三維數(shù)控工作臺(tái)的設(shè)計(jì)與開(kāi)發(fā)【4張CAD圖紙+文檔全套文件】
【溫馨提示】=設(shè)計(jì)包含CAD圖紙 和 DOC文檔,均可以在線預(yù)覽,所見(jiàn)即所得,dwg后綴的文件為CAD圖,超高清,可編輯,無(wú)任何水印,充值下載得到【資源目錄】里展示的所有文件=課題帶三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預(yù)覽的簡(jiǎn)潔性,店家將三維文件夾進(jìn)行了打包。三維預(yù)覽圖,均為店主電腦打開(kāi)軟件進(jìn)行截圖的,保證能夠打開(kāi),下載后解壓即可。=詳情可咨詢QQ:1304139763
哈爾濱理工大學(xué)學(xué)士學(xué)位論文三維數(shù)控工作臺(tái)的設(shè)計(jì)與開(kāi)發(fā)摘要在當(dāng)前生產(chǎn)中的許多機(jī)械設(shè)備中均需要精密定位,而其中的三維精密定位工作臺(tái)作為關(guān)鍵部件將直接影響其整機(jī)的性能和精度。為保證機(jī)器性能,工作臺(tái)要在X方向和Y方向?qū)崿F(xiàn)快速準(zhǔn)確的定位,并且要求在Z方向能夠?qū)崿F(xiàn)精確調(diào)整和定位,要實(shí)現(xiàn)快速和準(zhǔn)確定位,必須對(duì)工作臺(tái)進(jìn)行改裝,使用步進(jìn)電機(jī)和控制卡。本文設(shè)計(jì)的工作臺(tái)就是基于單片機(jī)控制的三維數(shù)控工作臺(tái)。本次研究的課題的主要內(nèi)容包括:充分利用實(shí)驗(yàn)室中廢舊的二維工作臺(tái),通過(guò)對(duì)硬件諸如直線導(dǎo)軌,深溝球軸承,滾珠絲杠,步進(jìn)電機(jī)等的選擇并對(duì)零件的整體連接結(jié)構(gòu)進(jìn)行設(shè)計(jì)從而組裝出一臺(tái)可運(yùn)轉(zhuǎn)的三維工作臺(tái);利用三維建模軟件對(duì)所選擇的工作臺(tái)的各部分零件進(jìn)行建模,裝配,并對(duì)裝配好的三維工作臺(tái)實(shí)現(xiàn)運(yùn)動(dòng)仿真;利用VB語(yǔ)言對(duì)插補(bǔ)程序進(jìn)行軟件設(shè)計(jì);需要完成對(duì)三維工作臺(tái)的控制系統(tǒng)的設(shè)計(jì),主要包括對(duì)開(kāi)閉環(huán)的選擇,對(duì)80C51單片機(jī)功能的充分認(rèn)識(shí)并編寫控制程序,充分理解、學(xué)習(xí)插補(bǔ)技術(shù)在三維數(shù)控工作臺(tái)中的應(yīng)用。通過(guò)上述研究?jī)?nèi)容,我們可以的到一臺(tái)經(jīng)濟(jì),實(shí)用,精密度較高的三維數(shù)控工作臺(tái),通過(guò)與普通工作臺(tái)的比較,我們可以從中得出插補(bǔ)技術(shù)對(duì)于數(shù)控工作臺(tái)的影響??梢哉f(shuō)將插補(bǔ)技術(shù)應(yīng)用到現(xiàn)代數(shù)控加工已經(jīng)是一個(gè)不可逆轉(zhuǎn)的趨勢(shì),因此本課題具有很高的研究?jī)r(jià)值。關(guān)鍵詞 數(shù)控系統(tǒng);三維工作臺(tái);單片機(jī);插補(bǔ)技術(shù)Design and development of 3D NC workbenchAbstractTo study the influence of the parameters of open NC servo feed systems and spatial geometry error on the precision and find methods to realize the high precision control of numerical control (NC) system, the development of the control system of a two-axis NC worktable ,consisting of ball screws and linear roller guides, was presented in this thesis. The system is based on an open architecture PMAC (Programmable multi-Axis controller) motion control card to realize real-time control. Some experiments concerning control test and error measurement and analysis can be carried out on the designed worktable. At first, the configuration of control system of the 3D NC worktable Was proposed ,and its software was developed. Modular software development concept featured the system design, which includes the following modules: machining position and speed sampled display module; file management module; parameters setting module; error diagnosis module; precision analysis module; manual debugging module; machine simulation module; help module.As one of focuses, the error measurement and precision analysis of the worktable were emphasized in the development of the system software. Series of experiments about system control and precision were made on the worktable. The precision characteristics of the half-loop and closed-loop position feedbacks were analyzed. Through comparing the theoretical analysis with the data collected from experiments ,a conclusion has been drawn that the smallest contour error will be got if the two axes have the same servo characteristics. The ball-bar ,which is considered to be more reliable than linearscales in measuring contour error, was used to measure the circular motion of the system. The experiment result showed that the contour error of the system was big .By analysis of the error source based on a mathematical model of the measuring system proposed in this thesis, it was found that it was the installation inclination of linear scales that caused so big error. By compensating the error with the measured result by the ball-bar ,the precision of the control system had been improved.Keywords Numerical Control System;three-dimensional NC workbench;SCM;Interpolation technique;III目錄摘要IAbstractII第1章 緒論11.1課題研究的意義11.2課題研究的現(xiàn)狀11.3課題研究的主要內(nèi)容2第2章 三維數(shù)控工作臺(tái)的硬件選擇及連接結(jié)構(gòu)32.1三維數(shù)控工作臺(tái)的工作原理介紹32.2三維數(shù)控工作臺(tái)的基本結(jié)構(gòu)32.3步進(jìn)電機(jī)的選擇42.4絲杠的選型與校核52.4.1滾珠絲杠的簡(jiǎn)單介紹52.4.2滾珠絲杠的選型72.4.3滾珠絲杠的校核82.5直線導(dǎo)軌的選型與計(jì)算92.5.1直線導(dǎo)軌的簡(jiǎn)單介紹92.5.2直線導(dǎo)軌的選型102.6聯(lián)軸器的選型122.6.1聯(lián)軸器的簡(jiǎn)介122.6.2聯(lián)軸器的選型132.7軸承選型142.8本章小結(jié)16第3章 三維數(shù)控工作臺(tái)的Pro/E三維建模173.1 Pro/E建模軟件簡(jiǎn)介173.2 Pro/E界面介紹173.3零件三維建模實(shí)例介紹183.3.1新建文件183.3.2建立拉伸特征193.3.3建立螺旋特征203.3.4建立螺母副特征203.3.5進(jìn)行顏色和外觀設(shè)計(jì)213.4其余零件三維建模圖展示223.5三維數(shù)控工作臺(tái)裝配233.6本章小結(jié)25第4章 三維工作臺(tái)的軟件及控制系統(tǒng)設(shè)計(jì)264.1逐點(diǎn)比較法直線插補(bǔ)的簡(jiǎn)介264.2逐點(diǎn)比較法直線插補(bǔ)的計(jì)算步驟264.3數(shù)控插補(bǔ)仿真軟件的說(shuō)明294.4開(kāi)環(huán)系統(tǒng)控制原理304.5單片機(jī)設(shè)計(jì)304.6本章小結(jié)35結(jié)論36致謝37參考文獻(xiàn)38附錄一39附錄二491第1章 緒論1.1課題研究的意義目前在多種機(jī)械設(shè)備中均需要精密定位,而其中的三維精密定位工作臺(tái)作為關(guān)鍵部件將直接影響其整機(jī)的性能和精度。為保證機(jī)器性能,工作臺(tái)要在X方向和Y方向?qū)崿F(xiàn)快速準(zhǔn)確的定位,并且要求在Z方向能夠?qū)崿F(xiàn)精確調(diào)整和定位,要實(shí)現(xiàn)快速和準(zhǔn)確定位,必須對(duì)工作臺(tái)進(jìn)行改裝,使用步進(jìn)電機(jī)和控制卡。