金版教程高考數(shù)學(xué)文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第一講 函數(shù)的圖象與性質(zhì) Word版含解析
《金版教程高考數(shù)學(xué)文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第一講 函數(shù)的圖象與性質(zhì) Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《金版教程高考數(shù)學(xué)文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第一講 函數(shù)的圖象與性質(zhì) Word版含解析(22頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專題二 函數(shù)與導(dǎo)數(shù) 第一講 函數(shù)的圖象與性質(zhì) 必記公式及概念] 1.指數(shù)與對(duì)數(shù)式的七個(gè)運(yùn)算公式 (1)aman=am+n; (2)(am)n=amn; (3)loga(MN)=logaM+logaN(a>0且a≠1,M>0,N>0); (4)loga=logaM-logaN(a>0且a≠1,M>0,N>0); (5)logaMn=nlogaM(a>0且a≠1,M>0); (6)alogaN=N(a>0且a≠1,N>0); (7)logaN=(a>0且a≠1,b>0且b≠1,M>0,N>0). 2.單調(diào)性定義 如果對(duì)于定義域I內(nèi)某個(gè)區(qū)間D上的任意兩個(gè)自變量的
2、值x1,x2,且x1 3、R上單調(diào)遞減;
a>1時(shí),在R上單調(diào)遞增
01時(shí),在(0,+∞)上單調(diào)遞增
續(xù)表
指數(shù)函數(shù)
對(duì)數(shù)函數(shù)
函數(shù)值
性質(zhì)
00時(shí),0 4、,且圖象關(guān)于直線x=a(a≠0)對(duì)稱,則f(x)是周期函數(shù),2a是它的一個(gè)周期.
(3)設(shè)f(x)是R上的奇函數(shù),且圖象關(guān)于直線x=a(a≠0)對(duì)稱,則f(x)是周期函數(shù),4a是它的一個(gè)周期.
2.函數(shù)圖象的對(duì)稱性
(1)若函數(shù)y=f(x)滿足f(a+x)=f(a-x),即f(x)=f(2a-x),則f(x)的圖象關(guān)于直線x=a對(duì)稱.
(2)若函數(shù)y=f(x)滿足f(a+x)=-f(a-x),即f(x)=-f(2a-x),則f(x)的圖象關(guān)于點(diǎn)(a,0)對(duì)稱.
(3)若函數(shù)y=f(x)滿足f(a+x)=f(b-x),則函數(shù)f(x)的圖象關(guān)于直線x=對(duì)稱.
3.函數(shù)圖象的變換規(guī)則
5、(1)平移變換
將y=f(x)的圖象向左(a>0)或向右(a<0)平移|a|個(gè)單位得到y(tǒng)=f(x+a)的圖象;
將y=f(x)的圖象向上(a>0)或向下(a<0)平移|a|個(gè)單位得到y(tǒng)=f(x)+a的圖象.
(2)對(duì)稱變換
①作y=f(x)關(guān)于y軸的對(duì)稱圖象得到y(tǒng)=f(-x)的圖象;
②作y=f(x)關(guān)于x軸的對(duì)稱圖象得到y(tǒng)=-f(x)的圖象;
③作y=f(x)關(guān)于原點(diǎn)的對(duì)稱圖象得到y(tǒng)=-f(-x)的圖象;
④將y=f(x)在x軸下方的圖象翻折到上方,與y=f(x)在x軸上方的圖象合起來(lái)得到y(tǒng)=|f(x)|的圖象;
⑤將y=f(x)在y軸左側(cè)部分去掉,再作右側(cè)關(guān)于y軸的對(duì)稱圖象 6、合起來(lái)得到y(tǒng)=f(|x|)的圖象.
4.函數(shù)的周期性與對(duì)稱性的關(guān)系
(1)若f(x)的圖象有兩條對(duì)稱軸x=a和x=b(a≠b),則f(x)必為周期函數(shù),且它的一個(gè)周期是2|b-a|;
(2)若f(x)的圖象有兩個(gè)對(duì)稱中心(a,0)和(b,0)(a≠b),則f(x)必為周期函數(shù),且它的一個(gè)周期是2|b-a|;
(3)若f(x)的圖象有一條對(duì)稱軸x=a和一個(gè)對(duì)稱中心(b,0)(a≠b),則f(x)必為周期函數(shù),且它的一個(gè)周期是4|b-a|.
