2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第7章 立體幾何 第1節(jié) 空間幾何體的三視圖和直觀圖、表面積與體積教學(xué)案 理(含解析)北師大版
《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第7章 立體幾何 第1節(jié) 空間幾何體的三視圖和直觀圖、表面積與體積教學(xué)案 理(含解析)北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第7章 立體幾何 第1節(jié) 空間幾何體的三視圖和直觀圖、表面積與體積教學(xué)案 理(含解析)北師大版(13頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第一節(jié) 空間幾何體的三視圖和直觀圖、表面積與體積 [考綱傳真] 1.認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu).2.能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述三視圖所表示的立體模型,會(huì)用斜二測(cè)畫法畫出它們的直觀圖.3.會(huì)用平行投影方法畫出簡(jiǎn)單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式.4.了解球、棱柱、棱錐、臺(tái)體的表面積和體積的計(jì)算公式. 1.簡(jiǎn)單多面體的結(jié)構(gòu)特征 (1)棱柱的側(cè)棱都平行且相等,上下底面是全等的多邊形; (2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共點(diǎn)的三角形; (3)
2、棱臺(tái)可由平行于棱錐底面的平面截棱錐得到,其上、下底面是相似多邊形. 2.旋轉(zhuǎn)體的形成 幾何體 旋轉(zhuǎn)圖形 旋轉(zhuǎn)軸 圓柱 矩形 任一邊所在的直線 圓錐 直角三角形 任一直角邊所在的直線 圓臺(tái) 直角梯形 垂直于底邊的腰所在的直線 球 半圓或圓 直徑所在的直線 3.三視圖與直觀圖 三視圖 畫法規(guī)則:長(zhǎng)對(duì)正、高平齊、寬相等 直觀圖 斜二測(cè)畫法: (1)原圖形中x軸、y軸、z軸兩兩垂直,直觀圖中x′軸、y′軸的夾角為45°(或135°),z′軸與x′軸和y′軸所在平面垂直. (2)原圖形中平行于坐標(biāo)軸的線段在直觀圖中仍平行于坐標(biāo)軸,平行于x軸和z軸的線段在直觀
3、圖中保持原長(zhǎng)度不變,平行于y軸的線段在直觀圖中長(zhǎng)度為原來(lái)的一半. 4.圓柱、圓錐、圓臺(tái)的側(cè)面展開圖及側(cè)面積公式 圓柱 圓錐 圓臺(tái) 側(cè)面 展開 圖 側(cè)面 積公 式 S圓柱側(cè)=2πrl S圓錐側(cè)=πrl S圓臺(tái)側(cè)=π(r1+r2)l 5.柱體、錐體、臺(tái)體和球的表面積和體積 名稱 幾何體 表面積 體積 柱體 (棱柱和圓柱) S表面積=S側(cè)+2S底 V=Sh 錐體 (棱錐和圓錐) S表面積=S側(cè)+S底 V=Sh 臺(tái)體 (棱臺(tái)和圓臺(tái)) S表面積=S側(cè)+S上+S下 V=(S上+S下+)h 球 S=4πR2
4、V=πR3 1.按照斜二測(cè)畫法得到的平面圖形的直觀圖,其面積與原圖形的面積的關(guān)系: S直觀圖=S原圖形,S原圖形=2S直觀圖. 2.多面體的內(nèi)切球與外接球常用的結(jié)論 (1)設(shè)正方體的棱長(zhǎng)為a,則它的內(nèi)切球半徑r=,外接球半徑R=a. (2)設(shè)長(zhǎng)方體的長(zhǎng)、寬、高分別為a,b,c,則它的外接球半徑R=. (3)設(shè)正四面體的棱長(zhǎng)為a,則它的高為a,內(nèi)切球半徑r=a,外接球半徑R=a. [基礎(chǔ)自測(cè)] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”) (1)有兩個(gè)面平行,其余各面都是平行四邊形的幾何體是棱柱. ( ) (2)有一個(gè)面是多邊形,其余各面都是三