插補(bǔ)技術(shù)是數(shù)控技術(shù)中的核心技術(shù),它的好壞直接影響著數(shù)控加工精度進(jìn)而影響數(shù)控加工技術(shù)的優(yōu)劣,是目前數(shù)控技術(shù)急需提高、完善的環(huán)節(jié)之一,而插補(bǔ)算法的選擇直接影響到數(shù)控系統(tǒng)的加工精度和速度。而本實(shí)驗(yàn)充分利用實(shí)驗(yàn)室中廢舊的二維工作臺(tái),并進(jìn)行導(dǎo)軌,絲杠,電機(jī),軸承等選型,在其基礎(chǔ)之上搭建成三維工作臺(tái),實(shí)現(xiàn)對(duì)插補(bǔ)仿真技術(shù)的應(yīng)用研究,這樣既節(jié)約了成本實(shí)現(xiàn)了廢物回收再利用,又兼顧了插補(bǔ)技術(shù)的研究,因此具有十分廣泛而重要的現(xiàn)實(shí)意義1.2課題研究的現(xiàn)狀國(guó)內(nèi)數(shù)控技術(shù)發(fā)展,1996年,清華大學(xué)研制了PC-DSP主從式控制器,成功應(yīng)用于光驅(qū)高速數(shù)字符伺服控制系統(tǒng);南京四開(kāi)電子公司與清華大學(xué)共同研制的基于32位CPU和通用計(jì)算機(jī)主從式SKY數(shù)控系統(tǒng)實(shí)現(xiàn)了完全國(guó)產(chǎn)化,通過(guò)江蘇省科委組織的科技成果鑒定并認(rèn)為己達(dá)到當(dāng)時(shí)國(guó)際先進(jìn)水平。1999年,武漢華中理工大學(xué)利用TMS320F243定點(diǎn)DSP芯片設(shè)計(jì)了一款PC-DSP主從式多軸運(yùn)動(dòng)控制器,該控制器可以通過(guò)CAN總線與CNC系統(tǒng)中的上位PC機(jī)及其它一些具有不同功能的硬件模塊進(jìn)行通訊,在2000年,又研制成功了一種基于TMS320C203的定點(diǎn)DSP的數(shù)值插補(bǔ)和通訊管理控制器。國(guó)際數(shù)控系統(tǒng)發(fā)展現(xiàn)狀:在80年代初,隨著計(jì)算機(jī)控制技術(shù)和先進(jìn)制造技術(shù)的發(fā)展,基于PC的開(kāi)放式數(shù)控系統(tǒng)就開(kāi)始得以在世界范圍內(nèi)推廣。NGC (Next Generation Controller)”研究計(jì)劃,首先提出了開(kāi)放體系結(jié)構(gòu)控制器的概念。自1990年開(kāi)始,美國(guó)的幾個(gè)大的科研機(jī)構(gòu)對(duì)N GC計(jì)劃分別發(fā)表了相應(yīng)的研究?jī)?nèi)容。其后由許多相關(guān)的研究計(jì)劃在世界各國(guó)相繼啟動(dòng),其中較有影響的有美國(guó)的OMAC、歐洲的OSACa和日本的ONE計(jì)劃。同時(shí),發(fā)達(dá)國(guó)家將DSP運(yùn)動(dòng)控制技術(shù)融入了開(kāi)放式數(shù)控機(jī)床的研究。1995年,Matsui, N在常規(guī)DSP速度和位置控制的研究中引入了自適應(yīng)控制、系統(tǒng)參數(shù)在線辯識(shí)技術(shù), Kolek, k提出了一種基于總線技術(shù)的浮點(diǎn)DSP控制器,該控制器增強(qiáng)了系統(tǒng)資料計(jì)算與處理的速度及控制的精度;1997年,Larsen, G/Cetinkunt在DSP控制器上提出并實(shí)現(xiàn)了一種基于小腦模型關(guān)節(jié)控制器的神經(jīng)網(wǎng)絡(luò)自學(xué)習(xí)伺服控制系統(tǒng),以補(bǔ)償鉆石精整加工過(guò)程中由于機(jī)械軸摩擦力造成的影響:同年,Han, S. H提出一種用于機(jī)器人操縱器的實(shí)時(shí)補(bǔ)償、自適應(yīng)算法的DSP控制器系統(tǒng); 1998年,Style, A. W. /Diana, G.開(kāi)發(fā)了一種基于Mathworks Simulink/Realtimeworkshop的PC-DSP主從式系統(tǒng),用于運(yùn)動(dòng)控制系統(tǒng)的設(shè)計(jì)、仿真及實(shí)時(shí)控制形成了DSP運(yùn)動(dòng)控制系統(tǒng)的雛形;1999年,Brandstatter. W.創(chuàng)立了一種基于DSP的用于步進(jìn)電機(jī)控制系統(tǒng)的方法,該系統(tǒng)包含了對(duì)PI電流控制和控制策略補(bǔ)償?shù)忍攸c(diǎn),從而避免電機(jī)轉(zhuǎn)速的波動(dòng); Moynihan.J. F.將DSP作為專門的運(yùn)算處理單元,用于計(jì)算高精度的位置、速度傳感器的信號(hào),這是DSP在運(yùn)動(dòng)控制插補(bǔ)運(yùn)算功能的典型應(yīng)用。1.3課題研究的主要內(nèi)容作者在實(shí)驗(yàn)期間參考各種資料,完成了對(duì)數(shù)控系統(tǒng),伺服系統(tǒng),單片機(jī)程序開(kāi)發(fā)的研究主要有以下幾個(gè)方面:(1)在原有的二維工作臺(tái)的基礎(chǔ)上通過(guò)對(duì)步進(jìn)電機(jī),滾珠絲杠,直 線導(dǎo)軌,深溝球軸承,十字滑塊聯(lián)軸器等的選型搭建一臺(tái)在技術(shù)性、經(jīng)濟(jì)性和實(shí)用性都比較良好三維工作臺(tái)。(2)對(duì)設(shè)計(jì)好的三維數(shù)控工作臺(tái)進(jìn)行proe建模及其運(yùn)動(dòng)仿真。(3)借助此三維工作臺(tái)研究了插補(bǔ)仿真技術(shù)對(duì)數(shù)控工作臺(tái)精密度的影響,進(jìn)行伺服系統(tǒng)的選擇,安裝與調(diào)試,編寫了插補(bǔ)仿真系統(tǒng)軟件上下位機(jī)程序。第2章 三維數(shù)控工作臺(tái)的硬件選擇及連接結(jié)構(gòu)三維數(shù)控工作臺(tái)的整體設(shè)計(jì)包括對(duì)步進(jìn)電機(jī),滾珠絲杠,直線導(dǎo)軌,深溝球軸承,十字滑塊聯(lián)軸器的型號(hào)選取及其連接結(jié)構(gòu)的確定。2.1三維數(shù)控工作臺(tái)的工作原理介紹三維數(shù)控工作臺(tái)的主要工作原理簡(jiǎn)述如下:(1)在X極方向由步進(jìn)電機(jī)控制聯(lián)軸器進(jìn)而控制絲杠的轉(zhuǎn)動(dòng),絲杠的轉(zhuǎn)動(dòng)帶動(dòng)了絲杠螺母座的移動(dòng)從而也就帶動(dòng)了固定有Y極的連接板的運(yùn)動(dòng)。(2)在Y極方向由步進(jìn)電機(jī)控制聯(lián)軸器進(jìn)而控制絲杠的轉(zhuǎn)動(dòng),絲杠的轉(zhuǎn)動(dòng)帶動(dòng)了絲杠螺母座的移動(dòng)從而也就帶動(dòng)了固定有Z極的連接板的運(yùn)動(dòng)。(3)在Z極方向上由步進(jìn)電機(jī)控制聯(lián)軸器進(jìn)而控制絲杠的轉(zhuǎn)動(dòng),絲杠的轉(zhuǎn)動(dòng)帶動(dòng)了螺母座的移動(dòng),也就帶動(dòng)了Z極上連接板的移動(dòng),進(jìn)而完成了三維數(shù)控工作臺(tái)的整體移動(dòng)。2.2三維數(shù)控工作臺(tái)的基本結(jié)構(gòu)為保證一定的傳動(dòng)精度和平穩(wěn)性以及結(jié)構(gòu)的緊湊,采用滾珠絲杠螺母?jìng)鲃?dòng)副。為提高傳動(dòng)剛度和消除間隙,采用有預(yù)加載荷的結(jié)構(gòu)。由于工作臺(tái)的運(yùn)動(dòng)部件重量和工作載荷不大,故選用滾動(dòng)直線導(dǎo)軌副,從而減小工作臺(tái)的摩擦系數(shù),提高運(yùn)動(dòng)平穩(wěn)性??紤]電機(jī)步距角和絲杠導(dǎo)程只能按標(biāo)準(zhǔn)選取,為達(dá)到分辨率0.01mm的要求,以及考慮步進(jìn)電機(jī)負(fù)載匹配,簡(jiǎn)化結(jié)構(gòu),聯(lián)軸器將電機(jī)與絲杠直接連接。如圖2-1所示為三維數(shù)控工作臺(tái)的基本結(jié)構(gòu),根據(jù)所給出的要求所設(shè)計(jì)的三維工作臺(tái)應(yīng)該滿足行程及精密度要求,同時(shí)在運(yùn)行時(shí)還有具有一定的穩(wěn)定性,盡可能的縮小誤差大小,設(shè)計(jì)時(shí)X軸,Y軸,Z軸采用相同的運(yùn)動(dòng)裝置,保證各接觸面精度以保證裝配精度。由于x、y、z各方向的配合面以及裝配關(guān)系直接影響到整體運(yùn)行的精度,故對(duì)各裝配面以及運(yùn)行部件的接觸表面都要求保持相應(yīng)的精度及定位精度。按上述結(jié)構(gòu)進(jìn)行組裝就能設(shè)計(jì)制造出一臺(tái)符合要求,經(jīng)濟(jì)實(shí)惠,精確度高的三維數(shù)控工作臺(tái)。1-直線導(dǎo)軌;2-肋板;3-滾珠絲杠;4-連接板;5-十字滑塊聯(lián)軸器;6-步進(jìn)電機(jī)圖2-1 三維數(shù)控工作臺(tái)基本結(jié)構(gòu)2.3步進(jìn)電機(jī)的選擇根據(jù)三維數(shù)控工作臺(tái)的工作特性、工作環(huán)境、工作載荷的大小和性質(zhì)等條件,選擇電動(dòng)機(jī)的種類、類型、結(jié)構(gòu)形式、功率和轉(zhuǎn)速,確定出電動(dòng)機(jī)的型號(hào)根據(jù)電源種類(直流或交流)、工作條件(環(huán)境、溫度、空間位置等)及載荷性質(zhì)和大小、起動(dòng)特性和過(guò)載情況來(lái)選擇。由于一般生產(chǎn)單位多采用三相交流電源,根據(jù)工作臺(tái)臺(tái)的工作特性,需選用步進(jìn)電機(jī)。步進(jìn)電機(jī)是將電脈沖信號(hào)轉(zhuǎn)變?yōu)榻俏灰苹蚓€位移的開(kāi)環(huán)控制元步進(jìn)電機(jī)件。在非超載的情況下,電機(jī)的轉(zhuǎn)速、停止的位置只取決于脈沖信號(hào)的頻率和脈沖數(shù),而不受負(fù)載變化的影響,當(dāng)步進(jìn)驅(qū)動(dòng)器接收到一個(gè)脈沖信號(hào),它就驅(qū)動(dòng)步進(jìn)電機(jī)按設(shè)定的方向轉(zhuǎn)動(dòng)一個(gè)固定的角度,稱為“步距角”,它的旋轉(zhuǎn)是以固定的角度一步一步運(yùn)行的??