失分警示]
1.函數(shù)具有奇偶性時(shí),定義域關(guān)于原點(diǎn)對(duì)稱,但定義域關(guān)于原點(diǎn)對(duì)稱時(shí),函數(shù)不一定具有奇偶性.
2.求單調(diào)區(qū)間易忽略函數(shù)的定義域,切記單調(diào) 7、區(qū)間必須是定義域的子集且當(dāng)同增(減)區(qū)間不連續(xù)時(shí),不能用并集符號(hào)連接.
3.忽略函數(shù)的單調(diào)性、奇偶性、周期性的定義中變量取值的任意性.
4.畫圖時(shí)容易忽略函數(shù)的性質(zhì),圖象左右平移時(shí)平移距離的確定易出錯(cuò).
考點(diǎn) 函數(shù)的概念及其表示
典例示法
典例1 (1)2014山東高考]函數(shù)f(x)=的定義域?yàn)? )
A. B.(2,+∞)
C.∪(2,+∞) D.∪2,+∞)
解析] 要使函數(shù)f(x)有意義,需使(log2x)2-1>0,即(log2x)2>1,∴l(xiāng)og2x>1或log2x<-1,解之得x>2或0 8、
(2)2016西安質(zhì)檢]已知函數(shù)f(x)=
則f的值是________.
解析] 本題主要考查函數(shù)求值.
由題意可得f=log2=-2,∴f=f(-2)=3-2+1=.
答案]
1.求函數(shù)定義域的類型和相應(yīng)的方法
(1)若已知函數(shù)的解析式,則函數(shù)的定義域是使解析式有意義的自變量的取值范圍,只需構(gòu)建并解不等式(組)即可.
(2)抽象函數(shù):根據(jù)f(g(x))中g(shù)(x)的范圍與f(x)中x的范圍相同求解.
(3)在實(shí)際問(wèn)題或幾何問(wèn)題中除要考慮解析式有意義外,還要使實(shí)際問(wèn)題有意義.
2.求函數(shù)值的三個(gè)關(guān)注點(diǎn)
(1)形如f(g(x))的函數(shù)求值,要遵循先內(nèi)后外的原則.
( 9、2)對(duì)于分段函數(shù)求值,應(yīng)注意依據(jù)條件準(zhǔn)確地找出利用哪一段求解.
(3)對(duì)于周期函數(shù)要充分利用好周期性.
3.函數(shù)值域的求法
求解函數(shù)值域的方法有:公式法、圖象法、分離常數(shù)法、判別式法、換元法、數(shù)形結(jié)合法、有界性法等,要根據(jù)問(wèn)題具體分析,確定求解的方法.
針對(duì)訓(xùn)練
1.2016貴陽(yáng)監(jiān)測(cè)]函數(shù)f(x)=+lg 的定義域?yàn)? )
A.(2,3) B.(2,4]
C.(2,3)∪(3,4] D.(-1,3)∪(3,6]
答案 C
解析 依題意知,即即函數(shù)的定義域?yàn)?2,3)∪(3,4].
2.2014浙江高考]設(shè)函數(shù)f(x)=若f(f(a))≤2,則實(shí)數(shù)a的取值范圍 10、是________.
答案 (-∞, ]
解析 由題意得或解得f(a)≥-2.由或解得a≤.
考點(diǎn) 函數(shù)的圖象及應(yīng)用
典例示法
典例2 (1)2015北京高考]如圖,函數(shù)f(x)的圖象為折線ACB,則不等式f(x)≥log2(x+1)的解集是( )
A.{x|-1 11、圖象如圖所示,則下列結(jié)論成立的是( )
A.a(chǎn)>0,b>0,c<0 B.a(chǎn)<0,b>0,c>0
C.a(chǎn)<0,b>0,c<0 D.a(chǎn)<0,b<0,c<0
解析] ∵f(x)=的圖象與x,y軸分別交于N,M,且點(diǎn)M的縱坐標(biāo)與點(diǎn)N的橫坐標(biāo)均為正,∴x=->0,y=>0,故a<0,b>0,又函數(shù)圖象間斷點(diǎn)的橫坐標(biāo)為正,∴-c>0,故c<0,故選C.
答案] C
1.作函數(shù)圖象的方法及注意點(diǎn)
常用描點(diǎn)法和圖象變換法.圖象變換法常用的有平移變換、伸縮變換和對(duì)稱變換.尤其注意y=f(x)與y=f(-x),y=-f(x),y=-f(-x),y=f(|x|),y=|f(x)|及y= 12、af(x)+b的相互關(guān)系.
