2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 層級(jí)二 專題一 函數(shù)與導(dǎo)數(shù) 第4講 導(dǎo)數(shù)的綜合應(yīng)用與熱點(diǎn)問題課時(shí)作業(yè)(文)
《2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 層級(jí)二 專題一 函數(shù)與導(dǎo)數(shù) 第4講 導(dǎo)數(shù)的綜合應(yīng)用與熱點(diǎn)問題課時(shí)作業(yè)(文)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 層級(jí)二 專題一 函數(shù)與導(dǎo)數(shù) 第4講 導(dǎo)數(shù)的綜合應(yīng)用與熱點(diǎn)問題課時(shí)作業(yè)(文)(8頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第4講 導(dǎo)數(shù)的綜合應(yīng)用與熱點(diǎn)問題 限時(shí)60分鐘 滿分60分 解答題(本大題共5小題,每小題12分,共60分) 1.(2019·天津卷節(jié)選)設(shè)函數(shù)f(x)=excos x,g(x)為f(x)的導(dǎo)函數(shù). (1)求f(x)的單調(diào)區(qū)間; (2)當(dāng)x∈時(shí),證明f(x)+g(x)≥0. 解析:(1)由已知,有f′(x)=ex(cos x-sin x).因此,當(dāng)x∈(k∈Z)時(shí),有sin x>cos x,得f′(x)<0,則f(x)單調(diào)遞減;當(dāng)x∈(k∈Z)時(shí),有sin x<cos x,得f′(x)>0,則f(x)單調(diào)遞增. 所以,f(x)的單調(diào)遞增區(qū)間為(k∈Z),f(x)的單調(diào)遞減
2、區(qū)間為(k∈Z). (2)證明:記h(x)=f(x)+g(x),依題意及(1),有g(shù)(x)=ex(cos x-sin x),從而g′(x)=-2exsin x.當(dāng)x∈時(shí),g′(x)<0,故h′(x)=f′(x)+g′(x)+g(x)(-1)=g′(x)<0.因此,h(x)在區(qū)間上單調(diào)遞減,進(jìn)而h(x)≥h=f=0.所以,當(dāng)x∈時(shí),f(x)+g(x)≥0. 2.(2019·大慶三模)設(shè)函數(shù)f(x)=-kln x,k>0. (1)求f(x)的單調(diào)區(qū)間和極值; (2)證明:若f(x)存在零點(diǎn),則f(x)在區(qū)間(1,)上僅有一個(gè)零點(diǎn). 解析:(1)由f(x)=-kln x(k>0)得f′(x
3、)=x-=.由f′(x)=0解得x=. f(x)與f′(x)在區(qū)間(0,+∞)上的變化情況如下: x (0,) (,+∞) f′(x) - 0 + f(x) 所以,f(x)的單調(diào)遞減區(qū)間是(0,),單調(diào)遞增區(qū)間是(,+∞);f(x)在x=處取得極小值f()=. (2)證明:由(1)知,f(x)在區(qū)間(0,+∞)上的最小值為f()=. 因?yàn)閒(x)存在零點(diǎn),所以≤0,從而k≥e. 當(dāng)k=e時(shí),f(x)在區(qū)間(1,)上單調(diào)遞減,且f()=0, 所以x=是f(x)在區(qū)間(1,]上的唯一零點(diǎn). 當(dāng)k>e時(shí),f(x)在區(qū)間(0,)上單調(diào)遞減,且f(1)=
4、>0,f()=<0, 所以f(x)在區(qū)間(1,]上僅有一個(gè)零點(diǎn). 綜上可知,若f(x)存在零點(diǎn),則f(x)在區(qū)間(1,]上僅有一個(gè)零點(diǎn). 3.(2019·全國Ⅰ卷)已知函數(shù)f(x)=2sin x-xcos x-x,f′(x)為f(x)的導(dǎo)數(shù). (1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn); (2)若x∈[0,π]時(shí),f(x)≥ax,求a的取值范圍. 解:(1)設(shè)g(x)=f′(x),則g(x)=cos x+xsin x-1,g′(x)=xcos x. 當(dāng)x∈時(shí),g′(x)>0;當(dāng)x∈時(shí),g′(x)<0,所以g(x)在上單調(diào)遞增,在上單調(diào)遞減. 又g(0)=0,g>0,g(
