鉆床液壓系統(tǒng)的設計含開題及4張CAD圖
鉆床液壓系統(tǒng)的設計含開題及4張CAD圖,鉆床,液壓,系統(tǒng),設計,開題,cad
附錄A1
液力傳動鉆機驅(qū)動分析
[摘要]液力傳動鉆機采用液力機械變速箱, 傳動,以適應變化的負載能力,可實現(xiàn)連續(xù)可變扭矩和反轉(zhuǎn)制動。 現(xiàn)場試驗表明,鉆機功率利用率,高吊裝速度; 相反的制動性能,減少剎車帶負荷; 時刻變化的特點,加強事件處理能力。 通過變矩器驅(qū)動鉆井泵可同時保護原動機和工作; 保持額定轉(zhuǎn)速柴油機的條件下,泵壓可以控制整個過程。熱反應,倒擋離合器和過濾器等方面暴露的問題提出了改進。
使用了2000米深的鉆井液力傳動鉆機。臺鉆機部分由美國紐約內(nèi)燃發(fā)動機和英國石油廠研制的電源設備,傳輸設備和系統(tǒng)平臺。目前,已通過測試,并使用這種鉆機表現(xiàn)出了良好的性能, 特別是在電力驅(qū)動時更加突出的特點,但也暴露出一些問題。據(jù)筆者驅(qū)動程式和現(xiàn)場試驗結果,分析了驅(qū)動鉆機的特點, 并針對這些問題提出改進意見。
驅(qū)動程序
目前, 使用中型鉆機(可鉆深1500 ~2500 )用交流電動機或柴油機為原動機由一個單獨變速機械變速箱,而撥號驅(qū)動絞車。鉆井泵用的是單發(fā)動機直接驅(qū)動。鉆機液壓傳動普通機械變速箱設定變矩器,液壓機械傳動耦合于一體的液壓機械變速箱,鉆井泵是通過驅(qū)動的變矩器。巖芯組成的液壓變速箱, 這是一個類似加拿大鉀650鉆機和美國威爾遜鉆機65B。對艾里遜變速箱, 其結構及工作原理如圖1 。
圖1液壓變速箱圖
1激活液力變矩器; 2-泵; 3,6-泵; 4輸入軸; 5反向齒輪摩擦離合器; 7冷卻風扇; 8塊高速耦合; 9 -輸出軸; 10 , 中速座液力偶合器
液壓變速箱有3座水力機械及反向齒輪. 各檔的電力線如下.
Ⅰ擋:輸入軸→Z1→Z2→啟動液力變矩器→Z6→Z5→輸出軸;
Ⅱ擋:輸入軸→Z1→Z2→中速擋液力偶合器→Z6→Z5→輸出軸;
Ⅲ擋:輸入軸→Z1→Z3→高速擋液力偶合器→Z7→Z5→輸出軸;
倒擋:輸入軸→Z9→Z10→Z11→倒擋摩擦離合器→Z7→Z5→輸出軸。
操作特征
1 . 泵及驅(qū)動特性
如圖2所示,泵Ⅰ檔的操作特性, 柴油和變矩器,其輸出特性的聯(lián)合工作(渦輪軸力矩MW、泵輪軸力矩MB、變矩器效率η與渦輪軸轉(zhuǎn)速nw的關系)的內(nèi)容。其優(yōu)勢主要表現(xiàn)在三個方面:第一,根據(jù)負載的變化,自動和無級變速扭矩。從主體開始鉆探,可提高功率效率 從而提高鉆機的工效。第二,無論怎樣的負荷變化,柴油機在最佳的營運狀態(tài), 這是規(guī)模較大的負荷變化泵I組表現(xiàn)更為突出。第三,是變矩器能力改變適應機組負荷變化的能力大大加強, 起重事故,并承載能力強。
圖2柴油變矩器聯(lián)合工作的輸出特性
2 . 二檔和三檔的操作性
圖3所示,在二檔和三檔驅(qū)動的特性,即柴油和耦合聯(lián)合工作輸出特性(渦輪軸力矩MW、偶合器效率η與渦輪軸轉(zhuǎn)速nw的關系)。理論上,渦輪,可任意轉(zhuǎn)速運行,甚至停轉(zhuǎn), 泵輪的速度取決于柴油發(fā)動機轉(zhuǎn)速允許范圍內(nèi)。但這個速度,以擴大有關的功率損耗為代價, 為確保傳動效率高,一般不應作為耦合限速裝置。
圖3柴油耦合聯(lián)合工作輸出特性
3 .鉆機的提升特性
根據(jù)柴油機和柴油耦合的聯(lián)合工作特性曲線, 以及鉆機的具體性能參數(shù)??梢缘玫揭毫鲃鱼@機性能提升特性(見圖4 )。整個提升曲線abcdef。理論上, Ⅰ擋、Ⅱ擋和Ⅲ擋的工作范圍分別為EF段、CDE段和ABC段。事實上,為了保證高耦合效率的工作, 最佳工作狀態(tài), 實際上,為了保證偶合器有較高的工作效率,最好讓Ⅰ擋工作在D′EF段,Ⅱ擋工作在B′CD段,Ⅲ擋工作在AB段。
圖4鉆機性能提升特性
4 . 液力變矩器逆向制動性能