2.辨識(shí)函數(shù)圖象的兩種方法
(1)直接根據(jù)函數(shù)解析式作出函數(shù)圖象,或者是根據(jù)圖象變換作出函數(shù)的圖象;
(2)利用間接法排除、篩選錯(cuò)誤與正確的選項(xiàng),可以從如下幾個(gè)方面入手:
①?gòu)暮瘮?shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置;
②從函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);
③從函數(shù)的奇偶性,判斷圖象的對(duì)稱性:如奇函數(shù)在對(duì)稱的區(qū)間上單調(diào)性一致,偶函數(shù)在對(duì)稱的區(qū)間上單調(diào)性相反;
④從函數(shù)的周期性,判斷圖象的循環(huán)往復(fù);
⑤從特殊點(diǎn)出發(fā),排除不符合要求的選項(xiàng).
靈活應(yīng)用上述方法,可以很快判斷出函數(shù)的圖象.
3.函數(shù)圖象在方程、不等式中的應(yīng)用 13、策略
(1)研究?jī)珊瘮?shù)圖象的交點(diǎn)個(gè)數(shù):在同一坐標(biāo)系中分別作出兩函數(shù)的圖象,數(shù)形結(jié)合求解;
(2)確定方程根的個(gè)數(shù):當(dāng)方程與基本函數(shù)有關(guān)時(shí),可以通過(guò)函數(shù)圖象來(lái)研究方程的根,方程f(x)=0的根就是函數(shù)f(x)圖象與x軸的交點(diǎn)的橫坐標(biāo),方程f(x)=g(x)的根就是函數(shù)f(x)與g(x)圖象交點(diǎn)的橫坐標(biāo);
(3)研究不等式的解:當(dāng)不等式問(wèn)題不能用代數(shù)法求解但其對(duì)應(yīng)函數(shù)的圖象可作出時(shí),常將不等式問(wèn)題轉(zhuǎn)化為兩函數(shù)圖象的上、下關(guān)系問(wèn)題,從而利用數(shù)形結(jié)合求解.
針對(duì)訓(xùn)練
1.2016貴州七校聯(lián)考]已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可以是( )
A.f(x)=
B. 14、f(x)=
C.f(x)=-1
D.f(x)=x-
答案 A
解析 由函數(shù)圖象可知,函數(shù)f(x)為奇函數(shù),應(yīng)排除B、C.若函數(shù)為f(x)=x-,則x→+∞時(shí),f(x)→+∞,排除D,故選A.
2.2016江西南昌二模]現(xiàn)有四個(gè)函數(shù):①y=xsinx,②y=xcosx,③y=x|cosx|,④y=x2x的圖象(部分)如下,但順序被打亂,則按照從左到右將圖象對(duì)應(yīng)的函數(shù)序號(hào)安排正確的一組是( )
A.④①②③ B.①④③②
C.③④②① D.①④②③
答案 D
解析 由于函數(shù)y=xsinx是偶函數(shù),由圖象知,函數(shù)①對(duì)應(yīng)第一個(gè)圖象;函數(shù)y=xcosx為奇函數(shù),且當(dāng)x=π 15、時(shí),y=-π<0,故函數(shù)②對(duì)應(yīng)第三個(gè)圖象;函數(shù)y=x|cosx|為奇函數(shù),故函數(shù)③與第四個(gè)圖象對(duì)應(yīng);函數(shù)y=x2x為非奇非偶函數(shù),與第二個(gè)圖象對(duì)應(yīng).綜上可知,選D.
考點(diǎn) 函數(shù)的性質(zhì)及應(yīng)用
典例示法
題型1 函數(shù)性質(zhì)的判定
典例3 2015廣東高考]下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是( )
A.y= B.y=x+
C.y=2x+ D.y=x+ex
解析] 選項(xiàng)A中的函數(shù)是偶函數(shù);選項(xiàng)B中的函數(shù)是奇函數(shù);選項(xiàng)C中的函數(shù)是偶函數(shù);只有選項(xiàng)D中的函數(shù)既不是奇函數(shù)也不是偶函數(shù).
