《2017-2018版高中數(shù)學(xué) 第三章 函數(shù)的應(yīng)用 3.2.2 對(duì)數(shù)函數(shù)(一)學(xué)案 蘇教版必修1》由會(huì)員分享,可在線閱讀,更多相關(guān)《2017-2018版高中數(shù)學(xué) 第三章 函數(shù)的應(yīng)用 3.2.2 對(duì)數(shù)函數(shù)(一)學(xué)案 蘇教版必修1(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、3.2.2對(duì)數(shù)函數(shù)(一)學(xué)習(xí)目標(biāo)1.理解對(duì)數(shù)函數(shù)的概念.2.掌握對(duì)數(shù)函數(shù)的性質(zhì).3.了解對(duì)數(shù)函數(shù)在生產(chǎn)實(shí)際中的簡(jiǎn)單應(yīng)用知識(shí)點(diǎn)一對(duì)數(shù)函數(shù)的概念思考已知函數(shù)y2x,那么反過(guò)來(lái),x是否為關(guān)于y的函數(shù)?梳理一般地,_叫做對(duì)數(shù)函數(shù),它的定義域是_知識(shí)點(diǎn)二對(duì)數(shù)函數(shù)的圖象與性質(zhì)思考ylogax化為指數(shù)式是xay.你能用指數(shù)函數(shù)的單調(diào)性推導(dǎo)出對(duì)數(shù)函數(shù)的單調(diào)性嗎?梳理類似地,我們可以借助指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)定義ylogax (a0,且a1)底數(shù)a10a0,且a1)反思與感悟比較兩個(gè)同底數(shù)的對(duì)數(shù)大小,首先要根據(jù)對(duì)數(shù)的底數(shù)來(lái)判斷對(duì)數(shù)函數(shù)的增減性;然后比較真數(shù)大小,再利用對(duì)數(shù)函數(shù)的增減性判斷兩
2、對(duì)數(shù)值的大小對(duì)于底數(shù)以字母形式出現(xiàn)的,需要對(duì)底數(shù)a進(jìn)行討論對(duì)于不同底的對(duì)數(shù),可以估算范圍,如log22log23log24,即1log230,a1)的圖象過(guò)一個(gè)定點(diǎn),則這個(gè)定點(diǎn)的坐標(biāo)是_反思與感悟yf(x)yf(xa),yf(x)yf(x)b.對(duì)具體函數(shù)(如對(duì)數(shù)函數(shù))仍然適用跟蹤訓(xùn)練6若函數(shù)f(x)ax1的圖象經(jīng)過(guò)點(diǎn)(4,2),則函數(shù)g(x)loga的圖象是_1函數(shù)ylog2(x2)的定義域是_2函數(shù)f(x)lg(1x)的定義域是_3函數(shù)f(x)log0.2(2x1)的值域?yàn)開(kāi)4已知函數(shù)yloga(xb)(a,b為常數(shù),其中a0,a1)的圖象如圖所示,則ab的值為_(kāi)5若函數(shù)f(x)2loga(
3、2x)3(a0,且a1)過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)是_1含有對(duì)數(shù)符號(hào)“l(fā)og”的函數(shù)不一定是對(duì)數(shù)函數(shù)判斷一個(gè)函數(shù)是否為對(duì)數(shù)函數(shù),不僅要含有對(duì)數(shù)符號(hào)“l(fā)og”,還要符合對(duì)數(shù)函數(shù)的概念,即形如ylogax(a0,且a1)的形式如:y2log2x,ylog5都不是對(duì)數(shù)函數(shù),可稱其為對(duì)數(shù)型函數(shù)2研究ylogaf(x)的性質(zhì)如定義域、值域、比較大小,均需依托對(duì)數(shù)函數(shù)的相應(yīng)性質(zhì)3研究與對(duì)數(shù)函數(shù)圖象有關(guān)的問(wèn)題,以對(duì)數(shù)函數(shù)圖象為基礎(chǔ),加以平移、伸縮、對(duì)稱或截取一部分答案精析問(wèn)題導(dǎo)學(xué)知識(shí)點(diǎn)一思考由于y2x是單調(diào)函數(shù),所以對(duì)于任意y(0,)都有唯一確定的x與之對(duì)應(yīng),故x也是關(guān)于y的函數(shù),其函數(shù)關(guān)系式是xlog2y,此