在下鉆和套管過程中, 鉆機掛合液力Ⅰ擋,此時變矩器處于反轉(zhuǎn)制動工況,柴油機帶動泵輪正轉(zhuǎn),鉆具或套管柱帶動渦輪反轉(zhuǎn)。變矩器內(nèi)的液體作用于渦輪的力矩方向與渦輪轉(zhuǎn)向相反,這種力矩起阻止渦輪反轉(zhuǎn)的作用。這樣利用變矩器的反轉(zhuǎn)制動特性就起到了等同于鉆機輔助剎車(如水剎車)的作用,減小了帶剎車的載荷。反轉(zhuǎn)制動力的大小與充油量成正比,通過控制進入Ⅰ擋變矩器的充油量,可以控制制動力的大小。適當提高柴油機的轉(zhuǎn)速,使泵輪的轉(zhuǎn)速提高,也可使反轉(zhuǎn)制動力增大。再輔以帶剎車,即可根據(jù)鉤載的大小,隨意調(diào)節(jié)制動力的大小,從而獲得滿意的下放速度。
總之,液壓傳動的三個鉆機是全液壓傳動的電力傳輸, 可以吸收和降低發(fā)動機和工作機的振動,沖擊,驅(qū)動等。提高柴油發(fā)動機,傳動部分機器的效率和壽命。
現(xiàn)場試驗結果
液力傳動鉆機現(xiàn)場試驗
現(xiàn)場測試深度1950m試驗井?,F(xiàn)場試驗表明,鉆機液壓驅(qū)動鉆機有以下優(yōu)點。
( 1 )起升一檔的無級變速特性,功率利用率將提高到90% ,確保更高的啟動速度. 比傳統(tǒng)的機械傳動鉆機時間減少在20%~23% 。
( 2 )鉆頭變矩器用反向制動的特點,在鉆井中未經(jīng)任何處理的制動能充分實現(xiàn)速度控制,操作簡單, 減少制動輪制動摩擦片的磨損。
( 3 )作為一個大變矩器有著較大的變矩系數(shù),在處理鉆井事故電力設備有充足的電力, 傳輸設備驅(qū)動力矩大。
( 4 )消除貓頭,井口,以加強利用機械化設備,運行安全情況已經(jīng)有所改善。
( 5 )變速傳動裝置的噪音,在一定程度上降低了,可以操作的過程中的轉(zhuǎn)向. 簡化換擋操作。
鉆機在試驗過程中也暴露出以下幾個問題。
( 1 )用一檔傳輸變矩器,液壓齒輪箱傳動油溫度上升較快, 一般溫度迅速達到90℃,然后冷卻裝置,以保持恒溫. 這表明變矩器效率不高,部分動能變成熱能。
( 2 ) 傳動油的散熱裝置設計不合理,造成液力傳動箱體積過于龐大,而且風扇及電動機不便于現(xiàn)場維修更換。
( 3 ) 機械式倒擋離合器不能滿足處理井下事故或復雜的工藝要求,摩擦片極易變形而失效。
( 4 )變速器的過濾器的位置不太合理, 尤其是泵和過濾器清洗拆裝現(xiàn)場是很難的。
( 5 )液壓齒輪箱,齒輪反向運動之間的相互干擾的問題,也就是, 他們座之間缺乏聯(lián)鎖裝置。
2 . 液壓泵測
在整個鉆井過程中,通過變矩器泵機組進行了現(xiàn)場測試。鉆井深718.36米,在發(fā)動機轉(zhuǎn)速一直穩(wěn)定在1200r/min , 泵時間約為106分鐘1 ,隨著鉆井深度,泵5 MPa的壓力逐漸上升,至12兆帕之后,以較低的發(fā)動機轉(zhuǎn)速,泵壓穩(wěn)定在10℃, 20℃。在157小時連續(xù)運行,除在第一軸變矩器漏油,其他一切正常。
測試結果顯示,液壓傳動泵集團,具有以下的優(yōu)點。
( 1 ) 可有效保護原動機。與泵及變矩器配套使用的12V190柴油機,在通過調(diào)節(jié)充油閥給其加載時,其載荷是緩慢均勻地增加的,避免了柴油機突然增加或減去很大載荷。據(jù)現(xiàn)場觀察,在使用調(diào)壓閥調(diào)節(jié)泵壓時,柴油機的轉(zhuǎn)速、聲音及排煙情況均無明顯的變化。這樣可杜絕柴油機的“飛車”現(xiàn)象,延長柴油機的使用壽命。
( 2 )建立有效的保障機制. 轉(zhuǎn)換后,輸出速度也逐漸增加,從零達到所需的速度(泵壓) , 避免工作,為鉆井泵的轉(zhuǎn)速突然上升速度的原始動機轉(zhuǎn)速。
( 3 )避免了氣胎兒離合器裝置,提高了水泵工作的可靠性。氣輪胎摩擦系數(shù),摩擦輪傳動皮帶和水泵工作是一個薄弱環(huán)節(jié), 容易發(fā)生故障和損壞,特殊氣體或冬季結冰時氣球往往造成事故的影響,鉆井, 生產(chǎn)連續(xù)性。采用液力變矩器來解決這個問題。據(jù)該變矩器傳動特性, 我們可以擺脫膠帶輪采用直接傳輸,而且易于自動化。