答案] D
題型2 函數(shù)性質(zhì)的應(yīng)用
典例4 2015天津高考]已知定義在R上的 16、函數(shù)f(x)=2|x-m|-1(m為實(shí)數(shù))為偶函數(shù).記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為( )
A.a(chǎn)
17、合法、結(jié)論法(增+增得增、減+減得減及復(fù)合函數(shù)的同增異減)、定義法和導(dǎo)數(shù)法.
2.判斷函數(shù)是奇(偶)函數(shù)的關(guān)注點(diǎn)
必須對(duì)定義域內(nèi)的每一個(gè)x,均有f(-x)=-f(x),(f(-x)=f(x)),而不能舉特例.
3.判斷函數(shù)周期性的方法
定義法和結(jié)論法.
4.函數(shù)三個(gè)性質(zhì)的應(yīng)用
(1)奇偶性:具有奇偶性的函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上其圖象、函數(shù)值、解析式和單調(diào)性聯(lián)系密切,研究問(wèn)題時(shí)可轉(zhuǎn)化到只研究部分(一半)區(qū)間上.尤其注意偶函數(shù)f(x)的性質(zhì):f(|x|)=f(x).
(2)單調(diào)性:可以比較大小,求函數(shù)最值,解不等式,證明方程根的唯一性.
(3)周期性:利用周期性可以轉(zhuǎn)化函數(shù)的解析 18、式、圖象和性質(zhì),把不在已知區(qū)間上的問(wèn)題,轉(zhuǎn)化到已知區(qū)間上求解.
全國(guó)卷高考真題調(diào)研]
1.2016全國(guó)卷Ⅰ]函數(shù)y=2x2-e|x|在-2,2]的圖象大致為( )
答案 D
解析 當(dāng)x≥0時(shí),令函數(shù)f(x)=2x2-ex,則f′(x)=4x-ex,易知f′(x)在0,ln 4)上單調(diào)遞增,在ln 4,2]上單調(diào)遞減,又f′(0)=-1<0,f′=2->0,f′(1)=4-e>0,f′(2)=8-e2>0,所以存在x0∈是函數(shù)f(x)的極小值點(diǎn),即函數(shù)f(x)在(0,x0)上單調(diào)遞減,在(x0,2)上單調(diào)遞增,且該函數(shù)為偶函數(shù),符合條件的圖象為D.
2.2016全國(guó)卷 19、Ⅱ]已知函數(shù)f(x)(x∈R)滿足f(-x)=2-f(x),若函數(shù)y=與y=f(x)圖象的交點(diǎn)為(x1,y1),(x2,y2),…,(xm,ym),則 (xi+yi)=( )
A.0 B.m
C.2m D.4m
答案 B
解析 因?yàn)閒(x)+f(-x)=2,y==1+,所以函數(shù)y=f(x)與y=的圖象都關(guān)于點(diǎn)(0,1)對(duì)稱,所以xi=0,yi=2=m,故選B.
3.2015全國(guó)卷Ⅰ]若函數(shù)f(x)=xln (x+)為偶函數(shù),則a=________.
答案 1
解析 解法一:由題意得f(x)=xln (x+)=f(-x)=-xln (-x),所以+x=,解得a=1.
解 20、法二:由f(x)為偶函數(shù)有l(wèi)n (x+)為奇函數(shù),令g(x)=ln (x+),有g(shù)(-x)=-g(x),以下同解法一.
其它省市高考題借鑒]
4.2016山東高考]已知函數(shù)f(x)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x3-1;當(dāng)-1≤x≤1時(shí),f(-x)=-f(x);當(dāng)x>時(shí),f=f.則f(6)=( )
A.-2 B.-1
C.0 D.2
答案 D
解析 由題意可知,當(dāng)-1≤x≤1時(shí),f(x)為奇函數(shù),且當(dāng)x>時(shí),f(x+1)=f(x),所以f(6)=f(51+1)=f(1).而f(1)=-f(-1)=-(-1)3-1]=2,所以f(6)=2.故選D.
5.2015浙江 21、高考]存在函數(shù)f(x)滿足:對(duì)于任意x∈R都有( )
A.f(sin2x)=sinx B.f(sin2x)=x2+x
C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|
答案 D
解析 通過(guò)舉反例排除.本題主要考查函數(shù)的概念,即對(duì)于任一變量x有唯一的y與之相對(duì)應(yīng).對(duì)于A、B,當(dāng)x=或時(shí),sin2x均為1,而sinx與x2+x此時(shí)均有兩個(gè)值,故A,B錯(cuò)誤;對(duì)于C,當(dāng)x=1或-1時(shí),x2+1=2,而|x+1|有兩個(gè)值,故C錯(cuò)誤,故選D.