梢酝ㄟ^(guò)控制脈沖個(gè)數(shù)來(lái)控制角位移量,從而達(dá)到準(zhǔn)確定位的目的;同時(shí)可以通過(guò)控制脈沖頻率來(lái)控制電機(jī)轉(zhuǎn)動(dòng)的速度和加速度,從而達(dá)到調(diào)速的目的。主要有反應(yīng)式、永磁式和混合式三大類。在選擇的時(shí)候主要根據(jù)以下參數(shù)進(jìn)行:步距角的選擇:電機(jī)的步距角取決于負(fù)載精度的要求,將負(fù)載的最小分辨率(當(dāng)量)換算到電機(jī)軸上,每個(gè)當(dāng)量電機(jī)應(yīng)走多少角度(包括減速)。電機(jī)的步距角應(yīng)等于或小于此角度。市場(chǎng)上步進(jìn)電機(jī)的步距角一般有0.36度/0.72度(五相電機(jī))、0.9度/1.8度(二、四相電機(jī))、1.5度/3度 (三相電機(jī))等。靜力矩的選擇:步進(jìn)電機(jī)的動(dòng)態(tài)力矩一下子很難確定,我們往往先確定電機(jī)的靜力矩。靜力矩選擇的依據(jù)是電機(jī)工作的負(fù)載,而負(fù)載可分為慣性負(fù)載和摩擦負(fù)載二種。單一的慣性負(fù)載和單一的摩擦負(fù)載是不存在的電流的選擇:靜力矩一樣的電機(jī),由于電流參數(shù)不同,其運(yùn)行特性差別很大,可依據(jù)矩頻特性曲線圖,判斷電機(jī)的電流。根據(jù)以上內(nèi)容,結(jié)合本課題,作者選擇北京時(shí)代超群有限公司生產(chǎn)的42HBS33BJ4-TR0型步進(jìn)電機(jī)。具體參數(shù)如表2-1和圖2-2所示:表2-1 北京時(shí)代超群有限公司42式步進(jìn)電機(jī)型號(hào)參數(shù)表型號(hào)相數(shù)步距角靜轉(zhuǎn)距(Nm)電流(A)相電阻()相電感(mH)繞組出軸長(zhǎng)(mm)重量42HBS33BJ4-TR031.80.210.428.532串長(zhǎng)22200圖2-2 步進(jìn)電機(jī)參數(shù)圖2.4絲杠的選型與校核2.4.1滾珠絲杠的簡(jiǎn)單介紹2.4.1.1簡(jiǎn)介滾珠絲杠是將回轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)化為直線運(yùn)動(dòng),或?qū)⒅本€運(yùn)動(dòng)轉(zhuǎn)化為回轉(zhuǎn)運(yùn)動(dòng)的理想的產(chǎn)品。 滾珠絲杠由螺桿、螺母、鋼球、預(yù)壓片、反向器、防塵器組成。它的功能是將旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)化成直線運(yùn)動(dòng),這是艾克姆螺桿的進(jìn)一步延伸和發(fā)展,這項(xiàng)發(fā)展的重要意義就是將軸承從滾動(dòng)動(dòng)作變成滑動(dòng)動(dòng)作。由于具有很小的摩擦阻力,滾珠絲杠被廣泛應(yīng)用于各種工業(yè)設(shè)備和精密儀器。滾珠絲杠是工具機(jī)和精密機(jī)械上最常使用的傳動(dòng)元件,其主要功能是將旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)換成線性運(yùn)動(dòng),或?qū)⑴ぞ剞D(zhuǎn)換成軸向反覆作用力,同時(shí)兼具高精度、可逆性和高效率的特點(diǎn)。2.4.1.2類型常用的循環(huán)方式有兩種:外循環(huán)和內(nèi)循環(huán)。滾珠在循環(huán)過(guò)程中有時(shí)與絲杠脫離接觸的稱為外循環(huán);始終與絲杠保持接觸的稱為內(nèi)循環(huán)。滾珠每一個(gè)循環(huán)閉路稱為列,每個(gè)滾珠循環(huán)閉路內(nèi)所含導(dǎo)程數(shù)稱為圈數(shù)。內(nèi)循環(huán)滾珠絲杠副的每個(gè)螺母有2列、3列、4列、5列等幾種,每列只有一圈;外循環(huán)每列有1.5圈、2.5圈和3.5圈等幾種。(1)外循環(huán):外循環(huán)是滾珠在循環(huán)過(guò)程結(jié)束后通過(guò)螺母外表面的螺旋槽或插管返回絲杠螺母間重新進(jìn)入循環(huán)。外循環(huán)滾珠絲杠螺母副按滾珠循環(huán)時(shí)的返回方式主要有端蓋式、插管式和螺旋槽式。 常用外循環(huán)方式有:端蓋式、插管式、螺旋槽式。端蓋式,在螺母上加工一個(gè)縱向孔,作為滾珠的回程通道,螺母兩端的蓋板上開(kāi)有滾珠的回程口,滾珠由此進(jìn)入回程管,形成循環(huán)。插管式,它用彎管作為返回管道,這種結(jié)構(gòu)工藝性好,但是由于管道突出螺母體外,徑向尺寸較大。螺旋槽式,它是在螺母外圓上銑出螺旋槽,槽的兩端鉆出通孔并與螺紋滾道相切,形成返回通道,這種結(jié)構(gòu)比插管式結(jié)構(gòu)徑向尺寸小,但制造較復(fù)雜。外循環(huán)滾珠絲杠外循環(huán)結(jié)構(gòu)和制造工藝簡(jiǎn)單,使用廣泛。其缺點(diǎn)是滾道接縫處很難做得平滑,影響滾珠滾道的平穩(wěn)性。 (2 內(nèi)循環(huán):所示為內(nèi)循環(huán)滾珠絲杠。內(nèi)循環(huán)均采用反向器實(shí)現(xiàn)滾珠循環(huán),反向器有兩種類型。圓柱凸鍵反向器,它的圓柱部分嵌入螺母內(nèi),端部開(kāi)有反向槽。反向槽靠圓柱外圓面及其上端的圓鍵定位,以保證對(duì)準(zhǔn)螺紋滾道方向。扁圓鑲塊反向器,反向器為一般圓頭平鍵鑲塊,鑲塊嵌入螺母的切槽中,其端部開(kāi)有反向槽,用鑲塊的外輪廓定位。兩種反向器比較,后者尺寸較小,從而減小了螺母的徑向尺寸及縮短了軸向尺寸。但這種反向器的外輪廓和螺母上的切槽尺寸精度要求較高。2.4.1.3特點(diǎn)(1)與滑動(dòng)絲杠副相比驅(qū)動(dòng)力矩為1/3: 由于滾珠絲杠副的絲杠軸與絲杠螺母之間有很多滾珠在做滾動(dòng)運(yùn)動(dòng),所以能得到較高的運(yùn)動(dòng)效率。與過(guò)去的滑動(dòng)絲杠副相比驅(qū)動(dòng)力矩達(dá)到1/3以下,即達(dá)到同樣運(yùn)動(dòng)結(jié)果所需的動(dòng)力為使用滾動(dòng)絲杠副的1/3。在省電方面很有幫助。 (2)高精度的保證: 滾珠絲杠副是一般是用世界最高水平的機(jī)械設(shè)備連貫生產(chǎn)出來(lái)的,特別是在研削、組裝、檢查各工序的工廠環(huán)境方面,對(duì)溫度、濕度進(jìn)行了嚴(yán)格的控制,由于完善的品質(zhì)管理體制使精度得以充分保證。 (3)微進(jìn)給可能 滾珠絲杠副由于是利用滾珠運(yùn)動(dòng),所以啟動(dòng)力矩極小,不會(huì)出現(xiàn)滑動(dòng)運(yùn)動(dòng)那樣的爬行現(xiàn)象,能保證實(shí)現(xiàn)精確的微進(jìn)給。(4)無(wú)側(cè)隙、剛性高 滾珠絲杠副可以加予壓,由于予壓力可使軸向間隙達(dá)到負(fù)值,進(jìn)而得到較高的剛性。2.4.2滾珠絲杠的選型絲杠的選型過(guò)程中對(duì)于絲杠本身需要注意以下主要參數(shù):1-公稱直徑。即絲杠的外徑,常見(jiàn)規(guī)格有12,14,16,20,25,32,40,50,63,80,100,120.公稱直徑和負(fù)載成正比,公稱直徑越大,負(fù)載越大,而負(fù)載的大小直接影響滾珠絲杠的壽命,實(shí)際負(fù)荷與額定負(fù)荷比值越小,壽命越長(zhǎng)。2-導(dǎo)程。也成螺距,即螺桿每旋轉(zhuǎn)一周螺紋上一點(diǎn)所移動(dòng)的直線距離,常見(jiàn)的導(dǎo)程有1,2,4,6,8,10,12,16,20,25,30。導(dǎo)程與絲杠的直線速度有直接關(guān)系,輸入轉(zhuǎn)速一定的情況下,導(dǎo)程越大速度越快。3-長(zhǎng)度。長(zhǎng)度主要是只絲杠全長(zhǎng),設(shè)計(jì)師主要是根據(jù)工作長(zhǎng)度及設(shè)計(jì)寬裕量而定的,一般廠家可以對(duì)所需絲杠進(jìn)行切割,從而滿足客戶的要求。4-精度。滾珠絲杠按國(guó)家標(biāo)準(zhǔn)可以分為P類和T類,即傳動(dòng)類和定位類,精度等級(jí)有1,2,3,4。國(guó)外產(chǎn)品一律以C0-C10來(lái)表示,一般來(lái)說(shuō)普通機(jī)械一般選擇C7,高精度機(jī)械一般選擇C5以上,C3以下,光學(xué)或檢測(cè)機(jī)構(gòu)一般選擇C3以上,一般機(jī)械如本實(shí)驗(yàn)中的三位工作臺(tái),一般推薦為C7即可。根據(jù)以上內(nèi)容初選滾珠絲杠型號(hào)為SFUO1204-4的滾珠絲杠,其具體參數(shù)如表2-2和圖2-3所示:表2-2 滾珠絲杠型號(hào)參數(shù)表型號(hào)dIDaDABLWXHnCaCoaKSFUO1204-41242.524401040324.5304593112912圖2-3 滾珠絲杠型號(hào)參數(shù)圖初選X軸,Y軸,Z軸長(zhǎng)度為337mm,其中工作長(zhǎng)度為300mm。2.4.3滾珠絲杠的校核 絲杠的校核主要是工作載荷校核,剛度驗(yàn)算,傳動(dòng)效率的計(jì)算。2.4.3.1傳動(dòng)效率計(jì)算滾珠絲杠計(jì)算步驟為: (2-1) 代入數(shù)值求得=0.9482符合要求2.4.3.2絲杠最大載荷計(jì)算絲杠上的工作載荷為走刀抗力,移動(dòng)體重力和作用在導(dǎo)軌上的其他切削分力相關(guān)的摩擦力。由于選擇的導(dǎo)軌要求結(jié)構(gòu)簡(jiǎn)單,間隙調(diào)整方便,摩損不做太多要求,有良好的可替換性且運(yùn)動(dòng)平穩(wěn),故選擇直線滑動(dòng)導(dǎo)軌配合小壓板來(lái)替代有槽的滑動(dòng)導(dǎo)軌,所以選擇最簡(jiǎn)單的導(dǎo)軌塊,直線平導(dǎo)軌的實(shí)驗(yàn)公式進(jìn)行計(jì)算。 (2-2), 將所得數(shù)據(jù)代入上式有 :最大動(dòng)負(fù)載C的計(jì)算及主要尺寸:絲杠最大動(dòng)載荷: (2-3) 由機(jī)械設(shè)計(jì)手冊(cè)可知 (2-4)2.4.3.3剛度驗(yàn)算 根據(jù)公式 (2-5) 絲杠副剛度的驗(yàn)算 絲杠總變形量 變形量要少于定位精度得一半,即0.01/2=0.005 =0.0038YE,可用X方向走的總步數(shù)XE作為終點(diǎn)判別的依據(jù),如動(dòng)點(diǎn)X等于終點(diǎn)XE則停止。當(dāng)XEYE,則用Y方向走的總步數(shù)YE作為終點(diǎn)判別的依據(jù)。