( 4 ) 速柴油機為了保持額定轉(zhuǎn)的條件下,泵壓可以控制整個過程, 鉆井技術,以滿足復雜的要求下。
液壓泵驅(qū)動的使用中也暴露出以下幾個問題。
( 1 )由于增加了變矩器,水泵和整體質(zhì)量的傳輸過程也相應的增加了能耗。
( 2 ) 在現(xiàn)場環(huán)境惡劣,水泵,柴油驅(qū)動的安裝調(diào)試更加困難,從而影響整個鉆機的使用。
( 3 )推廣使用的鉆機,但配件供應更加緊張。
4.變矩器的反轉(zhuǎn)制動特性
在下鉆和下套管過程中,鉆機掛合液力Ⅰ擋,此時變矩器處于反轉(zhuǎn)制動工況,柴油機帶動泵輪正轉(zhuǎn),鉆具或套管柱帶動渦輪反轉(zhuǎn)。變矩器內(nèi)的液體作用于渦輪的力矩方向與渦輪轉(zhuǎn)向相反,這種力矩起阻止渦輪反轉(zhuǎn)的作用。這樣利用變矩器的反轉(zhuǎn)制動特性就起到了等同于鉆機輔助剎車(如水剎車)的作用,減小了帶剎車的載荷。反轉(zhuǎn)制動力的大小與充油量成正比,通過控制進入Ⅰ擋變矩器的充油量,可以控制制動力的大小。適當提高柴油機的轉(zhuǎn)速,使泵輪的轉(zhuǎn)速提高,也可使反轉(zhuǎn)制動力增大。再輔以帶剎車,即可根據(jù)鉤載的大小,隨意調(diào)節(jié)制動力的大小,從而獲得滿意的下放速度。
綜上所述,液力傳動鉆機的3個正擋都以液力傳動方式傳遞動力,能吸收并減小來自發(fā)動機和工作機的振動和沖擊,使傳動系統(tǒng)傳動柔和,提高了柴油機、傳動零部件以及工作機的使用壽命。
現(xiàn)場試驗結果
1.液力傳動鉆機現(xiàn)場試驗
試驗井井深1950m。現(xiàn)場試驗表明,DQZJ—20Y型液力傳動鉆機具有如下優(yōu)點。
(1)起升Ⅰ擋的無級變速特性,將功率利用率提高到90%左右,保證較高的起升速度,比傳統(tǒng)的機械傳動鉆機節(jié)省起升時間20%~30%。
(2)下鉆時利用液力變矩器的反轉(zhuǎn)制動特性,下鉆均勻,且不用剎把就可實現(xiàn)全程速度控制,操作簡單,減小了剎車轂和剎帶摩擦塊的磨損。
(3)由于變矩器有較大的變矩系數(shù),在處理鉆井事故時動力設備功率足,傳動設備傳動力矩大。
(4)甩掉貓頭,強化井口機械化裝置的使用,使操作安全性得到提高。
(5)變速和傳動裝置的噪音有一定程度的降低,且可以在運轉(zhuǎn)過程中換擋,簡化了換擋操作。
該型鉆機在試驗過程中也暴露出如下問題。
(1)使用Ⅰ擋變矩器傳動時,液力傳動箱的傳動油溫度上升較快,一般溫升很快達到90°C,然后散熱裝置保持溫度基本恒定。這說明變矩器的使用效率不高,有部分動能轉(zhuǎn)化為熱能。
(2)傳動油的散熱裝置設計不合理,造成液力傳動箱體積過于龐大,而且風扇及電動機不便于現(xiàn)場維修更換。
(3)機械式倒擋離合器不能滿足處理井下事故或復雜的工藝要求,摩擦片極易變形而失效。
(4)傳動油過濾器位置及過濾方式不太合理,尤其是離心泵和過濾器的現(xiàn)場拆裝清洗十分困難。
(5)液力傳動箱的正、倒擋之間存在運動的相互干擾問題,在正、倒擋之間缺乏互鎖裝置。
2.液力傳動泵組試驗
在整個鉆井過程中對通過液力變矩器傳動的機泵組進行了現(xiàn)場試驗。鉆井深度在718.36m之前柴油機轉(zhuǎn)速一直穩(wěn)定在1200r/min,泵的沖次約為106min-1,隨著鉆井深度增加,泵壓從5MPa逐漸上升至12MPa。之后采取降低柴油機轉(zhuǎn)速的方法,使泵壓穩(wěn)定在10~11MPa。在157h的連續(xù)運轉(zhuǎn)中,除液力變矩器軸頭發(fā)生漏油外,其它一切正常。試驗表明,液力傳動機泵組具有如下優(yōu)點。
(1)可有效保護原動機。與泵及變矩器配套使用的12V190柴油機,在通過調(diào)節(jié)充油閥給其加載時,其載荷是緩慢均勻地增加的,避免了柴油機突然增加或減去很大載荷。據(jù)現(xiàn)場觀察,在使用調(diào)壓閥調(diào)節(jié)泵壓時,柴油機的轉(zhuǎn)速、聲音及排煙情況均無明顯的變化。這樣可杜絕柴油機的“飛車”現(xiàn)象,延長柴油機的使用壽命。