6.2015湖南高考]設(shè)函數(shù)f(x)=ln (1+x)-ln (1-x),則f(x)是( )
A.奇函數(shù),且在(0,1)上是 22、增函數(shù)
B.奇函數(shù),且在(0,1)上是減函數(shù)
C.偶函數(shù),且在(0,1)上是增函數(shù)
D.偶函數(shù),且在(0,1)上是減函數(shù)
答案 A
解析 由題意可得,函數(shù)f(x)的定義域?yàn)?-1,1),且f(x)=ln =ln ,易知y=-1在(0,1)上為增函數(shù),故f(x)在(0,1)上為增函數(shù),又f(-x)=ln (1-x)-ln (1+x)=-f(x),故f(x)為奇函數(shù),選A.
一、選擇題
1.2016山東萊蕪模擬]已知函數(shù)f(x)的定義域?yàn)?,6],則函數(shù)y=的定義域?yàn)? )
A. B.
C. D.
答案 B
解析 要使函數(shù)y=有意義,需滿足
??≤x<2. 23、故選B.
2.2014湖南高考]已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)-g(x)=x3+x2+1,則f(1)+g(1)=( )
A.-3 B.-1
C.1 D.3
答案 C
解析 令x=-1得,f(-1)-g(-1)=(-1)3+(-1)2+1=1.∵f(x),g(x)分別是偶函數(shù)和奇函數(shù),
∴f(-1)=f(1),g(-1)=-g(1),
即f(1)+g(1)=1.故選C.
3.2014全國(guó)卷Ⅰ]設(shè)函數(shù)f(x),g(x)的定義域都為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),則下列結(jié)論中正確的是( )
A.f(x)g(x)是偶函數(shù) 24、B.|f(x)|g(x)是奇函數(shù)
C.f(x)|g(x)|是奇函數(shù) D.|f(x)g(x)|是奇函數(shù)
答案 C
解析 由題意可知f(-x)=-f(x),g(-x)=g(x),對(duì)于選項(xiàng)A,f(-x)g(-x)=-f(x)g(x),所以f(x)g(x)是奇函數(shù),故A項(xiàng)錯(cuò)誤;對(duì)于選項(xiàng)B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函數(shù),故B項(xiàng)錯(cuò)誤;對(duì)于選項(xiàng)C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函數(shù),故C項(xiàng)正確;對(duì)于選項(xiàng)D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)| 25、,所以|f(x)g(x)|是偶函數(shù),故D項(xiàng)錯(cuò)誤,選C.
4.2016遼寧實(shí)驗(yàn)中學(xué)月考]函數(shù)y=f(x)在0,2]上單調(diào)遞增,且函數(shù)f(x+2)是偶函數(shù),則下列結(jié)論成立的是( )
A.f(1) 26、由此容易判斷函數(shù)為奇函數(shù),可以排除A;又函數(shù)有無(wú)數(shù)個(gè)零點(diǎn),可排除C;當(dāng)x取一個(gè)較小的正數(shù)時(shí),y>0,由此可排除B,故選D.
6.2016湖北黃岡一模]已知函數(shù)f(x)=|log2x|,正實(shí)數(shù)m,n滿足m 27、f(x)max=f(m2),x∈m2,n].
故f(m2)=2,易得n=2,m=.
7.如圖,過(guò)單位圓O上一點(diǎn)P作圓O的切線MN,點(diǎn)Q為圓O上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q由點(diǎn)P逆時(shí)針?lè)较蜻\(yùn)動(dòng)時(shí),設(shè)∠POQ=x,弓形PRQ的面積為S,則S=f(x)在x∈0,2π]上的大致圖象是( )
答案 B
解析 S=f(x)=S扇形PRQ+S△POQ=(2π-x)12+sinx=π-x+sinx,則f′(x)=(cosx-1)≤0,所以函數(shù)S=f(x)在0,2π]上為減函數(shù),當(dāng)x=0和x=2π時(shí),分別取得最大值與最小值.又當(dāng)x從0逐漸增大到π時(shí),cosx逐漸減小,切線斜率逐漸減小,曲線越來(lái)越陡;當(dāng)x從π 28、逐漸增大到2π時(shí),cosx逐漸增大,切線斜率逐漸增大,曲線越來(lái)越平緩.結(jié)合選項(xiàng)可知,B正確.
