高考數(shù)學回歸課本 直線與圓的方程教案 舊人教版

上傳人:無*** 文檔編號:58697460 上傳時間:2022-03-01 格式:DOC 頁數(shù):6 大小:348KB
收藏 版權申訴 舉報 下載
高考數(shù)學回歸課本 直線與圓的方程教案 舊人教版_第1頁
第1頁 / 共6頁
高考數(shù)學回歸課本 直線與圓的方程教案 舊人教版_第2頁
第2頁 / 共6頁
高考數(shù)學回歸課本 直線與圓的方程教案 舊人教版_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學回歸課本 直線與圓的方程教案 舊人教版》由會員分享,可在線閱讀,更多相關《高考數(shù)學回歸課本 直線與圓的方程教案 舊人教版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、高考數(shù)學回歸課本教案第十章 直線與圓的方程一、基礎知識1解析幾何的研究對象是曲線與方程。解析法的實質是用代數(shù)的方法研究幾何.首先是通過映射建立曲線與方程的關系,即如果一條曲線上的點構成的集合與一個方程的解集之間存在一一映射,則方程叫做這條曲線的方程,這條曲線叫做方程的曲線。如x2+y2=1是以原點為圓心的單位圓的方程。2求曲線方程的一般步驟:(1)建立適當?shù)闹苯亲鴺讼担?2)寫出滿足條件的點的集合;(3)用坐標表示條件,列出方程;(4)化簡方程并確定未知數(shù)的取值范圍;(5)證明適合方程的解的對應點都在曲線上,且曲線上對應點都滿足方程(實際應用常省略這一步)。3直線的傾斜角和斜率:直線向上的方向

2、與x軸正方向所成的小于1800的正角,叫做它的傾斜角。規(guī)定平行于x軸的直線的傾斜角為00,傾斜角的正切值(如果存在的話)叫做該直線的斜率。根據(jù)直線上一點及斜率可求直線方程。4直線方程的幾種形式:(1)一般式:Ax+By+C=0;(2)點斜式:y-y0=k(x-x0);(3)斜截式:y=kx+b;(4)截距式:;(5)兩點式:;(6)法線式方程:xcos+ysin=p(其中為法線傾斜角,|p|為原點到直線的距離);(7)參數(shù)式:(其中為該直線傾斜角),t的幾何意義是定點P0(x0, y0)到動點P(x, y)的有向線段的數(shù)量(線段的長度前添加正負號,若P0P方向向上則取正,否則取負)。5到角與夾

3、角:若直線l1, l2的斜率分別為k1, k2,將l1繞它們的交點逆時針旋轉到與l2重合所轉過的最小正角叫l(wèi)1到l2的角;l1與l2所成的角中不超過900的正角叫兩者的夾角。若記到角為,夾角為,則tan=,tan=.6平行與垂直:若直線l1與l2的斜率分別為k1, k2。且兩者不重合,則l1/l2的充要條件是k1=k2;l1l2的充要條件是k1k2=-1。7兩點P1(x1, y1)與P2(x2, y2)間的距離公式:|P1P2|=。8點P(x0, y0)到直線l: Ax+By+C=0的距離公式:。9直線系的方程:若已知兩直線的方程是l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0

4、,則過l1, l2交點的直線方程為A1x+B1y+C1+(A2x+B2y+C2=0;由l1與l2組成的二次曲線方程為(A1x+B1y+C1)(A2x+B2y+C2)=0;與l2平行的直線方程為A1x+B1y+C=0().10二元一次不等式表示的平面區(qū)域,若直線l方程為Ax+By+C=0. 若B0,則Ax+By+C0表示的區(qū)域為l上方的部分,Ax+By+C0)。其圓心為,半徑為。若點P(x0, y0)為圓上一點,則過點P的切線方程為 14根軸:到兩圓的切線長相等的點的軌跡為一條直線(或它的一部分),這條直線叫兩圓的根軸。給定如下三個不同的圓:x2+y2+Dix+Eiy+Fi=0, i=1, 2,

