《2022中考數學 綜合能力提升練習一(含解析)》由會員分享,可在線閱讀,更多相關《2022中考數學 綜合能力提升練習一(含解析)(14頁珍藏版)》請在裝配圖網上搜索。
1、2022中考數學 綜合能力提升練習一(含解析)一、單選題1.如圖,O上有兩點A與P,且OAOP,若A點固定不動,P點在圓上勻速運動一周,那么弦AP的長度與時間的函數關系的圖象可能是( ) A.B.C.或D.或2.已知三角形兩邊長分別為3和8,則該三角形第三邊的長可能是() A.3B.5C.8D.113.小明在探索一元二次方程2x2x2=0的近似解時作了如下列表計算觀察表中對應的數據,可以估計方程的其中一個解的整數部分是( ) x12342x2x2141326A.4B.3C.2D.14.三棱柱的頂點個數是() A.3B.4C.5D.65.一元二次方程x2+3x+1=0的根的情況是() A.有兩個
2、不相等的實數根B.有兩個相等的實數根C.沒有實數根D.只有一個實數根6.有理數a、b在數軸上的位置如圖所示,則下列各式符號的判斷正確的是( ) A.a2b0B.a+|b|0C.a+b20D.2a+b07.滿足x-53x+1的x的最大整數是() A.0B.-2C.-3D.-48.如圖,RtAPC的頂點A,P在反比例函數y的圖象上,已知P的坐標為(1,1),tanA=(n2的自然數);當n=2,3,4xx時,A的橫坐標相應為a2 , a3 , a4 , ,axx , 則+=()A.B.2021054C.2022060D.二、填空題9.已知ABC的三個內角分別是A、B、C,若A=30,C=2B,則B
3、=_ 10.如圖,等腰直角三角形 ABC 中,BAC=90,AB=AC,點 M,N 在邊 BC 上,且MAN=45若 BM=1, CN=3,則 MN 的長為_11.計算:( +1)(3 )=_ 12.一個多邊形的每一個內角為108,則這個多邊形是_邊形,它的內角和是_ 13.當m_時,不等式mx7的解集為x 14.冷庫甲的溫度是-5,冷庫乙的溫度是-15,則溫度高的是冷庫_. 三、計算題15.計算: 16.計算:( )2+(xx)04cos60+( )3 17.先化簡,再求值:(a ),其中a=2+ ,b=2 18.計算 (1)計算: +( )12cos60+(2)0; (2)化簡: 19.已
4、知xy=5,xy=4,求x2+y2的值 20.解方程: = 四、解答題21.如圖,ABC中,AB=AC,BAC=120,D為BC的中點,DEAC于E,AE=2,求CE的長 22.如圖,在四邊形ABCD中,AD、BD相交于點F,點E在BD上,且 (1)1與2相等嗎?為什么?(2)判斷ABE與ACD是否相似?并說明理由23.計算:|3|2 24.解方程組: 五、綜合題25.甲、乙兩人周末從同一地點出發(fā)去某景點,因乙臨時有事,甲坐地鐵先出發(fā),甲出發(fā)0.2小時后乙開汽車前往設甲行駛的時間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km)如圖是y1與y2關于x的函數圖象 (1)分別求線段O
5、A與線段BC所表示的y1與y2關于x的函數表達式; (2)當x為多少時,兩人相距6km? (3)設兩人相距S千米,在圖所給的直角坐標系中畫出S關于x的函數圖象 答案解析部分一、單選題1.如圖,O上有兩點A與P,且OAOP,若A點固定不動,P點在圓上勻速運動一周,那么弦AP的長度與時間的函數關系的圖象可能是( ) A.B.C.或D.或【答案】C 【考點】二次函數的圖象 【解析】【分析】由圖中可知:長度d是一開始就存在的,如果點P向上運動,那么d的距離將逐漸變大;當點P運動到和0,A在同一直線上時,d最大,隨后開始變??;當運動到點A時,距離d為0,然后繼續(xù)運動,d開始變大;到點P時,回到原來高度相