8.2016遼寧五校第二次聯(lián)考]已知f(x)是定義在R上的偶函數(shù),在區(qū)間0,+∞)上為增函數(shù),且f=0,則不等式f(logx)>0的解集為( )
A. B.(2,+∞)
C.∪(2,+∞) D.∪(2,+∞)
答案 C
解析 由已知f(x)在R上為偶函數(shù),且f=0,
∴f(logx)>0等價(jià)于f(|logx|)>f.
又f(x)在0,+∞)上為增函數(shù),
∴|logx|>,即logx>或logx<-,
解得0 29、函數(shù)f(x)=ax+b(a>0,a≠1)的定義域和值域都是-1,0],則a+b=________.
答案 -
解析?、佼?dāng)01時(shí),函數(shù)f(x)在-1,0]上單調(diào)遞增,由題意可得即顯然無(wú)解.
所以a+b=-.
10.2016浙江杭州模擬]已知定義在R上的函數(shù)y=f(x)滿足以下三個(gè)條件:①對(duì)于任意的x∈R,都有f(x+1)=;②函數(shù)y=f(x+1)的圖象關(guān)于y軸對(duì)稱;③對(duì)于任意的x1,x2∈0,1],且x1 30、_.
答案 f(3) 31、都有:f(x)+f(y)=f,且當(dāng)x∈(-1,0)時(shí),f(x)>0.回答下列問(wèn)題:
(1)判斷f(x)在(-1,1)上的奇偶性,并說(shuō)明理由;
(2)判斷函數(shù)f(x)在(0,1)上的單調(diào)性,并說(shuō)明理由;
(3)若f=,試求f-f-f的值.
解 (1)令x=y(tǒng)=0?f(0)=0,
令y=-x,則f(x)+f(-x)=0?f(-x)=-f(x)?f(x)在(-1,1)上是奇函數(shù).
(2)設(shè)0 32、1時(shí),f(x1)>f(x2),
∴f(x)在(0,1)上單調(diào)遞減.
(3)由于f-f=f+f
=f=f.
同理,f-f=f,
f-f=f,
∴f-f-f=2f=2=1.
12.函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意實(shí)數(shù)x,都有f(x+1)=f(x-1)成立,已知當(dāng)x∈1,2]時(shí),f(x)=logax.
(1)求x∈-1,1]時(shí),函數(shù)f(x)的表達(dá)式;
(2)求x∈2k-1,2k+1](k∈Z)時(shí),函數(shù)f(x)的表達(dá)式;
(3)若函數(shù)f(x)的最大值為,在區(qū)間-1,3]上,解關(guān)于x的不等式f(x)>.
解 (1)因?yàn)閒(x+1)=f(x-1),且f(x)是R上的偶函數(shù), 33、所以f(x+2)=f(x),
所以f(x)=
(2)當(dāng)x∈2k-1,2k]時(shí),
f(x)=f(x-2k)=loga(2+x-2k),
同理,當(dāng)x∈(2k,2k+1]時(shí),
f(x)=f(x-2k)=loga(2-x+2k),
所以f(x)=
(3)由于函數(shù)是以2為周期的周期函數(shù),故只需要考查區(qū)間-1,1],
當(dāng)a>1時(shí),由函數(shù)f(x)的最大值為,
知f(0)=f(x)max=loga2=,即a=4,
當(dāng)0,所以-2
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇教版中考復(fù)習(xí):統(tǒng)計(jì)和概率課件
- 提高安全防范意識(shí)警惕AI換臉新騙局PPT課件(帶內(nèi)容)
- 為了母親的微笑主題班會(huì)課件
- 52用字母表示數(shù)
- 512軸對(duì)稱變換
- 高考小說(shuō)閱讀答題技巧ppt課件
- 銀團(tuán)貸款市場(chǎng)運(yùn)作及實(shí)務(wù)完美版資料
- 某地產(chǎn)第五園項(xiàng)目介紹課件
- 非可再生資源的利用和保護(hù)(共25張PPT)
- 第七節(jié)---哺乳動(dòng)物課件優(yōu)選ppt資料
- 多發(fā)性創(chuàng)傷急救
- 23、《假如》課件
- 智慧社區(qū)產(chǎn)品介紹
- 新版脛骨平臺(tái)骨折經(jīng)典
- unit1(4)(教育精品)