八年級(jí)數(shù)學(xué)下《第十九章一次函數(shù)》單元測試卷(人教版含答案)
《八年級(jí)數(shù)學(xué)下《第十九章一次函數(shù)》單元測試卷(人教版含答案)》由會(huì)員分享,可在線閱讀,更多相關(guān)《八年級(jí)數(shù)學(xué)下《第十九章一次函數(shù)》單元測試卷(人教版含答案)(17頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
八年級(jí)數(shù)學(xué)下《第十九章一次函數(shù)》單元測試卷(人教版含答案)《一次函數(shù)》單元提升測試卷一.選擇題1.對于一次函數(shù) y=﹣2x+4,下列結(jié)論錯(cuò)誤的是( )A.函數(shù)的圖象不經(jīng)過第三象限 B.函數(shù)的圖象與 x 軸的交點(diǎn)坐標(biāo)是(0,4) C.函數(shù)的圖象向下平移 4 個(gè)單位長度得 y=﹣2x 的圖象 D.函數(shù)值隨自變量的增大而減小2.一次函數(shù) y=﹣x+1 的圖象不經(jīng)過的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函數(shù) y=kx+b 的圖象如圖所示,則函數(shù) y=﹣bx+k 的圖象大致是( )A. B. C. D.4.如果 y=(m﹣1)+3 是一次函數(shù),那么 m 的值是( )A.1 B.﹣1 C.±1 D.±5.函數(shù) y=kx 的圖象經(jīng)過點(diǎn) P(3,﹣1),則 k 的值為( )A.3 B.﹣3 C. D.﹣6.小敏從 A 地出發(fā)向 B 地行走,同時(shí)小聰從 B 地出發(fā)向 A 地行走,如圖,相交于點(diǎn) P 的兩條線段 l1、l2 分別表示小敏、小聰離 B 地的距離 y km 與已用時(shí)間 x h 之間的關(guān)系,則小敏、小聰行走的速度分別是( )A.3km/h 和 4km/h B.3km/h 和 3km/h C.4km/h 和 4km/h D.4km/h 和 3km/h7.如圖,D3081 次六安至漢口動(dòng)車在金寨境內(nèi)勻速通過一條隧道(隧道長大于火車長),火車進(jìn)入隧道的時(shí)間 x 與火車在隧道內(nèi)的長度 y 之間的關(guān)系用圖象描述大致是( )A. B. C. D.8.下列函數(shù)中,y 隨 x 的增大而減小的有( )①y=﹣2x+1;②y=6﹣x;③y=;④y=(1﹣)x.A.1 個(gè) B.2 個(gè) C.3 個(gè) D.4 個(gè)9.如圖,點(diǎn) M 為?ABCD 的邊 AB 上一動(dòng)點(diǎn),過點(diǎn) M 作直線 l 垂直于AB,且直線 l 與?ABCD 的另一邊交于點(diǎn) N.當(dāng)點(diǎn) M 從 A→B 勻速運(yùn)動(dòng)時(shí),設(shè)點(diǎn) M 的運(yùn)動(dòng)時(shí)間為 t,△AMN 的面積為 S,能大致反映 S 與t 函數(shù)關(guān)系的圖象是( )A. B. C. D.10.甲、乙兩同學(xué)從 A 地出發(fā),騎自行車在同一條路上行駛到距 A地 18 千米的 B 地,他們離開 A 地的距離 S(千米)和行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系圖象如圖所示,根據(jù)題目和圖象所提供的信息,下列說法正確的是( )A.乙比甲先到達(dá) B 地 B.乙在行駛過程中沒有追上甲 C.乙比甲早出發(fā)半小時(shí) D.甲的行駛速度比乙的行駛速度快二.填空題11.若一次函數(shù) y=kx+b 圖象如圖,當(dāng) y>0 時(shí),x 的取值范圍是 .12.寫出一個(gè)一次函數(shù),使它的圖象經(jīng)過第一、三、四象限: .13.若點(diǎn)(m,n)在函數(shù) y=2x+1 的圖象上,則 2m﹣n 的值是 .14.如圖①,在邊長為 4cm 的正方形 ABCD 中,點(diǎn) P 以每秒 2cm 的速度從點(diǎn) A 出發(fā),沿 AB→BC 的路徑運(yùn)動(dòng),到點(diǎn) C 停止.