(2)可有效保護工作機。經(jīng)過變矩器輸出的轉(zhuǎn)速是從零開始逐步升高而達到工作需要的轉(zhuǎn)速(泵壓)的,避免了工作機鉆井泵的轉(zhuǎn)速突然增加到原動機的轉(zhuǎn)速。
(3)省去了氣胎離合器裝置,提高了泵組工作的可靠性。氣胎、摩擦片、摩擦轂和傳動膠帶是泵組工作的薄弱環(huán)節(jié),容易發(fā)生故障和損壞,特別是冬季氣路結冰常引起氣囊燒壞事故,影響鉆井生產(chǎn)的連續(xù)性。使用液力變矩器解決了這一問題。
(4)在保持柴油機的額定轉(zhuǎn)速條件下,可實現(xiàn)泵壓的全過程控制,滿足鉆井工藝在各種復雜情況下的要求,在復雜區(qū)塊將更能顯示其優(yōu)越性。
液力傳動泵組在試驗及現(xiàn)場使用過程中也暴露出如下問題。
(1)由于增加了液力變矩器,泵組的整體質(zhì)量及傳動過程中的能耗也相應增加。
(2)在現(xiàn)場條件較差時,泵、柴油機傳動裝置的安裝和校正較為困難,影響鉆機整拖時效。
(3)鉆機尚未推廣使用,配件供應較為緊張。
附錄A2
注塑機液壓系統(tǒng)設計的方法和注意問題
液壓技術被引入工業(yè)領域已經(jīng)有一百多年的歷史了,隨著工業(yè)的迅猛發(fā)展,液壓技術更日新月異。伴隨著數(shù)學、控制理論、計算機、電子器件和液壓流體學的發(fā)展,出現(xiàn)了液壓伺服系統(tǒng),并作為一門應用科學已經(jīng)發(fā)展成熟,形成自己的體系和一套行之有效的分析和設計方法。好了,不多說了,現(xiàn)在我和大家來說說液壓系統(tǒng)設計的方法和注意問題。舉個液壓系統(tǒng)在注塑機運用的例子來和大家聊,并歡迎大家提出意見。
設計注塑機液壓傳動系統(tǒng)的依據(jù)
(1) 注塑機的總體布局和工藝要求,包括采用液壓傳動所完成的注塑機運動種類、機械設計時提出可能用的液壓執(zhí)行元件的種類和型號、執(zhí)行元件的位置及其空間的尺寸范圍、要求的自動化程度等。
(2) 注塑機的工作循環(huán)、執(zhí)行機構的運動方式(移動、轉(zhuǎn)動或擺動),以及完成的工作范圍。
(3) 液壓執(zhí)行元件的運動速度、調(diào)速范圍、工作行程、載荷性質(zhì)和變化范圍。
(4) 注塑機各部件的動作順序和互鎖要求,以及各部件的工作環(huán)境與占地面積等。
(5) 液壓系統(tǒng)的工作性能,如工作平穩(wěn)性、可靠性、換向精度、停留時間和沖出量等方面的要求。
(6)其它要求,如污染、腐蝕性、易燃性以及液壓裝置的質(zhì)量、外形尺寸和經(jīng)濟性等。
設計液壓傳動系統(tǒng)的步驟
(1) 明確對液壓傳動系統(tǒng)的工作要求,是設計液壓傳動系統(tǒng)的依據(jù),由使用部門以技術任務書的形式提出。
(2) 擬定液壓傳動系統(tǒng)圖。a 根據(jù)工作部件的運動形式,合理地選擇液壓執(zhí)行元件;b 根據(jù)工作部件的性能要求和動作順序,列出可能實現(xiàn)的各種基本回路。此時應注意選擇合適的調(diào)速方案、速度換接方案,確定安全措施和卸荷措施,保證自動工作循環(huán)的完成和順序動作和可靠。
液壓傳動方案擬定后,應按國家標準規(guī)定的圖形符號繪制正式原理圖。圖中應標注出各液壓元件的型號規(guī)格,還應有執(zhí)行元件的動作循環(huán)圖和電氣元件的動作循環(huán)表,同時要列出標準(或通用)元件及輔助元件一覽表。
(3) 計算液壓系統(tǒng)的主要參數(shù)和選擇液壓元件。a 計算液壓缸的主要參數(shù);b 計算液壓缸所需的流量并選用液壓泵;c 選用油管;d 選取元件規(guī)格;e 計算系統(tǒng)實際工作壓力;f 計算功率,選用電動機;g 發(fā)熱和油箱容積計算;
(4) 進行必要的液壓系統(tǒng)驗算。
(5) 液壓裝置的結構設計。
(6) 繪制液壓系統(tǒng)工作圖,編制技術文件。
設計液壓傳動系統(tǒng)時應注意問題
