2023屆大一輪復(fù)習(xí) 第14練 三角函數(shù)的概念基本關(guān)系式誘導(dǎo)公式(Word版含解析)

上傳人:新** 文檔編號:132697045 上傳時間:2022-08-08 格式:DOCX 頁數(shù):10 大小:139.88KB
收藏 版權(quán)申訴 舉報 下載
2023屆大一輪復(fù)習(xí) 第14練 三角函數(shù)的概念基本關(guān)系式誘導(dǎo)公式(Word版含解析)_第1頁
第1頁 / 共10頁
2023屆大一輪復(fù)習(xí) 第14練 三角函數(shù)的概念基本關(guān)系式誘導(dǎo)公式(Word版含解析)_第2頁
第2頁 / 共10頁
2023屆大一輪復(fù)習(xí) 第14練 三角函數(shù)的概念基本關(guān)系式誘導(dǎo)公式(Word版含解析)_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

12 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2023屆大一輪復(fù)習(xí) 第14練 三角函數(shù)的概念基本關(guān)系式誘導(dǎo)公式(Word版含解析)》由會員分享,可在線閱讀,更多相關(guān)《2023屆大一輪復(fù)習(xí) 第14練 三角函數(shù)的概念基本關(guān)系式誘導(dǎo)公式(Word版含解析)(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2023屆大一輪復(fù)習(xí) 第14練 三角函數(shù)的概念,基本關(guān)系式,誘導(dǎo)公式 一、選擇題(共24小題) 1. 已知 α 是第一象限角,那么 α2 是 ?? A. 第一象限角 B. 第二象限角 C. 第一或第二象限角 D. 第一或第三象限角 2. 如圖是古希臘著名的天才幾何學(xué)家希波克拉底(公元前 470 年 ~ 公元前 410 年)用于求月牙形圖形面積所構(gòu)造的幾何圖形,先以 AB 為直徑構(gòu)造半圓 O,C 為弧 AB 的中點,D 為線段 AC 的中點,再以 AC 為直徑構(gòu)造半圓 D,則由曲線 AEC 和曲線 AFC 所圍成的圖形為月牙形.若 AB=4,則該月牙形的面積為 ??

2、 A. 4 B. 22 C. 2π D. 2 3. 已知 cosθ?tanθ>0,那么角 θ 是 ?? A. 第一、二象限角 B. 第二、三象限角 C. 第三、四象限角 D. 第一、四象限角 4. 若角 α 的終邊經(jīng)過點 Pm,?3,且 cosα=?45,則 m 的值為 ?? A. ?114 B. 114 C. ?4 D. 4 5. 已知角 α 頂點在原點,始邊與 x 軸正半軸重合,終邊與直線 x=1 有公共點,且 sinα=?35,則 tanα= ?? A. 45 B. ?45 C. ?34 D. 34 6. 若角 θ 的終邊

3、經(jīng)過點 ?35,45,則 sinπ2+θ+cosπ?θ+tan2π?θ= ?? A. 43 B. ?43 C. 34 D. ?34 7. 若 sinα+π=34,則 cosα+π2= ?? A. 34 B. ?34 C. 74 D. ?74 8. 若 sinα?π=2sin3π2+α,則 sinα+3cosα2sinα?cosα 的值為 ?? A. ?5 B. 5 C. 53 D. 15 9. 已知角 α 的頂點與原點 O 重合,始邊與 x 軸的非負(fù)半軸重合,它的終邊與單位圓的交點為 P45,35,則 cosπ?α= ?? A. ?45 B.