5、 3. 則它們兩兩的根軸方程分別為(D1-D2)x+(E1-E2)y+(F1-F2)=0; (D2-D3)x+(E2-E3)y+(F2-F3)=0; (D3-D1)x+(E3-E1)y+(F3-F1)=0。不難證明這三條直線交于一點或者互相平行,這就是著名的蒙日定理。二、方法與例題1坐標系的選取:建立坐標系應講究簡單、對稱,以便使方程容易化簡。例1 在ABC中,AB=AC,A=900,過A引中線BD的垂線與BC交于點E,求證:ADB=CDE。證明 見圖10-1,以A為原點,AC所在直線為x軸,建立直角坐標系。設點B,C坐標分別為(0,2a),(2a,0),則點D坐標為(a, 0)。直線BD方程

6、為, 直線BC方程為x+y=2a, 設直線BD和AE的斜率分別為k1, k2,則k1=-2。因為BDAE,所以k1k2,所以直線AE方程為,由解得點E坐標為。所以直線DE斜率為因為k1+k3=0.所以BDC+EDC=1800,即BDA=EDC。例2 半徑等于某個正三角形高的圓在這個三角形的一條邊上滾動。證明:三角形另兩條邊截圓所得的弧所對的圓心角為600。證明 以A為原點,平行于正三角形ABC的邊BC的直線為x軸,建立直角坐標系見圖10-2,設D的半徑等于BC邊上的高,并且在B能上能下滾動到某位置時與AB,AC的交點分別為E,F(xiàn),設半徑為r,則直線AB,AC的方程分別為,.設D的方程為(x-m

7、)2+y2=r2.設點E,F(xiàn)的坐標分別為(x1,y1),(x2,y2),則,分別代入并消去y得所以x1, x2是方程4x2-2mx+m2-r2=0的兩根。由韋達定理,所以|EF|2=(x1-x2)2+(y1-y2)2=(x1-x2)2+3(x1-x2)2=4(x1+x2)2-4x1x2=m2-(m2-r2)=r2.所以|EF|=r。所以EDF=600。2到角公式的使用。例3 設雙曲線xy=1的兩支為C1,C2,正PQR三頂點在此雙曲線上,求證:P,Q,R不可能在雙曲線的同一支上。證明 假設P,Q,R在同一支上,不妨設在右側一支C1上,并設P,Q,R三點的坐標分別為且0x1x2-1,在(1)區(qū)域

8、里,求函數(shù)f(x,y)=y-ax的最大值、最小值。解 (1)由已知得或解得點(x, y)所在的平面區(qū)域如圖10-4所示,其中各直線方程如圖所示。AB:y=2x-5;CD:y=-2x+1;AD:x+y=1;BC:x+y=4.(2) f(x, y)是直線l: y-ax=k在y軸上的截距,直線l與陰影相交,因為a-1,所以它過頂點C時,f(x, y)最大,C點坐標為(-3,7),于是f(x, y)的最大值為3a+7. 如果-12,則l通過B(3,1)時,f(x, y)取最小值為-3a+1.6參數(shù)方程的應用。例7 如圖10-5所示,過原點引直線交圓x2+(y-1)2=1于Q點,在該直線上取P點,使P到

9、直線y=2的距離等于|PQ|,求P點的軌跡方程。解 設直線OP的參數(shù)方程為(t參數(shù))。代入已知圓的方程得t2-t2sin=0.所以t=0或t=2sin。所以|OQ|=2|sin|,而|OP|=t.所以|PQ|=|t-2sin|,而|PM|=|2-tsin|.所以|t-2sin|=|2-tsin|. 化簡得t=2或t=-2或sin=-1.當t=2時,軌跡方程為x2+y2=4;當sin=1時,軌跡方程為x=0.7與圓有關的問題。例8 點A,B,C依次在直線l上,且AB=ABC,過C作l的垂線,M是這條垂線上的動點,以A為圓心,AB為半徑作圓,MT1與MT2是這個圓的切線,確定AT1T2垂心 的軌跡

