xx

23、陜西文,18)如圖1,在直角梯形ABCD中,ADBC, BAD,ABBCADa,E是AD的中點(diǎn),O是AC與BE的交點(diǎn)將ABE沿BE折起到圖2中A1BE的位置,得到四棱錐A1BCDE.圖1圖2(1)證明:CD平面A1OC;(2)當(dāng)平面A1BE平面BCDE時(shí),四棱錐A1BCDE的體積為36,求a的值分析考查1.線面垂直的判定;2.面面垂直的性質(zhì)定理;3.空間幾何體的體積(1)利用轉(zhuǎn)化思想及BECD,先證BE平面A1OC.(2)利用平面A1BE平面BCDE找出棱錐的高,利用方程思想和棱錐的體積公式,列出關(guān)于a的方程求解解析(1)在題圖1中,因?yàn)锳BBCADa,E是AD的中點(diǎn),BAD,所以BEAC,故

24、在題圖2中,BEA1O,BEOC,從而B(niǎo)E平面A1OC,又CDBE,所以CD平面A1OC;(2)由已知,平面A1BE平面BCDE,且平面A1BE平面BCDEBE, 又由(1)知,A1OBE,所以A1O平面BCDE,即A1O是四棱錐A1BCDE的高,由題圖1可知,A1OABa,平行四邊形BCDE面積SBCABa2,從而四棱錐A1BCDE的體積為VSA1Oa2aa3,由a336,得a6.(理)(20xx四川理,18)一個(gè)正方體的平面展開(kāi)圖及該正方體的直觀圖的示意圖如圖所示在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N.(1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說(shuō)明理由);(2)證明:直線

25、MN平面BDH;(3)求二面角AEGM的余弦值分析本題主要考查簡(jiǎn)單空間圖形的直觀圖、空間線面平行的判定與性質(zhì)、二面角的計(jì)算等基礎(chǔ)知識(shí),考查空間想象能力、推理論證能力、運(yùn)算求解能力(1)注意ABCD是底面,將平面展開(kāi)圖還原可得點(diǎn)F、G、H的位置. (2)根據(jù)直線與平面平行的判定定理,應(yīng)考慮證明MN平行于平面BDH內(nèi)的一條直線連接O、M,易得MNHO是平行四邊形,從而MNOH,進(jìn)而證得MN平面BDH.(3)求二面角的方法一是幾何法,要作出二面角AEGM的平面角,首先要過(guò)M作平面AEGC的垂線,然后再過(guò)垂足作棱EG的垂線,再將垂足與點(diǎn)M連接,即可得二面角AEGM的平面角二是向量法,由于幾何體是特殊的

26、正方體,便于建立坐標(biāo)系,故可轉(zhuǎn)化為兩向量夾角求解解析(1)點(diǎn)F、G、H的位置如圖所示(2)連接BD,設(shè)O為BD的中點(diǎn)因?yàn)镸、N分別是BC、GH的中點(diǎn),所以O(shè)MCD,且OMCD,NHCD,且NHCD,所以O(shè)MNH,OMNH,所以MNHO是平行四邊形,從而MNOH,又MN平面BDH,OH平面BDH,所以MN平面BDH.(3)連接AC,過(guò)M作MPAC于P. 在正方體ABCDEFGH中,ACEG,所以MPEG.過(guò)P作PKEG于K,連接KM,所以EG平面PKM,從而KMEG.所以PKM是二面角AEGM的平面角設(shè)AD2,則CM1,PK2,在RtCMP中,PMCMsin 45.在RtKMP中,KM.所以cosPKM.即二面角AEGM的余弦值為.(另外,也可利用空間坐標(biāo)系求解)方法點(diǎn)撥1.折疊問(wèn)題中,要畫(huà)出折疊前的平面圖形與折疊后的直觀圖,對(duì)比找出其位置關(guān)系和數(shù)量關(guān)系弄清其不變量和變化量及折疊前后的垂直性與平行性是關(guān)鍵2立體幾何中的存在型問(wèn)題,主要題型是,是否存在點(diǎn)P,使點(diǎn)P滿足某種要求(如線線平行或垂直、線面平行或垂直等).

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!