如圖4-1所示對(duì)直線上任意一點(diǎn)(x,y),則有直線方程 x/y = xe/ye (4-1)即 xey - xye =0 設(shè)P(x,y)為加工動(dòng)點(diǎn),則若P位于該加工直線上,有:xeyi - xiye- = 0若p位于該加工直線上方,有:xeyi - xiye 0若P位于該加工直線下方,有:xeyi - xiye 0由此定義偏差判別函數(shù)Fi為: Fi = xeyi - xiye當(dāng)Fi = 0時(shí),加工動(dòng)點(diǎn)在直線上;當(dāng)FI 0時(shí),加工動(dòng)點(diǎn)在直線上方;FI 0時(shí),加工動(dòng)點(diǎn)在直線下方。表1是在各個(gè)象限插補(bǔ)技術(shù)公式。直線插補(bǔ)器如圖4-2所示。圖4-1比較法直線插補(bǔ)示意圖表4-1插補(bǔ)計(jì)算公式象限坐 標(biāo) 進(jìn) 給偏 差 計(jì) 算F0F0F0F0+x+yFi+1=Fi-yeFi+1=Fi+x-x+y-x-y+x-y圖4-2直線插補(bǔ)器4.3數(shù)控插補(bǔ)仿真軟件的說(shuō)明計(jì)算機(jī)上位機(jī)人機(jī)交互界面如下圖所示:圖4-3上位機(jī)人機(jī)交互界面在進(jìn)行插補(bǔ)實(shí)驗(yàn)時(shí),操作步驟如下:1) 點(diǎn)選直線或圓弧。 2) 輸入直線或圓弧參數(shù)。3) 清屏。4) 開(kāi)始。即是畫(huà)出實(shí)驗(yàn)所需曲線。5) 點(diǎn)選實(shí)驗(yàn)類型。界面的左邊實(shí)時(shí)顯示插補(bǔ)的路徑,右邊實(shí)時(shí)的更新插補(bǔ)器里的相關(guān)數(shù)據(jù)。4.4開(kāi)環(huán)系統(tǒng)控制原理三維數(shù)控工作臺(tái)伺服系統(tǒng)控制分兩部分,一是:x-y部分控制,二是:z方向控制,首先通過(guò)STC12C5412型單片機(jī)控制X軸和Y軸的步進(jìn)電機(jī),然后通過(guò)89C51控制Z軸的單片機(jī)。STC12C5412型單片機(jī)有兩個(gè)PWM波發(fā)出口,可同時(shí)發(fā)出兩個(gè)脈沖來(lái)控制兩個(gè)步進(jìn)電機(jī),發(fā)出的兩個(gè)脈沖通過(guò)控制器放大信號(hào)來(lái)控制步進(jìn)電機(jī)。89C51型單片機(jī)控制一個(gè)步進(jìn)電機(jī),通過(guò)控制器來(lái)放大信號(hào)達(dá)到驅(qū)動(dòng)步進(jìn)電機(jī)的目的。步進(jìn)電機(jī)是將電脈沖信號(hào)轉(zhuǎn)變?yōu)榻俏灰苹蚓€位移的開(kāi)環(huán)控制元件。在非超載的情況下,電機(jī)的轉(zhuǎn)速、 停止的位置只取決于脈沖信號(hào)的頻率和脈沖數(shù),而不受負(fù)載變化的影響,即給電機(jī)加一個(gè)脈沖信號(hào),電機(jī) 則轉(zhuǎn)過(guò)一個(gè)步距角。這一線性關(guān)系的存在,加上步進(jìn)電機(jī)只有周期性的誤差而無(wú)累積誤差等特點(diǎn)。使得在速度、位置等控制領(lǐng)域用步進(jìn)電機(jī)來(lái)控制變的非常的簡(jiǎn)單。步進(jìn)電機(jī)的運(yùn)動(dòng)特性與配套使用的驅(qū)動(dòng)電源又密切的關(guān)系。驅(qū)動(dòng)電源由脈沖分配器、功率放大器等組成。驅(qū)動(dòng)電源是將變頻信號(hào)源送來(lái)的脈沖信號(hào)及方向信號(hào)按要求的配電方式自動(dòng)的循環(huán)供給電動(dòng)機(jī)各項(xiàng)繞組,以驅(qū)動(dòng)電動(dòng)機(jī)轉(zhuǎn)子正反轉(zhuǎn)。變頻信號(hào)源是可提供從幾赫到幾萬(wàn)赫的頻率信號(hào)連續(xù)可調(diào)的脈沖信號(hào)發(fā)生器,只要控制輸入電脈沖的數(shù)量及頻率就可精確控制步進(jìn)電機(jī)的轉(zhuǎn)角及轉(zhuǎn)速。如圖4-4步進(jìn)電機(jī)開(kāi)環(huán)伺服原理圖。圖4-4步進(jìn)電機(jī)開(kāi)環(huán)伺服原理圖 開(kāi)環(huán)控制步驟如下所示: 輸入程序單片機(jī)脈沖分配器功率放大步進(jìn)電機(jī)絲杠絲杠螺母及小壓板連接板4.5單片機(jī)設(shè)計(jì) 如圖4-5,圖4-6所示分別為51單片機(jī)硬件控制模塊電路圖和驅(qū)動(dòng)模塊電路圖:圖4-5 單片機(jī)控制模塊電路圖圖4-6 單片機(jī)驅(qū)動(dòng)模塊電路圖如圖4-7所示為STC12C5412單片機(jī)控制步進(jìn)電機(jī)的接線圖。圖4-7單片機(jī)控制步進(jìn)電機(jī)接線圖設(shè)計(jì)程序時(shí),在RAM數(shù)據(jù)區(qū)分別存放終點(diǎn)坐標(biāo)值XE,YE,動(dòng)點(diǎn)坐標(biāo)值X,Y,偏差FM。對(duì)8位機(jī),一般可用2字節(jié),而行程較大時(shí)則需用3字節(jié)或4字節(jié)才能滿足長(zhǎng)度和精度要求。此外,所有的數(shù)據(jù)區(qū)必須進(jìn)行初始值X、Y向步進(jìn)電機(jī)初態(tài)(控制字)。插補(bǔ)程序所用的內(nèi)存單元如表4-2所示:表4-2 內(nèi)存單元表28H29H2AH2BH2CH70HXEYEXYFM反轉(zhuǎn)電機(jī)正反轉(zhuǎn)控制字為:D7, D6,D5,D4,D3,D2,D1,D01D0為X向電機(jī)控制位。D0=1運(yùn)行,D0=0停止;D1=1正轉(zhuǎn),D1=0反轉(zhuǎn)。D3D2為Y向電機(jī)控制位。D2=1運(yùn)行,D2=0停止;D3=1正轉(zhuǎn),D3=0反轉(zhuǎn)。X-Y軸步進(jìn)電機(jī)控制程序:ORG 2000HMAIN:MOV SP, #60HLP4: MOV 28H, #12CH; MOV 29H, #12CH; MOV 2AH, #00H; MOV 2BH, #00H; MOV 2CH, #00H; MOV 70H, #0AHLP3: MOV A, 2EH JB ACC.7, LP1 MOV A, 70H SETB ACC.0 CLR ACC.2 MOV 70H, A LCALL MOTR LCALL DELAY MOV A, 2EH哈爾濱理工大學(xué)學(xué)士學(xué)位論文三維數(shù)控工作臺(tái)的設(shè)計(jì)與開(kāi)發(fā)摘要在當(dāng)前生產(chǎn)中的許多機(jī)械設(shè)備中均需要精密定位,而其中的三維精密定位工作臺(tái)作為關(guān)鍵部件將直接影響其整機(jī)的性能和精度。為保證機(jī)器性能,工作臺(tái)要在X方向和Y方向?qū)崿F(xiàn)快速準(zhǔn)確的定位,并且要求在Z方向能夠?qū)崿F(xiàn)精確調(diào)整和定位,要實(shí)現(xiàn)快速和準(zhǔn)確定位,必須對(duì)工作臺(tái)進(jìn)行改裝,使用步進(jìn)電機(jī)和控制卡。本文設(shè)計(jì)的工作臺(tái)就是基于單片機(jī)控制的三維數(shù)控工作臺(tái)。本次研究的課題的主要內(nèi)容包括:充分利用實(shí)驗(yàn)室中廢舊的二維工作臺(tái),通過(guò)對(duì)硬件諸如直線導(dǎo)軌,深溝球軸承,滾珠絲杠,步進(jìn)電機(jī)等的選擇并對(duì)零件的整體連接結(jié)構(gòu)進(jìn)行設(shè)計(jì)從而組裝出一臺(tái)可運(yùn)轉(zhuǎn)的三維工作臺(tái);利用三維建模軟件對(duì)所選擇的工作臺(tái)的各部分零件進(jìn)行建模,裝配,并對(duì)裝配好的三維工作臺(tái)實(shí)現(xiàn)運(yùn)動(dòng)仿真;利用VB語(yǔ)言對(duì)插補(bǔ)程序進(jìn)行軟件設(shè)計(jì);需要完成對(duì)三維工作臺(tái)的控制系統(tǒng)的設(shè)計(jì),主要包括對(duì)開(kāi)閉環(huán)的選擇,對(duì)80C51單片機(jī)功能的充分認(rèn)識(shí)并編寫控制程序,充分理解、學(xué)習(xí)插補(bǔ)技術(shù)在三維數(shù)控工作臺(tái)中的應(yīng)用。通過(guò)上述研究?jī)?nèi)容,我們可以的到一臺(tái)經(jīng)濟(jì),實(shí)用,精密度較高的三維數(shù)控工作臺(tái),通過(guò)與普通工作臺(tái)的比較,我們可以從中得出插補(bǔ)技術(shù)對(duì)于數(shù)控工作臺(tái)的影響??梢哉f(shuō)將插補(bǔ)技術(shù)應(yīng)用到現(xiàn)代數(shù)控加工已經(jīng)是一個(gè)不可逆轉(zhuǎn)的趨勢(shì),因此本課題具有很高的研究?jī)r(jià)值。關(guān)鍵詞 數(shù)控系統(tǒng);三維工作臺(tái);單片機(jī);插補(bǔ)技術(shù)Design and development of 3D NC workbenchAbstractTo study the influence of the parameters of open NC servo feed systems and spatial geometry error on the precision and find methods to realize the high precision control of numerical control (NC) system, the development of the control system of a two-axis NC worktable ,consisting of ball screws and linear roller guides, was presented in this thesis. The system is based on an open architecture PMAC (Programmable multi-Axis controller) motion control card to realize real-time control. Some experiments concerning control test and error measurement and analysis can be carried out on the designed worktable. At first, the configuration of control system of the 3D NC worktable Was proposed ,and its software was developed. Modular software development concept featured the system design, which includes the following