《第3課時(shí)整式與分解因式》由會(huì)員分享,可在線閱讀,更多相關(guān)《第3課時(shí)整式與分解因式(3頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
思考與收獲
第3課時(shí) 整式與分解因式
【知識(shí)梳理】
1.冪的運(yùn)算性質(zhì):①同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,即(m、n為正整數(shù));②同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n為正整數(shù),m>n);③冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘,即(n為正整數(shù));④零指數(shù):(a≠0);⑤負(fù)整數(shù)指數(shù):(a≠0,n為正整數(shù));
2.整式的乘除法:
(1)幾個(gè)單項(xiàng)式相乘除,系數(shù)與系數(shù)相乘除,同底數(shù)的冪結(jié)合起來相乘除.
(2)單項(xiàng)式乘以多項(xiàng)式,用單項(xiàng)式乘以多項(xiàng)式的每一個(gè)項(xiàng).
(3)多項(xiàng)式乘以多項(xiàng)式,用一個(gè)多_項(xiàng)式的每
2、一項(xiàng)分別乘以另一個(gè)多項(xiàng)式的每一項(xiàng).
(4)多項(xiàng)式除以單項(xiàng)式,將多項(xiàng)式的每一項(xiàng)分別除以這個(gè)單項(xiàng)式.
(5)平方差公式:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方,
即;
(6)完全平方公式:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)
它們的積的2倍,即
3.分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式分解因式.
4.分解因式的方法:
⑴提公團(tuán)式法:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就能夠把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種分解因式的方法叫做提公因式法.
⑵使用公式法:公式 ;
5.分解因式的步驟:分解因式時(shí),首
3、先考慮是否有公因式,如果有公因式,一定先提取公團(tuán)式,然后再考慮是否能用公式法分解.
6.分解因式時(shí)常見的思維誤區(qū):
⑴ 提公因式時(shí),其公團(tuán)式應(yīng)找字母指數(shù)最低的,而不是以首項(xiàng)為準(zhǔn).
⑵ 提取公因式時(shí),若有一項(xiàng)被全部提出,括號(hào)內(nèi)的項(xiàng)“ 1”易漏掉.
(3) 分解不徹底,如保留中括號(hào)形式,還能繼續(xù)分解等
【例題精講】
【例1】下列計(jì)算準(zhǔn)確的是( )
A. a+2a=3a B. 3a-2a=a
C. aa=a D.6a
4、÷2a=3a
【例2】(2008年茂名)任意給定一個(gè)非零數(shù),按下列程序計(jì)算,最后輸出的
結(jié)果是( )
平方 - ÷ +2 結(jié)果
A. B. C.+1 D.-1
【例3】若,則 .
【例4】下列因式分解錯(cuò)誤的是( )
A. B.
C. D.
思考與收獲
【例5】如圖7-①,圖7-②,圖7-③,圖7-④,…,是用圍棋棋子按照某種規(guī)律擺成的一行“廣”字,按照這種規(guī)律,第5個(gè)“廣”字中的棋子個(gè)數(shù)是____
5、____,第個(gè)“廣”字中的棋子個(gè)數(shù)是________
【例6】給出三個(gè)多項(xiàng)式:,,.請(qǐng)選擇你最喜歡的兩個(gè)多項(xiàng)式進(jìn)行加法運(yùn)算,并把結(jié)果因式分解.
【當(dāng)堂檢測】
1.分解因式: ,
2.對(duì)于任意兩個(gè)實(shí)數(shù)對(duì)(a,b)和(c,d),規(guī)定:當(dāng)且僅當(dāng)a=c且b=d時(shí),
(a,b)=(c,d).定義運(yùn)算“”:(a,b)(c,d)=(ac-bd,ad+bc).若(1,2)(p,q)=(5,0),則p= ,q= .
3. 已知a=1.6′109,b=4′103,則a2?2b=( )
A. 2′107 B. 4′1014 C.3.2′105 D. 3.2′1014 .
4.先化簡,再求值:,其中.
5.先化簡,再求值:,其中.