(1) 在組合基本回路時,要注意防止回路間相互干擾,保證正常的工作循環(huán)。
(2) 提高系統(tǒng)的工作效率,防止系統(tǒng)過熱。例如功率小,可用節(jié)流調(diào)速系統(tǒng);功率大,最好用容積調(diào)速系統(tǒng);經(jīng)常停車制動,應使泵能夠及時地卸荷;在每一工作循環(huán)中耗油率差別很大的系統(tǒng),應考慮用蓄能器或壓力補償變量泵等效率高的回路。
(3) 防止液壓沖擊,對于高壓大流量的系統(tǒng),應考慮用液壓換向閥代替電磁換向閥,減慢換向速度;采用蓄能器或增設緩沖回路,消除液壓沖擊。
(4) 系統(tǒng)在滿足工作循環(huán)和生產(chǎn)率的前提下,應力求簡單,系統(tǒng)越復雜,產(chǎn)生故障的機會就越多。系統(tǒng)要安全可靠,對于做垂直運動提升重物的執(zhí)行元件應設有平衡回路;對有嚴格順序動作要求的執(zhí)行元件應采用行程控制的順序動作回路。此外,還應具有互鎖裝置和一些安全措施。
(5) 盡量做到標準化、系列化設計,減少專用件設計。
使用液壓系統(tǒng)要注意的問題
(1) 使用者應明白液壓系統(tǒng)的工作原理,熟悉各種操作和調(diào)整手柄的位置及旋向等。
(2) 開車前應檢查系統(tǒng)上各調(diào)整手柄、手輪是否被無關人員動過,電氣開關和行程開關的位置是否正常,主機上工具的安裝是否正確和牢固等,再對導軌和活塞桿的外露部分進行擦拭,而后才可開車。
(3) 開車時,首先啟動控制油路的液壓泵,無專用的控制油路液壓泵時,可直接啟動主液壓泵。
(4) 液壓油要定期檢查更換,對于新投入使用的液壓設備,使用3?個月左右即應清洗油箱,更換新油。以后每隔半年至1?年進行清洗和換油一次。
(5) 工作中應隨時注意油液,正常工作時,油箱中油液溫度應不超過60℃。油溫過高應設法冷卻,并使用粘度較高的液壓油。溫度過低時,應進行預熱,或在運轉(zhuǎn)前進行間歇運轉(zhuǎn),使油溫逐步升高后,再進入正式工作運轉(zhuǎn)狀態(tài)。
(6) 檢查油面,保證系統(tǒng)有足夠的油量。
(7) 有排氣裝置的系統(tǒng)應進行排氣,無排氣裝置的系統(tǒng)應往復運轉(zhuǎn)多次,使之自然排出氣體。
(8) 油箱應加蓋密封,油箱上面的通氣孔處應設置空氣過濾器,防止污物和水分的侵入。加油時應進行過濾,使油液清潔。
(9) 系統(tǒng)中應根據(jù)需要配置粗、精過濾器,對過濾器應經(jīng)常地檢查、清洗和更換。
(10) 對壓力控制元件的調(diào)整,一般首先調(diào)整系統(tǒng)壓力控制閥----溢流閥,從壓力為零時開調(diào),逐步提高壓力,使之達到規(guī)定壓力值;然后依次調(diào)整各回路的壓力控制閥。主油路液壓泵的安全溢流閥的調(diào)整壓力一般要大于執(zhí)行元件所需工作壓力的10%--25%??焖龠\動液壓泵的壓力閥,其調(diào)整壓力一般大于所需壓力10%--20%。如果用卸荷壓力供給控制油路和潤滑油路時,壓力應保持在0.3--0.6MPa范圍內(nèi)。壓力繼電器的調(diào)整壓力一般應低于供油壓力0.3--0.5MPa。
(11) 流量控制閥要從小流量調(diào)到大流量,并且應逐步調(diào)整。同步運動執(zhí)行元件的流量控制閥應同時調(diào)整,要保證運動的平穩(wěn):①系統(tǒng)產(chǎn)生噪聲和振動;②運動部件爬行;?③系統(tǒng)中壓力不足;④運動部件速度不正常;⑤油溫太高;⑥換向或啟動不正常;
工作部件產(chǎn)生爬行的原因及排除方法
(1) 因為空氣的壓縮性較大,當含有氣泡的液體到達高壓區(qū)而受到劇烈壓縮時,會使油液體積變小,使工作部件產(chǎn)生爬行。
采取措施:在系統(tǒng)回路的高處部位設置排氣裝置,將空氣排除。
(2) 由于相對運動部件間的磨擦阻力太大或磨擦阻力變化,致使工作部件在運動時產(chǎn)生爬行。
采取措施:對液壓缸、活塞和活塞桿等零件的形位公差和表面粗糙度有一定的要求;并應保證液壓系統(tǒng)和液壓油的清潔,以免臟物夾入相對運動件的表面間,從而增大磨擦阻力。