5、角形的幾何體是棱錐. ( ) (3)菱形的直觀圖仍是菱形. ( ) (4)正方體、球、圓錐各自的三視圖中,三視圖均相同. ( ) [答案] (1)× (2)× (3)× (4)× 2.某空間幾何體的正視圖是三角形,則該幾何體不可能是( ) A.圓柱 B.圓錐 C.四面體 D.三棱柱 A [由三視圖知識(shí)知圓錐、四面體、三棱柱(放倒看)都能使其正視圖為三角形,而圓柱的正視圖不可能為三角形.] 3.(教材改編)如圖所示,長(zhǎng)方體ABCD-A′B′C′D′中被截去一部分,其中EH∥A′D′,則剩下的幾何體是( ) A.棱臺(tái) B.四棱柱 C.五棱柱 D
6、.簡(jiǎn)單組合體 C [由幾何體的結(jié)構(gòu)特征知,剩下的幾何體為五棱柱.] 4.(教材改編)已知圓錐的表面積等于12π cm2,其側(cè)面展開圖是一個(gè)半圓,則底面圓的半徑為( ) A.1 cm B.2 cm C.3 cm D. cm B [S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4, ∴r=2(cm).] 5.一個(gè)六棱錐的體積為2,其底面是邊長(zhǎng)為2的正六邊形,側(cè)棱長(zhǎng)都相等,則該六棱錐的側(cè)面積為________. 12 [設(shè)正六棱錐的高為h,棱錐的斜高為h′. 由題意,得×6××2××h=2, ∴h=1, ∴斜高h(yuǎn)′==2, ∴S側(cè)=
7、6××2×2=12.] 空間幾何體的三視圖和直觀 1.(2018·全國(guó)卷Ⅲ) 中國(guó)古建筑借助榫卯將木構(gòu)件連接起來(lái).構(gòu)件的凸出部分叫榫頭,凹進(jìn)部分叫卯眼,圖中木構(gòu)件右邊的小長(zhǎng)方體是榫頭.若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長(zhǎng)方體,則咬合時(shí)帶卯眼的木構(gòu)件的俯視圖可以是( ) A B C D A [由題意知,在咬合時(shí)帶卯眼的木構(gòu)件中,從俯視方向看,榫頭看不見(jiàn),所以是虛線,結(jié)合榫頭的位置知選A.] 2.已知正三角形ABC的邊長(zhǎng)為a,那么△ABC的平面直觀圖△A′B′C′的面積為( ) A.a2 B.a(chǎn)2 C.
8、a2 D.a(chǎn)2 D [法一:如圖①②所示的實(shí)際圖形和直觀圖, 由②可知,A′B′=AB=a,O′C′=OC=a, 在圖②中作C′D′⊥A′B′于D′, 則C′D′=O′C′=a, 所以S△A′B′C′=A′B′·C′D′=×a×a=a2. 法二:S△ABC=×a×asin 60°=a2, 又S直觀圖=S原圖=×a2=a2.故選D.] 3.某幾何體的三視圖如圖所示,網(wǎng)格紙的小方格是邊長(zhǎng)為1的正方形,則該幾何體中最長(zhǎng)棱的棱長(zhǎng)是( ) A. B. C. D.3 A [由三視圖可知該幾何體為一個(gè)三棱錐D-ABC,如圖,將其置于長(zhǎng)方體中,該長(zhǎng)方體的底面是邊長(zhǎng)為1的
9、正方形,高為2. 所以AB=1,AC=,BC=,CD=,DA=2,BD=, 因此最長(zhǎng)棱為BD,棱長(zhǎng)是.] 空間幾何體的表面積與體積 ?考法1 根據(jù)幾何體的三視圖計(jì)算表面積、體積 【例1】 (1)(2018·合肥一模)如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積為( ) A.5π+18 B.6π+18 C.8π+6 D.10π+6 (2)(2017·全國(guó)卷Ⅱ)如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分后所得,則該幾何體的體積為( ) A.90π B.6
10、3π C.42π D.36π (1)C (2)B [(1)由三視圖可知該幾何體是由一個(gè)半圓柱和兩個(gè)半球構(gòu)成的,故該幾何體的表面積為2××4π×12+2××π×12+2×3+×2π×1×3=8π+6. (2)法一(分割法):由題意知,該幾何體是一個(gè)組合體,下半部分是一個(gè)底面半徑為3,高為4的圓柱,其體積V1=π×32×4=36π. 上半部分是一個(gè)底面半徑為3,高為6的圓柱的一半, 其體積V2=×π×32×6=27π. 所以該組合體的體積V=V1+V2=36π+27π=63π. 法二(補(bǔ)形法):由題意知,該幾何體是一圓柱被一平面截去一部分后所得的幾何體,在該幾何體上方再補(bǔ)上一個(gè)與