4、處y(0,)梳理函數(shù)ylogax(a0,a1)(0,)知識(shí)點(diǎn)二思考當(dāng)a1時(shí),若0x1x2,則ay1ay2,解指數(shù)不等式,得y1y2,從而ylogax在(0,)上為單調(diào)增函數(shù)當(dāng)0a1時(shí),同理可得ylogax在(0,)上為單調(diào)減函數(shù)梳理(0,)R(1,0)(,0)0,)(0,)(,0x軸題型探究例1設(shè)ylogax(a0,且a1),則2loga4,故a2,即ylog2x,因此flog21,f(2lg 2)log22lg 2lg 2.跟蹤訓(xùn)練1解(1)中真數(shù)不是自變量x,不是對(duì)數(shù)函數(shù);(2)中對(duì)數(shù)式后減1,不是對(duì)數(shù)函數(shù);(3)中底數(shù)是自變量x,而非常數(shù)a,不是對(duì)數(shù)函數(shù)(4)為對(duì)數(shù)函數(shù)例2解(1)由得3
5、x3,函數(shù)的定義域是x|3x0,得4x1642,由指數(shù)函數(shù)的單調(diào)性得x2,函數(shù)ylog2(164x)的定義域?yàn)閤|x3.函數(shù)yloga(x3)loga(x3)的定義域?yàn)閤|x32解(x3)(x3)0,即或解得x3.函數(shù)yloga(x3)(x3)的定義域?yàn)閤|x3相比引申探究1,函數(shù)yloga(x3)(x3)的定義域多了(,3)這個(gè)區(qū)間,原因是對(duì)于yloga(x3)(x3),要使對(duì)數(shù)有意義,只需(x3)與(x3)同號(hào),而對(duì)于yloga(x3)loga(x3),要使對(duì)數(shù)有意義,必須(x3)與(x3)同時(shí)大于0.跟蹤訓(xùn)練2解(1)要使函數(shù)有意義,需即即3x2或x2,故所求函數(shù)的定義域?yàn)?3,2)2,
6、)(2)要使函數(shù)有意義,需即所以1x2,且x0,故所求函數(shù)的定義域?yàn)閤|1x且x,故所求函數(shù)的定義域?yàn)?例3解(1)考察對(duì)數(shù)函數(shù)ylog2x,因?yàn)樗牡讛?shù)21,所以它在(0,)上是單調(diào)增函數(shù),又3.48.5,于是log23.4log28.5.(2)考察對(duì)數(shù)函數(shù)ylog0.3x,因?yàn)樗牡讛?shù)00.3log0.32.7.(3)當(dāng)a1時(shí),ylogax在(0,)上是單調(diào)增函數(shù),又5.15.9,于是loga5.1loga5.9;當(dāng)0aloga5.9.綜上,當(dāng)a1時(shí),loga5.1loga5.9;當(dāng)0a1時(shí),loga5.1loga5.9.跟蹤訓(xùn)練3abc解析alog31,blog23,則b1,clog32,abc.例4(0,)解析f(x)的定義域?yàn)镽.3x0,3x11.ylog2x在(0,)上單調(diào)遞增,log2(3x1)log210,即f(x)的值域?yàn)?0,)跟蹤訓(xùn)練40,)解析當(dāng)x1時(shí),03x1.g(x)logaloga(x1)在(1,)上為單調(diào)減函數(shù)且過(guò)點(diǎn)(0,0)故填.當(dāng)堂訓(xùn)練1(2,)2(1,1)(1,)解析定義域?yàn)?1,1)(1,)3(,0)4.解析uxb為單調(diào)增函數(shù),ylogau為單調(diào)減函數(shù),0a1.又由圖象過(guò)(0,2),(3,0),2logab,a2b,又0loga(b),b1,b.a,ab.5(1,3)12