10、。解 見圖10-6,以A為原點,直線AB為x軸建立坐標系,H為OM與圓的交點,N為T1T2與OM的交點,記BC=1。以A為圓心的圓方程為x2+y2=16,連結OT1,OT2。因為OT2MT2,T1HMT2,所以OT2/HT1,同理OT1/HT2,又OT1=OT2,所以OT1HT2是菱形。所以2ON=OH。又因為OMT1T2,OT1MT1,所以ONOM。設點H坐標為(x,y)。點M坐標為(5, b),則點N坐標為,將坐標代入=ONOM,再由得在AB上取點K,使AK=AB,所求軌跡是以K為圓心,AK為半徑的圓。例9 已知圓x2+y2=1和直線y=2x+m相交于A,B,且OA,OB與x軸正方向所成的

11、角是和,見圖10-7,求證:sin(+)是定值。證明 過D作ODAB于D。則直線OD的傾斜角為,因為ODAB,所以2,所以。所以例10 已知O是單位圓,正方形ABCD的一邊AB是O的弦,試確定|OD|的最大值、最小值。解 以單位圓的圓心為原點,AB的中垂線為x軸建立直角坐標系,設點A,B的坐標分別為A(cos,sin),B(cos,-sin),由題設|AD|=|AB|=2sin,這里不妨設A在x軸上方,則(0,).由對稱性可設點D在點A的右側(否則將整個圖形關于y軸作對稱即可),從而點D坐標為(cos+2sin,sin),所以|OD|=因為,所以當時,|OD|max=+1;當時,|OD|min

12、=例11 當m變化且m0時,求證:圓(x-2m-1)2+(y-m-1)2=4m2的圓心在一條定直線上,并求這一系列圓的公切線的方程。證明 由消去m得a-2b+1=0.故這些圓的圓心在直線x-2y+1=0上。設公切線方程為y=kx+b,則由相切有2|m|=,對一切m0成立。即(-4k-3)m2+2(2k-1)(k+b-1)m+(k+b-1)2=0對一切m0成立所以即當k不存在時直線為x=1。所以公切線方程y=和x=1.三、基礎訓練題1已知兩點A(-3,4)和B(3,2),過點P(2,-1)的直線與線段AB有公共點,則該直線的傾斜角的取值范圍是_.2已知0,,則的取值范圍是_.3三條直線2x+3y

13、-6=0, x-y=2, 3x+y+2=0圍成一個三角形,當點P(x, y)在此三角形邊上或內(nèi)部運動時,2x+y的取值范圍是_.4若三條直線4x+y=4, mx+y=0, 2x-3my=4能圍成三角形,則m的范圍是_.5若R。直線(2+)x-(1+)y-2(3+2)=0與點P(-2,2)的距離為d,比較大小:d_.6一圓經(jīng)過A(4,2), B(-1,3)兩點,且在兩個坐標軸上的 四個截距的和為14,則此圓的方程為_.7自點A(-3,3)發(fā)出的光線l射到x軸上被x軸反射,其反射光線所在的直線與圓C:x2+y2-4x-4y+7=0相切,則光線l所在的方程為_.8D2=4F且E0是圓x2+y2+Dx

14、+Ey+F=0與x軸相切的_條件.9方程|x|-1=表示的曲線是_.10已知點M到點A(1,0),B(a,2)及到y(tǒng)軸的距離都相等,若這樣的點M恰好有一個,則a可能值的個數(shù)為_.11已知函數(shù)S=x+y,變量x, y滿足條件y2-2x0和2x+y2,試求S的最大值和最小值。12A,B是x軸正半軸上兩點,OA=a,OB=b(a0,N=(x,y)|(x-1)2+(y-)2=a2,a0.MN,a的最大值與最小值的和是_.6圓x2+y2+x-6y+m=0與直線x+2y-3=0交于P,Q兩點,O為原點,OPOQ,則m=_.7已知對于圓x2+(y-1)2=1上任意一點P(x,y),使x+y+m0恒成立,m范

15、圍是_.8當a為不等于1的任何實數(shù)時,圓x2-2ax+y2+2(a-2)y+2=0均與直線l相切,則直線l的方程為_.9在ABC中,三個內(nèi)角A,B,C所對應的邊分別為a,b,c,若lgsinA,lgsinB, lgsinC成等差數(shù)列,那么直線xsin2A+ysinA=a與直線xsin2B+ysinC=c的位置關系是_.10設A=(x,y)|0x2,0y2,B=(x,y)|x10,y2,yx-4是坐標平面xOy上的點集,C=所圍成圖形的面積是_.11求圓C1:x2+y2+2x+6y+9=0與圓C2:x2+y2-6x+2y+1=0的公切線方程。12設集合L=直線l與直線y=2x相交,且以交點的橫坐