(3) 運動件表面間潤滑不良,形成干磨擦或半磨擦,也容易導致爬行。
采取措施:經(jīng)常檢查有相對運動零件的表面間潤滑情況,使其保持良好。
(4) 若液壓缸的活塞和活塞桿的密封定心不良,也會出現(xiàn)爬行。
采取措施:應卸除載荷,使液壓缸單獨動作,測定出磨擦阻力后,校正定心。
(5) 因液壓缸泄漏嚴重,導致爬行。
采取措施:減少泄漏損失,或加大液壓泵容量。
附錄B1
Control By Jack L. Johnson, P. E.
Pump control vs valve control:
Efficiency or performance?
DQZJ - 20Y hydrodynamic drive rig driven analysis
[Abstract] papers DQZJ - 20Y hydrodynamic drive rigs used hydraulic mechanical gearbox, transmission soft, adapt to the changes in the load capacity can be achieved continuously variable torque and braking inversion. Field test showed that the rig power utilization, and high hoisting speed; Conversely braking characteristics reduce the belt brake load; Moments change the characteristics of strengthening the ability to handle incidents. Through the torque converter drive drilling pump can simultaneously protecting the original motivation and work; Maintain the rated speed of the diesel engine conditions, pump pressure can be controlled throughout the entire process. Thermal response, reverse gear clutch and filters, etc. exposed to the issues raised improvements.
The use of a 2000 m deep drilling of new DQZJ - 20Y hydrodynamic drive rig, Taiwan drilling rigs in part by the United States Diesel plant New York Institute of the Ministry of Internal Combustion Engines and British Petroleum plant developed by the power equipment, transmission equipment and rig system. Currently, through testing, and use of this rig shown a good performance, particularly in the power driven more prominent characteristics, but also exposed some problems. According to the author-driven programs and on-site test results, analysis of the rig driven characteristics, and to address the problems and propose improvements.