4、 ?35 C. 35 D. 45 10. 已知 cosθ=cosθ,tanθ=?tanθ,則 θ2 的終邊在 ?? A. 第二、四象限 B. 第一、三象限 C. 第一、三象限或 x 軸上 D. 第二、四象限或 x 軸上 11. 已知 A=sinkπ+αsinα+coskπ+αcosαk∈Z,則 A 的值構(gòu)成的集合是 ?? A. 1,?1,2,?2 B. ?1,1 C. 2,?2 D. 1,?1,0,2,?2 12. 如果 π4<α<π2,那么下列不等式成立的是 ?? A. sinα

5、. cosα

6、5 16. 已知 sinα+π12=?13,則 cosα?5π12 的值為 ?? A. 13 B. ?13 C. 223 D. ?223 17. tan255°= ?? A. ?2?3 B. ?2+3 C. 2?3 D. 2+3 18. 若 α 是第二象限角,則點 Psinα,cosα 在 ?? A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 19. 已知 cosα?π=?513,且 α 是第四象限角,則 sin?2π+α= ?? A. ?1213 B. 1213 C. ±1213 D. 512 20. 設(shè)

7、α2 是第一象限角,且 ∣cosα∣=?cosα,則 α 是第 ?? 象限角. A. 一 B. 二 C. 三 D. 四 21. 已知 sinθ+cosθ=43,θ∈0,π4,則 sinθ?cosθ 的值為 ?? A. ?23 B. 13 C. 23 D. ?13 22. 函數(shù) y=tanx+sinx?∣tanx?sinx∣ 在區(qū)間 π2,3π2 內(nèi)的圖象是 ?? A. B. C. D. 23. 在平面直角坐標(biāo)系中,AB,CD,EF,GH 是圓 x2+y2=1 上的四段?。ㄈ鐖D),點 P 其中一段上,角 α 以 Ox 為始邊,OP 為終邊.若

8、 tanα

9、. tanπ+1=tan1 B. sin?αtan360°?α=cosα C. sinπ?αcosπ+α=tanα D. cosπ?αtan?π?αsin2π?α=1 27. 已知 θ∈0,π,sinθ+cosθ=15,則下列結(jié)論正確的是 ?? A. θ∈π2,π B. cosθ=?35 C. tanθ=?34 D. sinθ?cosθ=75 28. 給出下列四個結(jié)論,其中正確的結(jié)論是 ?? A. sinπ+α=?sinα 成立的條件是角 α 是銳角 B. 若 cosnπ?α=13n∈Z,則 cosα=13 C. 若 α≠kπ2k∈Z,則 t

10、anπ2+α=?1tanα D. 若 sinα+cosα=1,則 sinnα+cosnα=1 三、填空題(共6小題) 29. 若 sinα+π4=35,則 cosα?π4= ?. 30. 一條鐵路在轉(zhuǎn)彎處呈圓弧形,圓弧的半徑為 2?km,一列火車以 30?km/h 的速度通過,10?s 間轉(zhuǎn)過 ?弧度. 31. 已知 fθ=sin22π?θ+sinπ2+θ?32+2cos2π+θ+cos?θ,則 fπ3 的值是 ?. 32. 設(shè) α=2015°?360°×k,

11、k∈Z,β=2015°,若 α 是與 β 終邊相同的最小正角,則 k= ?. 33. 已知角 α 的終邊過點 P1,?2,則 tanα= ?,sinπ?α+cos?α2cosπ2?α?sinπ2+α= ?. 34. 已知 sinα?2cosα3sinα+5cosα=?5,那么 tanα 的值為 ?. 答案 1. D 【解析】因為 α 的取值范圍 2kπ,π2+2kπ k∈Z. 所以 α2 的取值范圍是 kπ,π4+kπ k∈Z. 分

12、類討論 ① 當(dāng) k=2i+1(其中 i∈Z)時,α2 的取值范圍是 π+2iπ,5π4+2iπ,即 α2 屬于第三象限角. ② 當(dāng) k=2i(其中 i∈Z)時,α2 的取值范圍是 2iπ,π4+2iπ,即 α2 屬于第一象限角. 2. D 【解析】記月牙形的面積為 S1,曲線 AFC 與弦 AC 圍城的弓形面積為 S2, 則 S1=12π22?S2=12π×2?14π×22?S△AOC=S△AOC=2. 故選:D. 3. A 【解析】由 cosθ?tanθ>0 可知 cosθ,tanθ 同號,從而 θ 為第一、二象限角. 4. C 【解析】因為角 α 的終邊經(jīng)過