5、π)=-2,故g(x)在(0,π)存在唯一零點(diǎn), 所以f′(x)在區(qū)間(0,π)存在唯一零點(diǎn). (2)由題設(shè)知f(π)≥aπ,f(π)=0,可得a≤0, 由(1)知,f′(x)在(0,π)只有一個(gè)零點(diǎn),設(shè)為x0,且當(dāng)x∈(0,x0)時(shí),f′(x)>0;當(dāng)x∈(x0,π)時(shí),f′(x)<0,所以f(x)在(0,x0)上單調(diào)遞增,在(x0,π)上單調(diào)遞減. 又f(0)=0,f(π)=0,所以當(dāng)x∈[0,π]時(shí),f(x)≥0. 又當(dāng)a≤0,x∈[0,π]時(shí),ax≤0,故f(x)≥ax. 因此,a的取值范圍是(-∞,0]. 4.(2019·成都診斷)已知函數(shù)f(x)=(x2-2ax+a2
6、)·ln x,a∈R. (1)當(dāng)a=0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間; (2)當(dāng)a=-1時(shí),令F(x)=+x-ln x,證明:F(x)≥-e-2,其中e為自然對(duì)數(shù)的底數(shù); (3)若函數(shù)f(x)不存在極值點(diǎn),求實(shí)數(shù)a的取值范圍. 解析:(1)當(dāng)a=0時(shí),f(x)=x2ln x(x>0),此時(shí)f′(x)=2xln x+x=x(2ln x+1). 令f′(x)>0,解得x>e-. ∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(e-,+∞),單調(diào)遞減區(qū)間為(0,e-). (2)證明:F(x)=+x-ln x=xln x+x. 由F′(x)=2+ln x,得F(x)在(0,e-2)上單調(diào)遞減,在(e-2
7、,+∞)上單調(diào)遞增, ∴F(x)≥F(e-2)=-e-2. (3)f′(x)=2(x-a)ln x+=·(2xln x+x-a). 令g(x)=2xln x+x-a,則g′(x)=3+2ln x, ∴函數(shù)g(x)在(0,e-)上單調(diào)遞減,在(e-,+∞)上單調(diào)遞增,∴g(x)≥g(e-)=-2e--a. ①當(dāng)a≤0時(shí),∵函數(shù)f(x)無極值,∴-2e--a≥0,解得a≤-2e-. ②當(dāng)a>0時(shí),g(x)min=-2e--a<0,即函數(shù)g(x)在(0,+∞)上存在零點(diǎn),記為x0. 由函數(shù)f(x)無極值點(diǎn),易知x=a為方程f′(x)=0的重根, ∴2aln a+a-a=0,即2aln
8、 a=0,a=1. 當(dāng)0<a<1時(shí),x0<1且x0≠a,函數(shù)f(x)的極值點(diǎn)為a和x0; 當(dāng)a>1時(shí),x0>1且x0≠a,函數(shù)f(x)的極值點(diǎn)為a和x0; 當(dāng)a=1時(shí),x0=1,此時(shí)函數(shù)f(x)無極值. 綜上,a≤-2e-或a=1. 5.(2019·深圳三模)已知函數(shù)f(x)=xln x. (1)求函數(shù)f(x)的單調(diào)區(qū)間; (2)證明:對(duì)任意的t>0,存在唯一的m使t=f(m); (3)設(shè)(2)中所確定的m關(guān)于t的函數(shù)為m=g(t),證明:當(dāng)t>e時(shí),有<<1. 解析:(1)∵f(x)=xln x, ∴f′(x)=ln x+1(x>0), ∴當(dāng)x∈時(shí),f′(x)<0,此時(shí)
9、f(x)在上單調(diào)遞減, 當(dāng)x∈時(shí),f′(x)>0,f(x)在上單調(diào)遞增. (2)證明:∵當(dāng)0<x≤1時(shí),f(x)≤0,又t>0,令h(x)=f(x)-t,x∈[1,+∞), 由(1)知h(x)在區(qū)間[1,+∞)上為增函數(shù), h(1)=-t<0,h(et)=t(et-1)>0, ∴存在唯一的m,使t=f(m)成立. (3)證明:∵m=g(t)且由(2)知t=f(m),t>0, 當(dāng)t>e時(shí),若m=g(t)≤e,則由f(m)的單調(diào)性有t=f(m)≤f(e)=e,矛盾,∴m>e, 又====, 其中u=ln m,u>1,要使<<1成立,只需0<ln u<u, 令F(u)=ln u-