Driver program
At present, the use of medium-sized rig (available drilling deep 1500 ~ 2500) the use of AC motors or diesel engine as the original motivated by a separate variable speed mechanical gearbox, and dial-driven winch. Drilling pump is used single-engine direct drive. DQZJ - 20Y rig hydraulic transmission of ordinary mechanical gearbox to set torque converter, hydraulic and mechanical coupling drive in the integrated hydraulic mechanical gearbox, drilling pump is driven through the torque converter. Drill core components of the hydraulic gearbox, it is similar to the Canadian K-650 rigs and the United States Wilson-65B rig on the Allison Transmission, its structure and working principle as shown in figure 1.
Figure 1 hydraulic gearbox Map 1-activated hydraulic torque converter; 2-Pump; 3,6-pumps; 4-input shaft; 5-reverse gear friction clutch; 7-cooling fans; 8-block high-speed fluid coupling; 9-output shaft; 10-, medium-speed block hydraulic coupler
Hydraulic gearbox with three block hydraulic machinery and a reverse gear. Block the transmission of the power line is as follows.
I block : input → axis Z1 Z2 → → start torque converter → Possible → di → output shaft;
II block : input shaft → → Z1 Z2 → medium speed hydraulic coupling block → Possible → di → output shaft;
Ⅲ block : → input shaft Z1 → Z3 → block high-speed fluid coupling → Portrait → di → output shaft;
Reverse Gear : input shaft → Z3 → Z10 → screening of resistance → reverse gear friction clutch → Portrait → di → output shaft.
Driving Characteristics
1. I block pumps and the driving characteristics
Is shown in Figure 2 and Pump Ⅰ block the driving characteristics, Diesel is actually torque converter and the output characteristics of the joint work (MW turbine shaft torque, torque pump axle MB, η converter efficiency turbine shaft speed and the relationship between J). Its main advantages of performance in three areas : First, according to the load changes automatically and continuously variable torque. I used to block the main starting drilling, which can increase the power efficiency, thereby enhancing the rig with or ergonomics. Second, regardless of how the load changes, the diesel engine has the best operating point operations, This is of the larger load changes Pump Group I show more prominent. Three of the torque converter is the ability to change pitch adaptation unit load change capacity greatly strengthened, lifting accident and started carrying capacity.
Figure 2 Diesel-converter output characteristics of the Joint Working
2. Block II and III block Driving Characteristics
Figure 3 is shown in block II and III block-driven characteristics, that is, diesel and coupling joint work output characteristics (MW turbine shaft torque. coupling efficiency η turbine shaft speed and the relationship between J). Its main advantage is the speed turbine pump round scope than a lot of the expansion. In theory, the turbine can be arbitrary speed operation, or even halt, Pump round depends on the speed of the diesel engine speed range allowed. But this speed to expand the scope of the power loss at the cost, to ensure a higher transmission efficiency, general should not be coupling as a speed device.
Figure 3 Diesel-coupling joint work output characteristics
3. Characteristics of the rig upgrade
According Diesel-converter and diesel-coupling of the Joint Working characteristic curve, and the rig specific performance parameters. can be DQZJ - 20Y hydrodynamic drive drilling rig upgrade properties (shown in Figure 4). Upgrade the entire curve ABCDEF. Theoretically, the block I, II and III block retaining the scope of work for EF, CDE and of the ABC. In fact, in order to guarantee a high coupling efficiency of the work, the best block I work for the D'EF, II block in B'CD, III block in the work of AB.
Figure 4 rigs to upgrade properties
4. The torque converter reverse braking characteristics
Under the next drilling and casing process, hydraulic drilling rig Kakeya I resisted and torque converter at this time to start anti-conversion status, Diesel pump driven round was changing, drilling or driven turbine casing reversal. Converter role of the liquid in the direction of the turbine and turbine torque to the contrary, this moment onwards turbine stop the role reversal. Such a use of the reverse braking torque converter character played in the same rig auxiliary braking (braking water), reduce the load with the brakes. Anti-conversion engine of the size and volume of oil-filled proportional, I entered through the control of the oil-filled block converter volume can control the size of the braking force. Increase the engine speed so that the pump wheel speed increase, but also enable the anti-conversion augmented. Conjunction with the brakes, the hook can be set according to the size, adjustable braking force to the size, and be satisfied with the pace of decentralization.
In summary, hydraulic transmission of the three rigs are to block all hydraulic drive power transmission, can absorb and reduce engine from the plane and the vibration, and shock, the Drive soft, raising the diesel engine, Transmission parts of the machine work and life.