11、其相同的幾何體,讓截面重合,則所得幾何體為一個(gè)圓柱,故圓柱的底面半徑為3,高為10+4=14,該圓柱的體積V1=π×32×14=126π. 故該幾何體的體積為圓柱體積的一半, 即V=V1=63π. 法三(估值法):由題意,知V圓柱<V幾何體<V圓柱.又V圓柱=π×32×10=90π,所以45π<V幾何體<90π.觀察選項(xiàng)可知只有63π符合.] ?考法2 求空間幾何體的表面積、體積 【例2】 (1)(2019·南昌模擬)如圖,直角梯形ABCD中,AD⊥DC,AD∥BC,BC=2CD=2AD=2,若將該直角梯形繞BC邊旋轉(zhuǎn)一周,則所得的幾何體的表面積為________. (2)如圖,正
12、方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E,F(xiàn)分別為線段AA1,B1C上的點(diǎn),則三棱錐D1-EDF的體積為________. (1)(+3)π (2) [(1)由圖中數(shù)據(jù)可得:S圓錐側(cè)=×π×2×=π,S圓柱側(cè)=π×2×1=2π,S底面=π×12=π. 所以幾何體的表面積S=S圓錐側(cè)+S圓柱側(cè)+S底面=π+2π+π=(+3)π. (2)(等積法)三棱錐D1-EDF的體積即為三棱錐F-DD1E的體積. 因?yàn)镋,F(xiàn)分別為AA1,B1C上的點(diǎn),所以在正方體ABCD-A1B1C1D1中,△EDD1的面積為定值,F(xiàn)到平面AA1D1D的距離為定值1,所以VD1-EDF=VF-DD1E=××1
13、=.] [規(guī)律方法] (1)以三視圖為載體的表面積、體積問(wèn)題,關(guān)鍵是分析三視圖確定幾何體中各元素之間的位置關(guān)系及數(shù)量,必須還原出直觀圖. (2)若所給定的幾何體的體積不能直接得出,則常用轉(zhuǎn)化法、分割法、補(bǔ)形法等方法進(jìn)行求解. (1)(2016·全國(guó)卷Ⅰ) 如圖所示,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條互相垂直的半徑.若該幾何體的體積是,則它的表面積是( ) A.17π B.18π C.20π D.28π (2)(2017·浙江高考)某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積(單位:cm3)是( ) A.+1 B.+3 C.+1 D.
14、+3 (3)如圖所示,已知多面體ABCDEFG中,AB,AC,AD兩兩互相垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1,則該多面體的體積為________. (1)A (2)A (3)4 [(1)由幾何體的三視圖可知,該幾何體是一個(gè)球體去掉上半球的,得到的幾何體如圖. 設(shè)球的半徑為R,則πR3-×πR3=π,解得R=2.因此它的表面積為×4πR2+πR2=17π.故選A. (2)由幾何體的三視圖可知,該幾何體是一個(gè)底面半徑為1,高為3的圓錐的一半與一個(gè)底面為直角邊長(zhǎng)是的等腰直角三角形,高為3的三棱錐的組合體, ∴該幾何體的體積 V=
15、×π×12×3+××××3=+1. 故選A. (3)法一:(分割法)因?yàn)閹缀误w有兩對(duì)相對(duì)面互相平行,如圖所示,過(guò)點(diǎn)C作CH⊥DG于H,連接EH,即把多面體分割成一個(gè)直三棱柱DEH-ABC和一個(gè)斜三棱柱BEF-CHG. 由題意,知V三棱柱DEH-ABC=S△DEH×AD=×2=2,V三棱柱BEF-CHG=S△BEF×DE=×2=2.故所求幾何體的體積為V多面體ABCDEFG=2+2=4. 法二:(補(bǔ)形法) 因?yàn)閹缀误w有兩對(duì)相對(duì)面互相平行, 如圖所示,將多面體補(bǔ)成棱長(zhǎng)為2的正方體,顯然所求多面體的體積即該正方體體積的一半. 又正方體的體積V正方體ABHI-DEKG=23=8,故所求幾