10、u,u>1,F(xiàn)′(u)=-, 當(dāng)1<u<時(shí)F′(u)>0,F(xiàn)(u)單調(diào)遞增,當(dāng)u>時(shí),F(xiàn)′(u)<0,F(xiàn)(u)單調(diào)遞減. ∴對(duì)u>1,F(xiàn)(u)≤F<0,即ln u<u成立. 綜上,當(dāng)t>e時(shí),<<1成立. 層級(jí)二 專題一 第4講(理) 限時(shí)60分鐘 滿分60分 解答題(本大題共5小題,每小題12分,共60分) 1.(2019·全國Ⅰ卷)已知函數(shù)f(x)=2sin x-xcos x-x,f′(x)為f(x)的導(dǎo)數(shù). (1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn); (2)若x∈[0,π]時(shí),f(x)≥ax,求a的取值范圍. 解:(1)設(shè)g(x)=f′(x),則g(x)
11、=cos x+xsin x-1,g′(x)=xcos x. 當(dāng)x∈時(shí),g′(x)>0;當(dāng)x∈時(shí),g′(x)<0,所以g(x)在上單調(diào)遞增,在上單調(diào)遞減. 又g(0)=0,g>0,g(π)=-2,故g(x)在(0,π)存在唯一零點(diǎn), 所以f′(x)在區(qū)間(0,π)存在唯一零點(diǎn). (2)由題設(shè)知f(π)≥aπ,f(π)=0,可得a≤0, 由(1)知,f′(x)在(0,π)只有一個(gè)零點(diǎn),設(shè)為x0,且當(dāng)x∈(0,x0)時(shí),f′(x)>0;當(dāng)x∈(x0,π)時(shí),f′(x)<0,所以f(x)在(0,x0)上單調(diào)遞增,在(x0,π)上單調(diào)遞減. 又f(0)=0,f(π)=0,所以當(dāng)x∈[0,π]
12、時(shí),f(x)≥0. 又當(dāng)a≤0,x∈[0,π]時(shí),ax≤0,故f(x)≥ax. 因此,a的取值范圍是(-∞,0]. 2.(2020·成都診斷)已知函數(shù)f(x)=(x2-2ax+a2)·ln x,a∈R. (1)當(dāng)a=0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間; (2)當(dāng)a=-1時(shí),令F(x)=+x-ln x,證明:F(x)≥-e-2,其中e為自然對(duì)數(shù)的底數(shù); (3)若函數(shù)f(x)不存在極值點(diǎn),求實(shí)數(shù)a的取值范圍. 解析:(1)當(dāng)a=0時(shí),f(x)=x2ln x(x>0),此時(shí)f′(x)=2xln x+x=x(2ln x+1). 令f′(x)>0,解得x>e-. ∴函數(shù)f(x)的單調(diào)遞增區(qū)
13、間為(e-,+∞),單調(diào)遞減區(qū)間為(0,e-). (2)證明:F(x)=+x-ln x=xln x+x. 由F′(x)=2+ln x,得F(x)在(0,e-2)上單調(diào)遞減,在(e-2,+∞)上單調(diào)遞增, ∴F(x)≥F(e-2)=-e-2. (3)f′(x)=2(x-a)ln x+=·(2xln x+x-a). 令g(x)=2xln x+x-a,則g′(x)=3+2ln x, ∴函數(shù)g(x)在(0,e-)上單調(diào)遞減,在(e-,+∞)上單調(diào)遞增,∴g(x)≥g(e-)=-2e--a. ①當(dāng)a≤0時(shí),∵函數(shù)f(x)無極值,∴-2e--a≥0,解得a≤-2e-. ②當(dāng)a>0時(shí),g(x
14、)min=-2e--a<0,即函數(shù)g(x)在(0,+∞)上存在零點(diǎn),記為x0. 由函數(shù)f(x)無極值點(diǎn),易知x=a為方程f′(x)=0的重根, ∴2aln a+a-a=0,即2aln a=0,a=1. 當(dāng)0<a<1時(shí),x0<1且x0≠a,函數(shù)f(x)的極值點(diǎn)為a和x0; 當(dāng)a>1時(shí),x0>1且x0≠a,函數(shù)f(x)的極值點(diǎn)為a和x0; 當(dāng)a=1時(shí),x0=1,此時(shí)函數(shù)f(x)無極值. 綜上,a≤-2e-或a=1. 3.(2019·深圳三模)已知函數(shù)f(x)=xln x. (1)求函數(shù)f(x)的單調(diào)區(qū)間; (2)證明:對(duì)任意的t>0,存在唯一的m使t=f(m); (3)設(shè)(2)
15、中所確定的m關(guān)于t的函數(shù)為m=g(t),證明:當(dāng)t>e時(shí),有<<1. 解析:(1)∵f(x)=xln x, ∴f′(x)=ln x+1(x>0), ∴當(dāng)x∈時(shí),f′(x)<0,此時(shí)f(x)在上單調(diào)遞減, 當(dāng)x∈時(shí),f′(x)>0,f(x)在上單調(diào)遞增. (2)證明:∵當(dāng)0<x≤1時(shí),f(x)≤0,又t>0,令h(x)=f(x)-t,x∈[1,+∞), 由(1)知h(x)在區(qū)間[1,+∞)上為增函數(shù), h(1)=-t<0,h(et)=t(et-1)>0, ∴存在唯一的m,使t=f(m)成立. (3)證明:∵m=g(t)且由(2)知t=f(m),t>0, 當(dāng)t>e時(shí),若m=g(