6、同的位置對,沒有回到原來的位置,應排除回到原來的位置后又繼續(xù)運動了,應排除如果點P向下運動,那么d的距離將逐漸變小,到點A的位置時,距離d為0;繼續(xù)運動,d的距離將逐漸變大;當點P運動到和0,A在同一直線上時,d最大,隨后開始變小,到點P時,回到原來高度相同的位置對故選C.2.已知三角形兩邊長分別為3和8,則該三角形第三邊的長可能是() A.3B.5C.8D.11【答案】C 【考點】三角形三邊關系 【解析】【解答】解:根據三角形的三邊關系,得第三邊大于:83=5,小于:3+8=11則此三角形的第三邊可能是:8故選:C【分析】根據三角形的第三邊大于兩邊之差,而小于兩邊之和求得第三邊的取值范圍,再
7、進一步選擇3.小明在探索一元二次方程2x2x2=0的近似解時作了如下列表計算觀察表中對應的數據,可以估計方程的其中一個解的整數部分是( ) x12342x2x2141326A.4B.3C.2D.1【答案】D 【考點】估算一元二次方程的近似解 【解析】【解答】解:根據表格中的數據,知: 方程的一個解x的范圍是:1x2,所以方程的其中一個解的整數部分是1故選D【分析】根據表格中的數據,可以發(fā)現:x=1時,2x2x2=1;x=2時,2x2x2=4,故一元二次方程2x2x2=0的其中一個解x的范圍是1x2,進而求解4.三棱柱的頂點個數是() A.3B.4C.5D.6【答案】D 【考點】認識立體圖形 【
8、解析】【解答】解:一個直三棱柱由兩個三邊形的底面和3個長方形的側面組成,根據其特征及歐拉公式V+FE=2可知,它有6個頂點,故選:D【分析】一個直三棱柱是由兩個三邊形的底面和3個長方形的側面組成,根據其特征及歐拉公式V+FE=2進行填空即可5.一元二次方程x2+3x+1=0的根的情況是() A.有兩個不相等的實數根B.有兩個相等的實數根C.沒有實數根D.只有一個實數根【答案】A 【考點】根的判別式 【解析】【解答】解:a=1,b=3,c=1,=b24ac=32411=50,有兩個不相等的實數根故選A【分析】首先求得=b24ac的值,然后即可判定一元二次方程x2+3x+1=0的根的情況6.有理數
9、a、b在數軸上的位置如圖所示,則下列各式符號的判斷正確的是( ) A.a2b0B.a+|b|0C.a+b20D.2a+b0【答案】A 【考點】數軸 【解析】【解答】解:根據數軸得a1,0b1,a21,b21,a2b0,故A正確;a+|b|0,故B錯誤;a+b20,故C錯誤;2a+b0,故D錯誤,故選A【分析】根據數軸可得出a1,0b1,再判斷a2 , b2的范圍,進行選擇即可7.滿足x-53x+1的x的最大整數是() A.0B.-2C.-3D.-4【答案】D 【考點】解一元一次不等式,一元一次不等式的整數解 【解析】【分析】先移項,再合并同類項,最后化系數為1,即可求得結果.x-53x+1-2
10、x6x-3所以滿足條件的x的最大整數是-4故選D.【點評】計算題是中考必考題,一般難度不大,學生要特別慎重,盡量不在計算上失分.8.如圖,RtAPC的頂點A,P在反比例函數y的圖象上,已知P的坐標為(1,1),tanA=(n2的自然數);當n=2,3,4xx時,A的橫坐標相應為a2 , a3 , a4 , ,axx , 則+=()A.B.2021054C.2022060D.【答案】B 【考點】反比例函數的圖象,反比例函數的性質,探索數與式的規(guī)律 【解析】【分析】設CP=m,由tanA=得AC=mn,則A(1-m,1+mn),將A點坐標代入y中,得出an=1-m的表達式,尋找運算規(guī)律【解答】依題