13、點 Pm,?3, 所以 cosα=mm2+9=?45, 所以 m<0,解得 m=?4. 5. C 【解析】終邊與直線 x=1 有公共點,且 sinα=?35<0, 可知 α 在第四象限,故 cosα=1?sin2α=45, 所以 tanα=sinαcosα=?34. 6. A 【解析】由題知 tanθ=?43.由誘導(dǎo)公式 sinπ2+θ+cosπ?θ+tan2π?θ=cosθ?cosθ?tanθ=?tanθ=??43=43. 故本題答案選A. 7. A 【解析】若 sinα+π=34=?sinα, 則 cosα+π2=?sinα=34. 8. C 【解

14、析】因為 sinα?π=2sin3π2+α, 所以由誘導(dǎo)公式得,?sinα=?2cosα,即 tanα=2, 所以 sinα+3cosα2sinα?cosα=tanα+32tanα?1=2+32×2?1=53. 9. A 【解析】由三角函數(shù)的定義可得 cosα=45, 由誘導(dǎo)公式可得 cosπ?α=?cosα=?45. 10. D 【解析】因為 cosθ=cosθ,tanθ=?tanθ, 所以 cosθ≥0,tanθ≤0, 所以角 θ 的終邊在在第四象限或 x 軸上, 所以 θ2 的終邊在第二、四象限或 x 軸上. 11. C 【解析】k 為偶數(shù)時,A=sinαs

15、inα+cosαcosα=2; k 為奇數(shù)時,A=?sinαsinα?cosαcosα=?2, 則 A 的值構(gòu)成的集合為 2,?2. 12. C 【解析】如圖所示,在單位圓中分別作出 α 的正弦線 MP 、余弦線 OM 、正切線 AT, 很容易地觀察出 OM

16、數(shù)的定義可得:cosα=?5?52+?122=?513, 則 sin3π2+α=?cosα=513. 本題選擇C選項. 15. D 【解析】原式=sinπ+α?cos?α?tanπ?α=?sinα?cosα??tanα=sin2α, 由 cosα=35,得 sin2α=1?cos2α=1625. 16. B 【解析】因為 5π12?α=π2?α+π12, 所以 cosα?5π12=cos5π12?α=cosπ2?α+π12=sinα+π12=?13. 17. D 【解析】tan255°=tan180°+75°=tan75°=tan45°+30°=tan45°+tan3

17、0°1?tan45°tan30°=1+331?1×33=3+33?3=3+326=12+636=2+3. 18. D 【解析】因為 α 是第二象限角,所以 sinα>0,cosα<0, 所以點 Psinα,cosα 在第四象限. 19. A 【解析】由誘導(dǎo)公式可得 cosα?π=?cosα=?513, 所以 cosα=513,又 α 是第四象限角, 所以 sin?2π+α=sinα=?1213. 20. B 【解析】因為 α2 是第一象限角, 所以 360°k<α2<90°+360°k,k∈Z, 所以 720°k<α<180°+720°k,k∈Z, 所以 α 為第

18、一象限角或第二象限角或終邊在 y 軸正半軸上的軸線角, 因為 ∣cosα∣=?cosα, 所以 cosα<0, 所以 α 是第二象限角. 21. A 【解析】因為 sinθ+cosθ=43, 所以 sinθ+cosθ2=sin2θ+cos2θ+2sinθcosθ=1+2sinθcosθ=169, 所以 2sinθcosθ=79, 又因為 0<θ<π4, 所以 0

19、 【解析】函數(shù) y=tanx+sinx?∣tanx?sinx∣=2tanx,tanx

20、4. A 【解析】【分析】由題意可得tanα=3,再根據(jù)誘導(dǎo)公式及同角三角函數(shù)的基本關(guān)系的應(yīng)用化簡后代入即可求值. 【解析】解:∵點P(1,3)在α終邊上, ∴tanα=3, ∴sin(π?α)?sin(π2+α)cos(3π2?α)+2cos(?π+α)=sinα?cosα?sinα?2cosα=tanα?1?tanα?2=3?1?3?2=?25. 故選:A. 【點評】本題主要考查任意角的三角函數(shù)的定義、誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于中檔題. 25. B, C 【解析】x∈xx≠kπ2,k∈Z, 當(dāng) x 在第一象限時:y=sinx∣sinx∣+