modules: machining position and speed sampled display module; file management module; parameters setting module; error diagnosis module; precision analysis module; manual debugging module; machine simulation module; help module.As one of focuses, the error measurement and precision analysis of the worktable were emphasized in the development of the system software. Series of experiments about system control and precision were made on the worktable. The precision characteristics of the half-loop and closed-loop position feedbacks were analyzed. Through comparing the theoretical analysis with the data collected from experiments ,a conclusion has been drawn that the smallest contour error will be got if the two axes have the same servo characteristics. The ball-bar ,which is considered to be more reliable than linearscales in measuring contour error, was used to measure the circular motion of the system. The experiment result showed that the contour error of the system was big .By analysis of the error source based on a mathematical model of the measuring system proposed in this thesis, it was found that it was the installation inclination of linear scales that caused so big error. By compensating the error with the measured result by the ball-bar ,the precision of the control system had been improved.Keywords Numerical Control System;three-dimensional NC workbench;SCM;Interpolation technique;III目錄摘要IAbstractII第1章 緒論11.1課題研究的意義11.2課題研究的現(xiàn)狀11.3課題研究的主要內(nèi)容2第2章 三維數(shù)控工作臺(tái)的硬件選擇及連接結(jié)構(gòu)32.1三維數(shù)控工作臺(tái)的工作原理介紹32.2三維數(shù)控工作臺(tái)的基本結(jié)構(gòu)32.3步進(jìn)電機(jī)的選擇42.4絲杠的選型與校核52.4.1滾珠絲杠的簡(jiǎn)單介紹52.4.2滾珠絲杠的選型72.4.3滾珠絲杠的校核82.5直線導(dǎo)軌的選型與計(jì)算92.5.1直線導(dǎo)軌的簡(jiǎn)單介紹92.5.2直線導(dǎo)軌的選型102.6聯(lián)軸器的選型122.6.1聯(lián)軸器的簡(jiǎn)介122.6.2聯(lián)軸器的選型132.7軸承選型142.8本章小結(jié)16第3章 三維數(shù)控工作臺(tái)的Pro/E三維建模173.1 Pro/E建模軟件簡(jiǎn)介173.2 Pro/E界面介紹173.3零件三維建模實(shí)例介紹183.3.1新建文件183.3.2建立拉伸特征193.3.3建立螺旋特征203.3.4建立螺母副特征203.3.5進(jìn)行顏色和外觀設(shè)計(jì)213.4其余零件三維建模圖展示223.5三維數(shù)控工作臺(tái)裝配233.6本章小結(jié)25第4章 三維工作臺(tái)的軟件及控制系統(tǒng)設(shè)計(jì)264.1逐點(diǎn)比較法直線插補(bǔ)的簡(jiǎn)介264.2逐點(diǎn)比較法直線插補(bǔ)的計(jì)算步驟264.3數(shù)控插補(bǔ)仿真軟件的說(shuō)明294.4開(kāi)環(huán)系統(tǒng)控制原理304.5單片機(jī)設(shè)計(jì)304.6本章小結(jié)35結(jié)論36致謝37參考文獻(xiàn)38附錄一39附錄二492附錄一Mechanical Engineering in the Information AgeIn the early 1980s,engineers thought that massive research would be needed to speed up product development.As it turns out ,less research is actually needed because shortened product development cycles encourage engineers to use available technology.Developing a revolutionary technology for use in a new product is risky and prone to failure .Taking shot steps is a safer and usually more successful approach to product development.Shorter product development cyclys are also beneficial in an engineering world in which both captical and labor are global.People who can design and manufacture various products can be found anywhere in the world,but containing a new idea is hard.Geographic distance is no longer a barrier to others finging out about your development six months into the process.If you are got a short development cycle,the situation is not catastrophic-as long as you maintain your lead,But if you are in the midist of a six-year development process and a competitor gets wind of your work,the project could be in more serious trouble. In one respect, manufacturing could be said to be coming full circle. The first manufacturing was a cottage industry: the designer was also the manufacturing, conceiving and fabricating products one at a time. Eventually, the concept of the interchangeability of parts was developed, production was separated into separated into specialized functions, and identical parts were produced thousands at a time.Today, although the designer and manufacturing may not become one again, the functions are being drawn close in the movement toward an integrated manufacturing system.It is perhaps ironic that, at a time when the market demands a high degree of product diversification, the necessity for increasing productivity and reducing cost is driving manufacturing toward integration into a coherent system, a continuous process in which parts do not spend as much as 95% of production time being moved around or waiting to be worked on.The computer is the key to each of these twin requirements. It is the only tool that can provide the quick reflexes, the flexibility and speed, to meet a diversified market. And it is the only tool that enables the detailed analysis and the accessibility of accurate data necessary for the integration of the manufacturing system.Today, nearly every market is a niche market, because customers are selective. If you ignore the potential for tailoring your product to specific customers needs, you will lose the major part of your market share perhaps all of it. Since these niche markets are