11、意設CP=m,P點橫坐標為1,則C點橫坐標為1-m,即an=1-m,又tanA=,AC=mn,則A(1-m,1+mn),將A點坐標代入y中,得(1-m)(1+mn)=1,1-m+mn-m2n=1,m(n-1-mn)=0,則n-1-mn=0,1-m=,則an=1-m=,即=n,+=2+3+4+xx=2021054故選B【點評】本題主要考查反比例函數的圖象和性質,關鍵是根據三角函數值設直角三角形的邊長,表示A點坐標,根據A點在雙曲線上,滿足反比例函數解析式,從而得出一般規(guī)律二、填空題9.已知ABC的三個內角分別是A、B、C,若A=30,C=2B,則B=_ 【答案】50 【考點】三角形內角和定理 【
12、解析】【解答】解:在ABC中,A=30,C=2B,A+B+C=180,30+3B=180,B=50故答案是:50【分析】根據三角形內角和是180列出等式A+B+C=180,據此易求B的度數10.如圖,等腰直角三角形 ABC 中,BAC=90,AB=AC,點 M,N 在邊 BC 上,且MAN=45若 BM=1, CN=3,則 MN 的長為_【答案】【考點】全等三角形的判定與性質,勾股定理的應用 【解析】【解答】將 逆時針旋轉 得到 ,連接 , 是等腰直角三角形, 在 和 中, 由勾股定理得, 【分析】根據旋轉的性質得到對應邊、對應角相等;由ABC是等腰直角三角形,得到MANFAN,得到對應角、對
13、應邊相等,再根據勾股定理求出MN 的長.11.計算:( +1)(3 )=_ 【答案】2 【考點】二次根式的混合運算 【解析】【解答】解:原式= ( +1)( 1) = (31)=2 故答案為2 【分析】先把后面括號內提 ,然后利用平方差公式計算12.一個多邊形的每一個內角為108,則這個多邊形是_邊形,它的內角和是_ 【答案】五;540 【考點】多邊形內角與外角 【解析】【解答】解:多邊形的每一個內角都等于108,多邊形的每一個外角都等于180108=72,邊數n=36072=5,內角和為(52)180=540故答案為:五;540【分析】先求出這個多邊形的每一個外角的度數,再用360除以一個外
14、角的度數即可得到邊數13.當m_時,不等式mx7的解集為x 【答案】0 【考點】不等式的性質 【解析】【解答】根據不等式mx7的解集為x ,可以發(fā)現不等號的方向發(fā)生了改變,根據不等式的性質,所以m0【分析】可根據不等式的性質,兩邊同時除以負數,不等號發(fā)生改變.14.冷庫甲的溫度是-5,冷庫乙的溫度是-15,則溫度高的是冷庫_. 【答案】甲 【考點】有理數大小比較 【解析】【解答】解:-5-15溫度高的是冷庫甲故答案為:甲【分析】比較-5和-15的大小,可解答。三、計算題15.計算: 【答案】解: 原式= = 【考點】整式的加減 【解析】【分析】首先去括號,然后合并同類項進行化簡即可。16.計算
15、:( )2+(xx)04cos60+( )3 【答案】解:原式=2+12+8=9 【考點】實數的運算,零指數冪,負整數指數冪,特殊角的三角函數值 【解析】【分析】原式利用平方根定義,零指數冪法則,特殊角的三角函數值,以及負整數指數冪法則計算即可得到結果17.先化簡,再求值:(a ),其中a=2+ ,b=2 【答案】解: (a )= = = ,當a=2+ ,b=2 時,原式= 【考點】分式的混合運算,分式的化簡求值 【解析】【分析】先將括號里的分式通分計算,分子分母能分解因式的要先分解因式,再將分式的除法轉化為乘法,約分化成最簡分式,然后代入求值計算即可。18.計算 (1)計算: +( )12c
16、os60+(2)0; (2)化簡: 【答案】(1)解:原式=2+22 +1=4(2)解:原式= =x+1 【考點】實數的運算,分式的混合運算,零指數冪,負整數指數冪,特殊角的三角函數值 【解析】【分析】(1)首先計算乘方、開方,代入特殊角的三角函數值,然后進行加減運算即可求解;(2)首先對括號內的分式進行通分相減,然后把除法轉化為乘法,計算分式的乘法即可19.已知xy=5,xy=4,求x2+y2的值 【答案】解:將xy=5兩邊平方得:(xy)2=x2+y22xy=25, 把xy=4代入得:x2+y28=25,則x2+y2=33 【考點】完全平方公式 【解析】【分析】將xy=5兩邊平方,利用完全