16、何體的體積為V多面體ABCDEFG=×8=4.] 與球有關(guān)的切、接問(wèn)題 【例3】 (2016·全國(guó)卷Ⅲ)在封閉的直三棱柱ABC-A1B1C1內(nèi)有一個(gè)體積為V的球.若AB⊥BC,AB=6,BC=8,AA1=3,則V的最大值是( ) A.4π B. C.6π D. B [由題意得要使球的體積最大,則球與直三棱柱的若干面相切.設(shè)球的半徑為R,∵△ABC的內(nèi)切圓半徑為=2,∴R≤2.又2R≤3,∴R≤, ∴Vmax=π3=π.故選B.] [母題探究] (1)若本例中的條件變?yōu)椤爸比庵鵄BC-A1B1C1的6個(gè)頂點(diǎn)都在球O的球面上”,若AB=3,AC=4,AB⊥AC,A
17、A1=12,求球O的表面積. (2)若本例中的條件變?yōu)椤罢睦忮F的頂點(diǎn)都在球O的球面上”,若該棱錐的高為4,底面邊長(zhǎng)為2,求該球的體積. [解] (1)將直三棱柱補(bǔ)形為長(zhǎng)方體ABEC-A1B1E1C1(圖略), 則球O是長(zhǎng)方體ABEC-A1B1E1C1的外接球, 所以體對(duì)角線BC1的長(zhǎng)為球O的直徑. 因此2R==13, 故S球=4πR2=169π. (2)如圖,設(shè)球心為O,半徑為r, 則在Rt△AFO中,(4-r)2+()2=r2,解得r=, 則球O的體積V球=πr3=π×3=. [規(guī)律方法] 與球有關(guān)的切、接問(wèn)題的求解方法 (1)與球有關(guān)的組合體問(wèn)題,一種是內(nèi)切,一種是
18、外接.球與旋轉(zhuǎn)體的組合通常是作它們的軸截面解題,球與多面體的組合,通過(guò)多面體的一條側(cè)棱和球心,或“切點(diǎn)”“接點(diǎn)”作出截面圖,把空間問(wèn)題化歸為平面問(wèn)題. (2)若球面上四點(diǎn)P,A,B,C中PA,PB,PC兩兩垂直或三棱錐的三條側(cè)棱兩兩垂直,可構(gòu)造長(zhǎng)方體或正方體. ①利用2R=求R. ②確定球心位置,把半徑放在直角三角形中求解. (3)一條側(cè)棱垂直底面的三棱錐問(wèn)題:可補(bǔ)形成直三棱柱. (1)已知直三棱柱ABC-A1B1C1的各頂點(diǎn)都在以O(shè)為球心的球面上,且∠BAC=,AA1=BC=2,則球O的體積為( ) A.4π B.8π C.12π D.20π (2)(2019·福
19、建十校聯(lián)考)已知三棱錐P-ABC的三條側(cè)棱兩兩互相垂直,且AB=,BC=,AC=2,則此三棱錐的外接球的體積為( ) A.π B.π C.π D.π (1)A (2)B [(1)在底面△ABC中,由正弦定理得底面△ABC所在的截面圓的半徑為r===,則直三棱柱ABC-A1B1C1的外接球的半徑為R===,則直三棱柱ABC-A1B1C1的外接球的體積為πR3=4π.故選A. (2)∵AB=,BC=,AC=2,∴PA=1,PC=,PB=2.以PA,PB,PC為過(guò)同一頂點(diǎn)的三條棱,作長(zhǎng)方體如圖所示, 則長(zhǎng)方體的外接球同時(shí)也是三棱錐P-ABC的外接球. ∵長(zhǎng)方體的對(duì)角線長(zhǎng)為=2,
20、 ∴球的直徑為2,半徑R=, 因此,三棱錐P-ABC外接球的體積是πR3=π×()3=π.故選B. 1.(2018·全國(guó)卷Ⅰ)某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖.圓柱表面上的點(diǎn)M在正視圖上的對(duì)應(yīng)點(diǎn)為A,圓柱表面上的點(diǎn)N在左視圖上的對(duì)應(yīng)點(diǎn)為B,則在此圓柱側(cè)面上,從M到N的路徑中,最短路徑的長(zhǎng)度為( ) A.2 B.2 C.3 D.2 B [由三視圖可知,該幾何體為如圖①所示的圓柱,該圓柱的高為2,底面周長(zhǎng)為16.畫出該圓柱的側(cè)面展開圖,如圖②所示,連接MN,則MS=2,SN=4,則從M到N的路徑中,最短路徑的長(zhǎng)度為==2.故選B. ] 圖①