Field test results
1.Hydraulic drive rigs field test depth of 1950m test wells.
Field tests show that, DQZJ - 20Y-hydraulic drive rig with the following advantages.
(1) or I block the CVT characteristics, power utilization will be raised to 90%, ensuring higher starting speed. than the traditional mechanical transmission rig time saved up or 20% ~ 30%.
(2) drilling torque converter used by the reverse braking characteristics, drilling under uniform, without any brake handle can achieve full speed control, simple operation, reducing the brake wheel and brake friction with pieces of wear and tear.
(3) As a larger torque converter change pitch coefficient, in dealing with drilling accidents power equipment adequate power, Transmission Equipment drive torque.
(4) Eliminating cat, wellhead to strengthen the use of mechanized equipment, operational safety has been improved.
(5) variable transmission device and the noise to a certain extent reduced, and can operate in the process of shifting. simplified shift operation.
The rig in the testing process has also revealed the following issues.
(1) I use block transmission torque converter, hydraulic gear box drive oil temperature rise faster, General temperature quickly reached 90 ° C and then cooling devices to maintain constant temperature. This shows the torque converter efficiency is not high, some of the kinetic energy into thermal energy.
(2) transmission oil cooling device unreasonable, causing hydraulic transmission box size is too big, but fans and electrical maintenance is not easy for replacement.
(3) mechanical clutch reverse gear can accommodate underground accident or complex process requirements of extreme friction film deformation invalidated.
(4) Transmission oil filters and filter position is not reasonable, In particular pump and filter cleaning Dismounting the scene is very difficult.
(5) hydraulic gear box is, reverse gear movement between the mutual interference problem, is, they do block between lack of interlocking device.
2. Hydraulic Pump Test Drive
Throughout the process of drilling through the transmission torque converter Pump Unit conducted an on-site test. Drilling depth of 718.36 m in before the engine speed has been stable at 1200r/min, Pump-time is about 106 min-1, with increased drilling depth, Pump 5 MPa pressure from rising gradually to 12 MPa. After taking the lower the engine speed, the pump pressure stabilized at 10 ~ ,20. In 157 h of continuous operation, in addition to the first axis torque converter spill, all other normal. Test showed that the hydraulic transmission Pump Group has the following advantages.
(1) can effectively protect the primary motive. Converter with matching pumps and the use of V190 Diesel 12, by adjusting the valve to its oil-filled loading, its load is slow to increase the uniformity and avoid a sudden increase in diesel or minus big load. Field observations, the use of pump pressure relief valve adjustment, the engine speed, sound and smoke of no obvious changes. This will eliminate the Diesel "slide" phenomenon, extending engine life.
(2) effective protection mechanism. After converter output speed is gradually increased from zero to achieve the required speed (pump pressure), avoid working for the drilling pump speed suddenly increased the speed of the original motives.
(3) avoid the fetal clutch gas installations, improve the reliability of the pumps work. Gas tire friction unit, friction wheel drive belt and pumps work is a weak link, prone to breakdowns and damage, Special winter gas balloon Icing often caused the accidents, the impact of drilling, production continuity. The use of hydraulic torque converter to solve the problem. According to the torque converter transmission characteristics, we can get rid of belt round and the use of direct transmission, but also easy to automate.
(4) to maintain the rated speed diesel engine conditions, the pump pressure can be controlled throughout the entire process, drilling technology to meet the complex requirements under the circumstances, the block will be more complicated to demonstrate its superiority.
Hydraulic Pump drive of the trial process and the use of the scene were also exposed the following questions.
(1) due to the increase in the torque converter, pumps and the overall quality of the transmission process has been a corresponding increase in energy consumption.
(2) poor conditions at the scene, pumps, diesel drive of the installation and calibration more difficulties affecting the whole trailer rig spent.
(3) to promote the use of rigs yet, accessories supply more tension.
附錄B2
Injection molding machine hydraulic system design methods and attention to the problem
Hydraulic technology has been the introduction of an industrial area have 100 years of history, with the rapid industrial development, Hydraulic technology more with each passing day. Along with mathematics, control theory, computer, electronic components and hydraulic fluid sciences, a hydraulic servo system, and as an application of science has been developed, develop its own system, and a set of effective analysis and design methods. Well, not that, and now I say all of the hydraulic system design methods and attention to the issue. For hydraulic systems used in the injection molding machine examples to chat with everyone, and welcome comments.
Design injection molding machine hydraulic system on the basis
(1) injection molding machine and the overall layout process requirements, including the use of hy
收藏