transient, your company needs to be in a position to respond to them quickly.The emergence of niche markets and design on demand has altered the way engineers conduct research. Today, research is commonly directed toward solving particular problems. Although this situation is probably temporary, much uncommitted technology, developed at government expense or written off by major corporations, is available today at very low cost. Following modest modifications, such technology can often be used directly in product development, which allows many organizations to avoid the expense of an extensive research effort. Once the technology is free of major obstacles, the research effort can focus on overcoming the barriers to commercialization rather than on pursuing new and interesting, but undefined, alternatives.When viewed in this perspective, engineering research must focus primarily on removing the barriers to rapid commercialization of known technologies. Much of this effort must address quality and reliability concerns, which are foremost in the minds of today consumers. Clearly, a reputation for poor quality is synonymous with bad business. Everything possibleincluding thorough inspection at the end of the manufacturing line and automatic replacement of defective productsmust be done to assure that the customer receives a properly functioning product.Research has to focus on the cost benefit of factors such as reliability. As reliability increase, manufacturing costs and the final cost of the system will decrease. Having 30 percent junk at the end of a production line not only costs a fortune but also creates an opportunity for a competitor to take your idea and sell it to your customers.Central to the process of improving reliability and lowering costs is the intensive and widespread use of design software, witch allows engineers to speed up every stage of the design process. Shortening each stage, however, may not sufficiently reduce the time required for the entire process. Therefore, attention must also be devoted to concurrent engineering software with shared databases that can be accessed by all members of the design team.As we move more fully into the information Age, success will require that the engineer process some unique knowledge of and experience in both the development and the management of technology. Success will require broad knowledge and skills as well as expertise in some key social and economic factors at work in the marketplace. Increasingly, in the future, routine problems will not justify heavy engineering expenditures, and engineers will be expected to work cooperatively in solving more challenging, more demanding problems in substantially less time. We have begun a new phase in the practice of engineering. It offers great promise and excitement as more and more problem-solving capability is placed in the hands of the computerized and unquenched thirst for better products and systems must be matched by the joy of creation that marks all great engineering endeavors. Mechanical engineering is a great profession, and it will become even greater as we make the most of the opportunities offered by the Information Age.It may well be that, in the future, the computer may be essential to a companys survival. Many of todays businesses will fade away to be replaced by more productive combinations. Such more-productive combinations are super quality, super productivity plants. The goal is to design and operate a plant that would produce 100% satisfactory parts with good productivity.A sophisticated, competitive world is requiring that manufacturing begin to settle for more, to become itself sophisticated. To meet competition, for example, a company will have to meet the somewhat conflicting demands for greater product diversification, higher quality, improved productivity, and low prices.The company that seeks to meet these demands will need a sophisticated tool, one that will allow it to respond quickly to customer needs while getting the most out of its manufacturing resources.The computer is that tool.Becoming a “super quality, super productivity” plant requires the integration of an extremely complex system. This can be accomplished only when all elements of manufacturing-design, fabrication and assembly,quality assurance, management, materials handlingare computer integrated.In product design, for example, interactive computer-aided-design (CAD) systems allow the drawing and analysis tasks to be performed in a fraction of the time previously required and with greater accuracy. And programs for prototype testing and evaluation further speed the design process.In manufacturing planning, computer-aided process planning permits the selection, from thousands of possible sequences and schedules, of the optimum process.On the shop floor, distributed intelligence in the form of microprocessors controlled machines, runs automated