17、平方公式展開,將xy的值代入計算即可求出值20.解方程: = 【答案】解:去分母得:2x+2x+1=3, 解得:x=0,經檢驗x=0是分式方程的解 【考點】解分式方程 【解析】【分析】分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解四、解答題21.如圖,ABC中,AB=AC,BAC=120,D為BC的中點,DEAC于E,AE=2,求CE的長 【答案】解:連接AD, AB=AC,BAC=120,D為BC的中點,ADBC,AD平分BAC,B=C=30DAC= BAC=60,DEAC于E,AED=90,ADE=30,在RtADE中,AE=2,ADE=30,AD=2
18、AE=4,在RtADC中,AD=4,C=30,AC=2AD=8,則CE=ACAE=82=6【考點】等腰三角形的性質,含30度角的直角三角形 【解析】【分析】連接AD,根據三線合一得到AD垂直于BC,AD為角平分線,以及底角的度數,在直角三角形ADE中,利用30角所對的直角邊等于斜邊的一半得到AD的長,在直角三角形ADE中,再利用30角所對的直角邊等于斜邊的一半求出AC的長,由ACAE即可求出CE的長22.如圖,在四邊形ABCD中,AD、BD相交于點F,點E在BD上,且 (1)1與2相等嗎?為什么?(2)判斷ABE與ACD是否相似?并說明理由【答案】解:(1)1與2相等在ABC和AED中,ABC
19、AED,BAC=EAD,1=2(2)ABE與ACD相似由得,在ABE和ACD中,1=2,ABEACD 【考點】相似三角形的判定與性質 【解析】【分析】(1)由, 得到ABCAED,推出BAC=EAD,即可得到1=2;(2)由得, 根據兩邊對應成比例且夾角相等得到ABEACD23.計算:|3|2 【答案】解:原式=32=1 【考點】有理數的減法 【解析】先計算3的絕對值,然后再相減即可24.解方程組: 【答案】解:+,得 3x=3,解得:x=1,將x=1代入,得1+y=3,解得:y=4,則原方程組的解為 【考點】解二元一次方程組 【解析】【解答】由+可消去y,得到x=1,將x=1代入任意一個方程
20、即可求出y值.【分析】方程組利用加減消元法求出解即可五、綜合題25.甲、乙兩人周末從同一地點出發(fā)去某景點,因乙臨時有事,甲坐地鐵先出發(fā),甲出發(fā)0.2小時后乙開汽車前往設甲行駛的時間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km)如圖是y1與y2關于x的函數圖象 (1)分別求線段OA與線段BC所表示的y1與y2關于x的函數表達式; (2)當x為多少時,兩人相距6km? (3)設兩人相距S千米,在圖所給的直角坐標系中畫出S關于x的函數圖象 【答案】(1)解:設OA:y1=k1x,BC:y2=k2x+b, 則y1=k1x過點(1.2,72),所以y1=60x,y2=k2x+b過點(0.2,0)、(1.1,72), ,解得 y2=80x16(2)解:60x=6, 解得x=0.1;60x(80x16)=6,解得x=0.5;80x1660x=6,解得x=1.1故當x為0.1或0.5或1.1小時,兩人相距6千米(3)解:如圖所示: 【考點】一次函數的應用 【解析】【分析】(1)根據待定系數法可求線段OA與線段BC所表示的y1與y2關于x的函數表達式;(2)分3種情況:0x0.2;甲、乙兩人相遇前;甲、乙兩人相遇后;進行討論可求x的值;(3)分4種情況:0x0.2;甲、乙兩人相遇前;甲、乙兩人相遇后乙到達景點前;甲、乙兩人相遇后乙到達景點后;進行討論可畫出S關于x的函數圖象