21、cosx∣cosx∣?tanx∣tanx∣=1+1?1=1; 當(dāng) x 在第二象限時:y=sinx∣sinx∣+cosx∣cosx∣?tanx∣tanx∣=1?1+1=1; 當(dāng) x 在第三象限時:y=sinx∣sinx∣+cosx∣cosx∣?tanx∣tanx∣=?1?1?1=?3; 當(dāng) x 在第四象限時:y=sinx∣sinx∣+cosx∣cosx∣?tanx∣tanx∣=?1+1+1=1. 故選:BC. 26. A, B 【解析】利用誘導(dǎo)公式,及 tanα=sinαcosα A選項:tanπ+1=tan1,故A正確; B選項:sin?αtan360o?α=?sinα?t

22、anα=sinαsinαcosα=cosα,故B正確; C選項:sinπ?αcosπ+α=sinα?cosα=?tanα,故C不正確; D選項:cosπ?αtan?π?αsin2π?α=?cosα??tanα?sinα=?cosα?sinαcosαsinα=?1,故D不正確. 27. A, B, D 【解析】因為 sinθ+cosθ=15,???① 所以 sinθ+cosθ2=152,即 sin2θ+2sinθcosθ+cos2θ=125, 所以 2sinθcosθ=?2425, 因為 θ∈0,π, 所以 sinθ>0,cosθ<0, 所以 θ∈π2,π, 所以 sin

23、θ?cosθ2=1?2sinθcosθ=4925, 所以 sinθ?cosθ=75,???② ①加②得 sinθ=45, ①減②得 cosθ=?35, 所以 tanθ=sinθcosθ=45?35=?43, 綜上可得,正確的有ABD. 28. C, D 【解析】由誘導(dǎo)公式二,知 α∈R 時,sinπ+α=?sinα,所以A錯誤; 當(dāng) n=2kk∈Z 時,cosnπ?α=cos?α=cosα,此時 cosα=13, 當(dāng) n=2k+1k∈Z 時,cosnπ?α=cos2k+1π?α=cosπ?α=?cosα,此時 cosα=?13,所以B錯誤; 若 α≠kπ2k∈Z,則 t

24、anπ2+α=sinπ2+αcosπ2+α=cosα?sinα=?1tanα,所以C正確; 將等式 sinα+cosα=1 兩邊平方,得 sinαcosα=0,所以 sinα=0 或 cosα=0, 若 sinα=0,則 cosα=1,此時 sinnα+cosnα=1; 若 cosα=0,則 sinα=1,此時 sinnα+cosnα=1, 故 sinnα+cosnα=1,所以D正確. 29. 35 【解析】因為 cosα?π4=sinα?π4+π2=sinα+π4, 又 sinα+π4=35, 所以 cosα?π4=35. 30. 124 【解析】10?s 間

25、列車轉(zhuǎn)過的弧長為 103600×30=112km, 轉(zhuǎn)過的角 α=1122=124(弧度). 31. ?712 【解析】根據(jù)三角函數(shù)的誘導(dǎo)公式,可得 fθ=sin2θ+cosθ?32+2cos2θ+cosθ, 則 fπ3=322+12?32+2×122+12=?712. 32. 5 【解析】因為 β=2015°=360°×5+215°,α 是與 β 終邊相同的最小正角, 所以 α=2015°?360°×k=215°,解得 k=5. 33. ?2,15 【解析】因為角 α 的終邊過點 P1,?2,所以 tanα=yx=?2, 原式=sinπ?α+cos?α2cosπ2?α?sinπ2+α=sinα+cosα2sinα?cosα=tanα+12tanα?1=?2+1?4?1=15. 34. ?2316 【解析】sinα?2cosα3sinα+5cosα=?5, 所以 tanα?23tanα+5=?5, 所以 tanα=?2316. 第10頁(共10 頁)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!