loading and unloading equipment, and collects data on current shop conditions.But such isolated revolutions are not enough. What is needed is a totally automated system, linked by common software from front door to back.The benefits range throughout the system. Essentially, computer integration provides widely and instantaneously available, accurate information, improving communication between departments, permitting tighter control, and generally enhancing the overall quality and efficiency of the entire system.Improved communication can mean, for example, designs that are more producible. The NC programmer and the tool designer have a chance to influence the product designer, and vice versa.Engineering changes, thus, can be reduced, and those that are required can be handled more efficiently. Not only dose the computer permit them to be specified more quickly, but it also alerts subsequent users of the data to the fact that a change has been made.The instantaneous updating of production-control data permits better planning and more effective scheduling. Expensive equipment, therefore, is used more productively, and parts move more efficiently through production, reducing work-in-process costs.Product quality, too, can be improved. Not only are more-accurate designs produced, for example, but the use of design data by the quality-assurance department helps eliminate errors due to misunderstandings.People are enabled to do their jobs better. By eliminating tedious calculations and paperworknot to mention time wasted searching for informationthe computer not only allows workers to be more productive but also frees then to do what only human beings can do: think creatively.Computer integration may also lure new people into manufacturing. People are attracted because they want to work in a modern, technologically sophisticated environment.In manufacturing engineering, CAD/CAM decreases tool design, NC-programming, and planning times while speeding the response rate, which will eventually permit in-house staff to perform work that is currently being contracted out.Computers have been used in nearly every manufacturing job. Computers improve the efficiency, accuracy, and productivity of many manufacturing processes. Just like the other tools and machines, computers extend human capabilities and make some jobs easier. Every department in manufacturing has found a use for computers.In the management department, supervisors and managers use computers to gather information about the progress of work in all the other departments. In marketing, researchers, advertisers, and sales people use computers to get data on potential buyers, to study market research, and to create advertisements.As we move more fully into the Information Age,success will require that the engineer possess some unique knowledge of and experience in both the development and the management of technology.Success will require broad knowledge and skills as well as expertise in some key technologies and disciplines;it will also require a keen awareness of the social and economica factors at work in the marketplace.Increasingly,in the future,routine problems will not justify heavy engineering expenditures,and engineers will be expected to work cooperatively in solving more challenging,more demanding problems in substantially less time.It offers great promise and excitement as more and more problem-solving capability is placed in the hands of the computerized and wired engineer.We have begun a new phase in the practice of engineering.Mechanical engineering is a great profession,ang it will become even greater as we make the most of the opportunities offered by the Information Age.信息時(shí)代的機(jī)械工程在80年代初工程師們?cè)?jīng)認(rèn)為要加快產(chǎn)品的研制開(kāi)發(fā),必須進(jìn)行大量的研究工作。結(jié)果是實(shí)際上只進(jìn)行了較少的見(jiàn)就工作,這是因?yàn)楫a(chǎn)品開(kāi)發(fā)周期的縮短,促使工程師們盡可能地利用現(xiàn)有的技術(shù)。研制開(kāi)發(fā)一種創(chuàng)新行得技術(shù)并將其應(yīng)用在新產(chǎn)品上,是有風(fēng)險(xiǎn)的,并且易于招致失敗。在產(chǎn)品開(kāi)發(fā)過(guò)程中采用較少的步驟是一種安全的和易于成功的方法。對(duì)于資金和人力都處于全球性環(huán)境中的工程界而言,縮短產(chǎn)品研制開(kāi)發(fā)周期也是有益的。能夠設(shè)計(jì)和制造各種產(chǎn)品的人可以在世界各地找到。但是,具有創(chuàng)新思想的人則比較難找。對(duì)于你已經(jīng)進(jìn)行了6個(gè)月的研制開(kāi)發(fā)工作,地理上的距離已經(jīng)不再是其他人發(fā)現(xiàn)他的障礙。如果你的研制周期較短,只要你仍然保持領(lǐng)先,這種情況并不會(huì)造成嚴(yán)重后果。但如果你正處于一個(gè)長(zhǎng)達(dá)6年的研制開(kāi)發(fā)過(guò)程的中期,一個(gè)競(jìng)爭(zhēng)對(duì)手了解到你的研究工作的一些信息,這個(gè)項(xiàng)目將面臨比較大的麻煩。從某一方面可以說(shuō),制造業(yè)正在完成一個(gè)循環(huán)。最初的制造業(yè)是家庭手工業(yè):設(shè)計(jì)者本身也是制造者,產(chǎn)品的構(gòu)思和加工由同一個(gè)人來(lái)完成。后來(lái),形成了零件的互換性這個(gè)概念,生產(chǎn)被依照專業(yè)功能分割開(kāi)來(lái),可以成批地生產(chǎn)數(shù)以千計(jì)的相同零件。今天,盡管設(shè)計(jì)者與制造者不可能再是同一個(gè)人,但在向集成制造系統(tǒng)前進(jìn)的途中,這兩種功能已經(jīng)越來(lái)越靠近了??赡芫哂兄S刺意味的是,在市場(chǎng)需求高度多樣化產(chǎn)品的時(shí)候,提高生產(chǎn)率和降低成本的必要性促使制造業(yè)朝著集成為單調(diào)關(guān)聯(lián)系統(tǒng)方向變化。這是一個(gè)連續(xù)的過(guò)程,在其中零件不需要花費(fèi)多達(dá)95%的生產(chǎn)時(shí)間用在運(yùn)輸和等待加工上。計(jì)算機(jī)是滿足這兩項(xiàng)要求中的任何一項(xiàng)的關(guān)鍵。