21、 圖② 2.(2018·全國(guó)卷Ⅲ)設(shè)A,B,C,D是同一個(gè)半徑為4的球的球面上四點(diǎn),△ABC為等邊三角形且其面積為9,則三棱錐D-ABC體積的最大值為( ) A.12 B.18 C.24 D.54 B [設(shè)等邊三角形ABC的邊長(zhǎng)為x,則x2sin 60°=9,得x=6.設(shè)△ABC的外接圓半徑為r,則2r=,解得r=2,所以球心到△ABC所在平面的距離d==2,則點(diǎn)D到平面ABC的最大距離d1=d+4=6,所以三棱錐D-ABC體積的最大值Vmax=S△ABC×6=×9×6=18.] 3.(2017·全國(guó)卷Ⅲ)已知圓柱的高為1,它的兩個(gè)底面的圓周在直徑為2的同
22、一個(gè)球的球面上,則該圓柱的體積為( ) A.π B. C. D. B [設(shè)圓柱的底面半徑為r,球的半徑為R,且R=1, 由圓柱兩個(gè)底面的圓周在同一個(gè)球的球面上可知, r,R及圓柱的高的一半構(gòu)成直角三角形. ∴r==. ∴圓柱的體積為V=πr2h=π×1=. 故選B.] 4.(2016·全國(guó)卷Ⅲ)如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的表面積為( ) A.18+36 B.54+18 C.90 D.81 B [由三視圖可知該幾何體是底面為正方形的斜四棱柱,其中有兩個(gè)側(cè)面為矩形,另兩個(gè)側(cè)面為平行四邊形,則表面積
23、為(3×3+3×6+3×3)×2=54+18.故選B.] 5.(2015·全國(guó)卷Ⅰ)圓柱被一個(gè)平面截去一部分后與半球(半徑為r)組成一個(gè)幾何體,該幾何體三視圖中的主視圖和俯視圖如圖所示.若該幾何體的表面積為16+20π,則r=( ) A.1 B.2 C.4 D. B [如圖,該幾何體是一個(gè)半球與一個(gè)半圓柱的組合體,球的半徑為r,圓柱的底面半徑為r,高為2r,則表面積S=×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,∴(5π+4)r2=16+20π,∴r2=4,r=2,故選B.] 6.(2017·全國(guó)卷Ⅰ)如圖,圓形紙片的圓心為O,半徑
24、為5 cm,該紙片上的等邊三角形ABC的中心為O.D,E,F(xiàn)為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D,E,F(xiàn)重合,得到三棱錐.當(dāng)△ABC的邊長(zhǎng)變化時(shí),所得三棱錐體積(單位:cm3)的最大值為________. 4 [如圖,連接OD,交BC于點(diǎn)G, 由題意,知OD⊥BC,OG=BC. 設(shè)OG=x,則BC=2x,DG=5-x, 三棱錐的高h(yuǎn)= ==, S△ABC=×2x×3x=3x2,則三棱錐的體積 V=S△ABC·h=x2· =·. 令f(x)=25x4-10x5,x∈,則f′(x)=100x3-50x4. 令f′(x)=0得x=2.當(dāng)x∈(0,2)時(shí),f′(x)>0,f(x)遞增,當(dāng)x∈時(shí),f′(x)<0,f(x)遞減,故當(dāng)x=2時(shí),f(x)取得最大值80,則V≤×=4. ∴三棱錐體積的最大值為4 cm3.] - 13 -
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中生物--人體的呼吸1-人教版課件
- 社會(huì)研究方法mpa論文寫作PPT培訓(xùn)課件
- 2020高考語(yǔ)文專題-圖文轉(zhuǎn)換漫畫答題技巧ppt課件
- 《語(yǔ)言表達(dá)之補(bǔ)寫語(yǔ)句》ppt課件
- 肺心病診斷及治療(與“肺動(dòng)脈”有關(guān)的文檔共46張)
- 中考?xì)v史一輪專題復(fù)習(xí)壟斷資本主義時(shí)代的世界課件
- 重慶市結(jié)核病防治基本DOTS細(xì)則介紹
- 鋁的化合物(教育精品)
- 軸對(duì)稱(例1)(教育精品)
- 愛(ài)之鏈chuan(教育精品)
- bs71p44(教育精品)
- bh(教育精品)
- 北師大版小學(xué)五年級(jí)語(yǔ)文上冊(cè)《生命與水》課件
- 13白鵝ppt(教育精品)
- 荷葉圓圓 (5)課件