16、t)≤e,則由f(m)的單調(diào)性有t=f(m)≤f(e)=e,矛盾,∴m>e, 又====, 其中u=ln m,u>1,要使<<1成立,只需0<ln u<u, 令F(u)=ln u-u,u>1,F(xiàn)′(u)=-, 當(dāng)1<u<時(shí)F′(u)>0,F(xiàn)(u)單調(diào)遞增,當(dāng)u>時(shí),F(xiàn)′(u)<0,F(xiàn)(u)單調(diào)遞減. ∴對(duì)u>1,F(xiàn)(u)≤F<0,即ln uu成立. 綜上,當(dāng)t>e時(shí),<<1成立. 4.(2019·廈門二調(diào))已知函數(shù)f(x)=aln x,g(x)=x++f′(x). (1)討論h(x)=g(x)-f(x)的單調(diào)性; (2)若h(x)的極值點(diǎn)為3,設(shè)方程f(x)+mx=0的兩個(gè)根
17、為x1,x2,且≥ea,求證:>. 解析:(1)∵h(yuǎn)(x)=g(x)-f(x)=x-aln x+,其定義域?yàn)?0,+∞), ∴h′(x)=. 在(0,+∞)遞增; ②a+1>0即a>-1時(shí),x∈(0,1+a)時(shí),h′(x)<0,x∈(1+a,+∞)時(shí),h′(x)>0, h(x)在(0,1+a)遞減,在(1+a,+∞)遞增, 綜上,a>-1時(shí),h(x)在(0,1+a)遞減,在(1+a,+∞)遞增,a≤-1時(shí),h(x)在(0,+∞)遞增. (2)證明:由(1)得x=1+a是函數(shù)h(x)的唯一極值點(diǎn),故a=2. ∵2ln x1+mx1=0,2ln x2+mx2=0, ∴2(ln x
18、2-ln x1)=m(x1-x2), 又f(x)=2ln x,∴f′(x)=, = = =+m=+ln. 令=t≥e2,φ(t)=+ln t,則φ′(t)=>0, ∴φ(t)在[e2,+∞)上遞增,φ(t)≥φ(e2)=1+>1+=. 故>. 5.(2019·全國Ⅱ卷)已知函數(shù)f(x)=ln x-. (1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個(gè)零點(diǎn); (2)設(shè)x0是f(x)的一個(gè)零點(diǎn),證明曲線y=ln x在點(diǎn)A(x0,ln x0)處的切線也是曲線y=ex的切線. 解:(1)f(x)的定義域?yàn)?0,1)∪(1,+∞). 因?yàn)閒′(x)=+>0,所以f(x)在(0,1),(1,+∞)單調(diào)遞增. 因?yàn)閒(e)=1-<0,f(e2)=2-=>0,所以f(x)在(1,+∞)有唯一零點(diǎn)x1,即f(x1)=0.又0<<1,f=-ln x1+=-f(x1)=0,故f(x)在(0,1)有唯一零點(diǎn). 綜上,f(x)有且僅有兩個(gè)零點(diǎn). (2)因?yàn)椋?,故點(diǎn)B在曲線y=ex上. 由題設(shè)知f(x0)=0,即ln x0=,故直線AB的斜率k===. 曲線y=ex在點(diǎn)B處切線的斜率是,曲線y=ln x在點(diǎn)A(x0,ln x0)處切線的斜率也是,所以曲線y=ln x在點(diǎn)A(x0,ln x0)處的切線也是曲線y=ex的切線. - 8 -
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 開展“兩學(xué)一做”學(xué)習(xí)教育專題PPT
- 經(jīng)鼻氣管插管NTI
- 人教版地理必修三51資源的跨區(qū)域調(diào)配40完美ppt課件
- 烹飪營養(yǎng)與衛(wèi)生谷類原料營養(yǎng)價(jià)值專家講座
- 《百家爭鳴》初中歷史部編版課件
- 人教版_高中化學(xué)選修五第二節(jié)醛教學(xué)ppt課件含視頻
- 中考數(shù)學(xué)二次根式1課件
- 軟件工程軟件測(cè)試
- 中考數(shù)學(xué)一輪復(fù)習(xí)-函數(shù)及其圖象-第2講-一次函數(shù)的圖像和性質(zhì)精練課件
- 太極集團(tuán)特許經(jīng)營的邏輯思考(ppt 25)
- 嘉興毛衫業(yè)科技創(chuàng)業(yè)園(孵化器)項(xiàng)目提案
- 平面鏡成像課件
- 護(hù)士臨床工作能力考核
- 德芙網(wǎng)絡(luò)口碑傳播方案2010-2-1
- 手足口病和皰疹性咽峽炎