它是能夠提供快速反應(yīng)能力、柔性和滿足多樣化市場(chǎng)的唯一工具。而且,它是實(shí)現(xiàn)制造系統(tǒng)集成所需要的、能夠進(jìn)行詳細(xì)分析和利用精確數(shù)據(jù)的唯一工具。將來(lái),計(jì)算機(jī)可能是一個(gè)企業(yè)生存的基本條件,許多現(xiàn)今的獎(jiǎng)杯生產(chǎn)能力更高的企業(yè)組合所取代。這些生產(chǎn)能力更高的企業(yè)組合是一些具有非常高的質(zhì)量、非常高的生產(chǎn)率的工廠。目標(biāo)是的設(shè)計(jì)和運(yùn)行一個(gè)能以高生產(chǎn)率的方式生產(chǎn)100%合格產(chǎn)品的工廠。一個(gè)采用先進(jìn)技術(shù)的、競(jìng)爭(zhēng)的世界正在促進(jìn)制造業(yè)開(kāi)始做更多的工作,使其本身采用先進(jìn)的技術(shù)。為了適應(yīng)競(jìng)爭(zhēng),一個(gè)公司會(huì)滿足一些在某種程度上相互矛盾的要求,諸如產(chǎn)品多樣化、提高質(zhì)量、增加生產(chǎn)率、降低價(jià)格。在努力滿足這些要求的過(guò)程中,公司需要一個(gè)采用先進(jìn)技術(shù)的工具,一個(gè)能夠?qū)︻櫩偷男枨笞龀隹焖俜磻?yīng),而且從制造資源中獲得最大收益的工具。計(jì)算機(jī)就是這個(gè)工具。成為一個(gè)具有“非常高的質(zhì)量、非常高的生產(chǎn)率”的工廠,需要對(duì)一個(gè)非常復(fù)雜的系統(tǒng)進(jìn)行集成。這只是通過(guò)采用計(jì)算機(jī)對(duì)機(jī)械制造的所有組成部分設(shè)計(jì)、加工、裝配、質(zhì)量保證、管理和材料裝卸及輸送進(jìn)行集成才能完成。例如,在產(chǎn)品設(shè)計(jì)期間,交互式的計(jì)算機(jī)輔助設(shè)計(jì)系統(tǒng)使得完成繪圖和和分析工作所需要的時(shí)間比原來(lái)減少,而且精確程度得到了很大的提高。此外,樣機(jī)的實(shí)驗(yàn)與評(píng)價(jià)程序進(jìn)一步加快了設(shè)計(jì)進(jìn)程。 在制定制造計(jì)劃時(shí),計(jì)算機(jī)輔助編制工藝規(guī)程可以從數(shù)以千計(jì)的工序和加工過(guò)程中選擇最好的加工方案。在車間里,分布式智能以微機(jī)處理器這種方式來(lái)控制機(jī)床、從總自動(dòng)裝卸設(shè)備和收集關(guān)于當(dāng)前車間狀態(tài)的信息。但是這些各自獨(dú)立的改革還遠(yuǎn)遠(yuǎn)不夠。我沒(méi)所需要的是由一個(gè)通用軟件從始端到終端進(jìn)行控制的全部自動(dòng)化的系統(tǒng)。整個(gè)系統(tǒng)都會(huì)從中受益。基本上,計(jì)算機(jī)集成可以提供廣泛的、及時(shí)地和精確度的信息,可以改進(jìn)各部門之間的交流與溝通,實(shí)施更嚴(yán)格的控制,而且通常能夠增強(qiáng)整個(gè)系統(tǒng)的全面質(zhì)量和效率。例如,改進(jìn)交流和溝通意味著會(huì)使設(shè)計(jì)具有更好的可制造性。數(shù)控編程人員和工藝裝配設(shè)計(jì)人員有機(jī)會(huì)向產(chǎn)品設(shè)計(jì)人員提出意見(jiàn),反之亦然。因而可以減少技術(shù)方面的變更,而對(duì)于那些必要的變更,可以更有效地進(jìn)行處理。計(jì)算機(jī)不僅能夠更快地對(duì)變更之處做出詳細(xì)的說(shuō)明,而且還能夠把變更之后的數(shù)據(jù)告訴隨后的使用者。利用及時(shí)更新的生產(chǎn)控制數(shù)據(jù)可以制定更好的工藝規(guī)程和更有效率的生產(chǎn)進(jìn)度。因而,可使昂貴的設(shè)備得到更好的利用,提高零件在生產(chǎn)過(guò)程中的運(yùn)送效率,減少在制品的成本。產(chǎn)品質(zhì)量也可得到改進(jìn)。例如,不僅可以提高設(shè)計(jì)精度,還可以是質(zhì)量保證部門利用設(shè)計(jì)數(shù)據(jù),避免由于誤解而產(chǎn)生錯(cuò)誤??墒谷藗兏玫耐瓿伤麄兊墓ぷ?。通過(guò)避免冗長(zhǎng)的計(jì)算和書(shū)寫工作這還不算查找資料所浪費(fèi)的時(shí)間計(jì)算機(jī)不僅使人們更有效的工作,而且還能把他們解放出來(lái)去做只有人類才能做的工作:創(chuàng)造性的思考計(jì)算機(jī)集成制造還會(huì)吸引新的人才進(jìn)入制造業(yè)。人才被吸引過(guò)來(lái)的原因是他們希望到一個(gè)現(xiàn)代化的、技術(shù)先進(jìn)的環(huán)境中工作。在制造工程中,CAD/CAM減少了工藝裝備設(shè)計(jì)、數(shù)控編程和編制工藝規(guī)程所需要的時(shí)間。同時(shí)加快了響應(yīng)速度,這最終將會(huì)使目前外圍加工的工作由公司內(nèi)部人員來(lái)完成。今天,因?yàn)轭櫩蛡冇休^大的選擇余地,幾乎所有市場(chǎng)都是特殊定向產(chǎn)品市場(chǎng)。如果你不能使你的產(chǎn)品滿足某些特定客戶的要求,你將失掉你的市場(chǎng)份額中的一大部分,或者失掉全部份額。由于這些定向產(chǎn)品市場(chǎng)是經(jīng)常變化的,你的公司應(yīng)該對(duì)市場(chǎng)的變化做出快速的反應(yīng)。定向產(chǎn)品市場(chǎng)和根據(jù)客戶要求進(jìn)行設(shè)計(jì)這種現(xiàn)象的出現(xiàn)改變了工程師的研究工作的方式。今天,研究工作通常是針對(duì)解決特定問(wèn)題進(jìn)行的 ?,F(xiàn)在許多由政府資助或者由大公司出資開(kāi)發(fā)的技術(shù)可以在非常低的成本下被自由使用,盡管這種情況可能是暫時(shí)的。在對(duì)這些技術(shù)進(jìn)行適當(dāng)改進(jìn)后,他們通常能夠被直接用于產(chǎn)品開(kāi)發(fā),這使得許多公司可以節(jié)省昂貴的研究經(jīng)費(fèi)。在主要的技術(shù)障礙被克服后,研究工作應(yīng)該主要致力于產(chǎn)品的商品化方面,而不是開(kāi)發(fā)新的、有趣的、不確定的替代產(chǎn)品。采用上述觀點(diǎn)看問(wèn)題,工程研究應(yīng)該致力于消除將已知技術(shù)快速商品化的障礙。工作的重點(diǎn)是產(chǎn)品的可靠性,這些在當(dāng)今顧客的頭腦中是最重要的。很明顯,一個(gè)質(zhì)量差的聲譽(yù)是一個(gè)不好企業(yè)的代名詞。企業(yè)應(yīng)該盡最大努力來(lái)保證顧客得到合格的產(chǎn)品,這個(gè)努力包括在生產(chǎn)線的終端對(duì)產(chǎn)品進(jìn)行嚴(yán)格的檢驗(yàn)和自動(dòng)更換有缺陷的產(chǎn)品。研究工作應(yīng)該著重考慮諸如可靠性等因素對(duì)成本帶來(lái)的益處。當(dāng)可靠性提高時(shí),制造成本和系統(tǒng)的最終成本將會(huì)降低。如果在生產(chǎn)線的終端產(chǎn)生了30%的廢品,這不僅會(huì)浪費(fèi)金錢,也會(huì)給你的競(jìng)爭(zhēng)對(duì)手創(chuàng)造一個(gè)利用你的想法制造產(chǎn)品,并將其銷售給你的客戶的良機(jī)。提高可靠性和降低成本這個(gè)過(guò)程的關(guān)鍵是深入、廣泛地利用設(shè)計(jì)軟件。設(shè)計(jì)軟件可以使工程師們加快每一階段的設(shè)計(jì)工作。然而,僅僅縮短每一階段的設(shè)計(jì)時(shí)間,可能不會(huì)顯著地縮短整個(gè)設(shè)計(jì)過(guò)程的時(shí)間。因而,必須致力于采用并行工程軟件,這樣可以使所有設(shè)計(jì)組的成員都能使用共今天,因?yàn)轭櫩蛡冇休^大的選擇余地,幾乎所有市場(chǎng)都是特殊定向產(chǎn)品市場(chǎng)。如果你不能使你的產(chǎn)品滿足某些特定客戶的要求,你將失掉你的市場(chǎng)份額中的一大部分,或者失掉全部份額。由于這些定向產(chǎn)品市場(chǎng)是經(jīng)常變化的,你的公司應(yīng)該對(duì)市場(chǎng)的變化做出快速的反應(yīng)。根據(jù)工具與制造工程師手冊(cè),工藝設(shè)計(jì)就是系統(tǒng)地確定能夠經(jīng)濟(jì)的和有競(jìng)爭(zhēng)力的將產(chǎn)品制造出來(lái)的方法。它主要由選擇、計(jì)算和建立工藝文件組成。對(duì)加工方法、機(jī)床、刀具、工序和順序必須進(jìn)行選擇。對(duì)于一些參數(shù)如進(jìn)給量、速度、公差、尺寸和成本等應(yīng)該進(jìn)行計(jì)算。最后,應(yīng)該建立加工說(shuō)明、帶工序簡(jiǎn)圖的工藝過(guò)程卡和加工路線等方面的工藝文件。工藝設(shè)計(jì)是產(chǎn)品設(shè)計(jì)和制造的中間環(huán)節(jié)。那么,它是如何將設(shè)計(jì)與制造連接起來(lái)的呢?大部分制造工程師都會(huì)同意這個(gè)看法,即如果10個(gè)不同的工藝人員進(jìn)行同一個(gè)零件的工藝設(shè)計(jì),他們很可能得出10種不同的方案。顯然,所有這些方案都不能反映最適當(dāng)?shù)闹圃旆椒?,而且,事?shí)上也不能保證它們中的任何一個(gè)方案是由加工這個(gè)零件的最好的方法組成的。隨著我們步入信息時(shí)代,要取得成功,工程師們?cè)诩夹g(shù)開(kāi)發(fā)和技術(shù)管理方面都應(yīng)該具有一些獨(dú)特的知識(shí)和經(jīng)驗(yàn)。成功的工程師們不但應(yīng)該具有寬廣的知識(shí)和技能,而且還應(yīng)該是某些關(guān)鍵技術(shù)或?qū)W科的專家,他們還應(yīng)該在社會(huì)因素和經(jīng)濟(jì)因素對(duì)市場(chǎng)影響方面有敏銳洞察能力。將來(lái),花在解決日常工程問(wèn)題上的費(fèi)用將會(huì)減少,工程師們將會(huì)在一些更富有挑戰(zhàn)行,更急需解決的問(wèn)題上協(xié)同工作,大大縮短解決這些問(wèn)題所需要的時(shí)間。計(jì)算機(jī)和網(wǎng)絡(luò)使工程師們具有了越來(lái)越多的解決問(wèn)題的能力,這也給他們的工作帶來(lái)很大的希望和喜悅。我們已經(jīng)開(kāi)始了工程實(shí)踐的新階段。機(jī)械工程是一個(gè)偉大的行業(yè),當(dāng)我們充分利用了信息時(shí)代所提供的及預(yù)后,他將變得更加偉大。
收藏