16、標為斜率。(1)點(-2,2)到L中的哪條直線的距離最?。浚?)設aR+,點P(-2, a)到L中的直線的距離的最小值設為dmin,求dmin的表達式。13已知圓C:x2+y2-6x-8y=0和x軸交于原點O和定點A,點B是動點,且OBA=900,OB交C于M,AB交C于N。求MN的中點P的軌跡。五、聯(lián)賽一試水平訓練題1在直角坐標系中縱橫坐標都是有理數(shù)的點稱為有理點。若a為無理數(shù),過點(a,0)的所有直線中,每條直線上至少存在兩個有理點的直線有_條。2等腰ABC的底邊BC在直線x+y=0上,頂點A(2,3),如果它的一腰平行于直線x-4y+2=0,則另一腰AC所在的直線方程為_.3若方程2mx

17、2+(8+m2)xy+4my2+(6-m)x+(3m-4)y-3=0表示表示條互相垂直的直線,則m=_.4直線x+7y-5=0分圓x2+y2=1所成的兩部分弧長之差的絕對值是_.5直線y=kx-1與曲線y=有交點,則k的取值范圍是_.6經(jīng)過點A(0,5)且與直線x-2y=0, 2x+y=0都相切的圓方程為_.7在直角坐標平面上,同時滿足條件:y3x, yx, x+y100的整點個數(shù)是_.8平面上的整點到直線的距離中的最小值是_.9y=lg(10-mx2)的定義域為R,直線y=xsin(arctanm)+10的傾斜角為_.10已知f(x)=x2-6x+5,滿足的點(x,y)構成圖形的面積為_.1

18、1已知在ABC邊上作勻速運動的點D,E,F(xiàn),在t=0時分別從A,B,C出發(fā),各以一定速度向B,C,A前進,當時刻t=1時,分別到達B,C,A。(1)證明:運動過程中DEF的重心不變;(2)當DEF面積取得最小值時,其值是ABC面積的多少倍?12已知矩形ABCD,點C(4,4),點A在圓O:x2+y2=9(x0,y0)上移動,且AB,AD兩邊始終分別平行于x軸、y軸。求矩形ABCD面積的最小值,以及取得最小值時點A的坐標。13已知直線l: y=x+b和圓C:x2+y2+2y=0相交于不同兩點A,B,點P在直線l上,且滿足|PA|PB|=2,當b變化時,求點P的軌跡方程。六、聯(lián)賽二試水平訓練題1設

19、點P(x,y)為曲線|5x+y|+|5x-y|=20上任意一點,求x2-xy+y2的最大值、最小值。2給定矩形(長為b,寬為a),矩形(長為c、寬為d),其中adcb,求證:矩形能夠放入矩形的充要條件是:(ac-bd)2+(ad-bc)2(a2-b2)2.3在直角坐標平面內(nèi)給定凸五邊形ABCDE,它的頂點都是整點,求證:見圖10-8,A1,B1,C1,D1,E1構成的凸五邊形內(nèi)部或邊界上至少有一個整點。4在坐標平面上,縱橫坐標都是整數(shù)的點稱為整點,試證:存在一個同心圓的集合,使得:(1)每個整點都在此集合的某一圓周上;(2)此集合的每個圓周上,有且只有一個整點。5在坐標平面上,是否存在一個含有無窮多條直線l1,l2,,ln,的直線族,它滿足條件:(1)點(1,1)ln,n=1,2,3,;(2)kn+1an-bn,其中kn+1是ln+1的斜率,an和bn分別是ln在x軸和y軸上的截距,n=1,2,3,;(3)knkn+10, n=1,2,3,.并證明你的結論。6在坐標平面內(nèi),一圓交x軸正半徑于R,S,過原點的直線l1,l2都與此圓相交,l1交圓于A,B,l2交圓于D,C,直線AC,BD分別交x軸正半軸于P,Q,求證:

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!