過點(diǎn) P 作PQ∥BD ,PQ 與邊 AD(或邊 CD)交于點(diǎn) Q,PQ 的長度 y(cm)與點(diǎn)P 的運(yùn)動(dòng)時(shí)間 x(秒)的函數(shù)圖象如圖②所示.當(dāng)點(diǎn) P 運(yùn)動(dòng) 2.5 秒時(shí),PQ 的長度是 cm.15.甲、乙兩人分別從兩地同時(shí)出發(fā)登山,甲、乙兩人距山腳的豎直高度 y(米)與登山時(shí)間 x(分)之間的圖象如圖所示,若甲的速度一直保持不變,乙出發(fā) 2 分鐘后加速登山,且速度是甲速度的 4倍,那么他們出發(fā) 分鐘時(shí),乙追上了甲.16.如圖 1,點(diǎn) P 從△ABC 的頂點(diǎn) B 出發(fā),沿 B→C→A 勻速運(yùn)動(dòng)到點(diǎn) A,圖 2 是點(diǎn) P 運(yùn)動(dòng)時(shí),線段 BP 的長度 y 隨時(shí)間 x 變化的關(guān)系圖象,其中 M 為曲線部分的最低點(diǎn),則△ABC 的面積是 .三.解答題17.已知正比例函數(shù) y=kx 的圖象過點(diǎn) P(3,﹣3).(1)寫出這個(gè)正比例函數(shù)的函數(shù)解析式;(2)已知點(diǎn) A(a,2)在這個(gè)正比例函數(shù)的圖象上,求 a 的值. 18.如圖,直線 y=2x+3 與 x 軸相交于點(diǎn) A,與 y 軸相交于點(diǎn) B.(1)求 A,B 兩點(diǎn)的坐標(biāo);(2)過 B 點(diǎn)作直線與 x 軸交于點(diǎn) P,若△ABP 的面積為,試求點(diǎn) P的坐標(biāo).19.如圖,平面直角坐標(biāo)系中,直線 AB:交 y 軸于點(diǎn) A(0,1),交 x 軸于點(diǎn) B.直線 x=1 交 AB 于點(diǎn) D,交 x 軸于點(diǎn) E,P 是直線x=1 上一動(dòng)點(diǎn),且在點(diǎn) D 的上方,設(shè) P(1,n).(1)求直線 AB 的解析式和點(diǎn) B 的坐標(biāo);(2)求△ABP 的面積(用含 n 的代數(shù)式表示);(3)當(dāng) S△ABP=2 時(shí),以 PB 為邊在第一象限作等腰直角三角形BPC,求出點(diǎn) C 的坐標(biāo). 20.某產(chǎn)品每件成本 10 元,試銷階段每件產(chǎn)品的銷售價(jià) x(元)與產(chǎn)品的日銷售量 y(件)之間的關(guān)系如表:x/元 … 15 20 25 …y/件 … 25 20 15 …已知日銷售量 y 是銷售價(jià) x 的一次函數(shù).(1)求日銷售量 y(件)與每件產(chǎn)品的銷售價(jià) x(元)之間的函數(shù)表達(dá)式;(2)當(dāng)每件產(chǎn)品的銷售價(jià)定為 35 元時(shí),此時(shí)每日的銷售利潤是多少元?21.電力公司為鼓勵(lì)市民節(jié)約用電,采取按月用電量分段收費(fèi)辦法.若某戶居民每月應(yīng)交電費(fèi) y(元)與用電量 x(度)的函數(shù)圖象是一條折線(如圖所示),根據(jù)圖象解下列問題:(1)分別寫出當(dāng) 0≤x≤100 和 x>100 時(shí),y 與 x 的函數(shù)關(guān)系式;(2)利用函數(shù)關(guān)系式,說明電力公司采取的收費(fèi)標(biāo)準(zhǔn);(3)若該用戶某月用電 62 度,則應(yīng)繳費(fèi)多少元?若該用戶某月繳費(fèi) 105 元時(shí),則該用戶該月用了多少度電? 22.甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間 x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:(1)甲登山上升的速度是每分鐘 米,乙在 A 地時(shí)距地面的高度 b 為 米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的 3 倍,請求出乙登山全程中,距地面的高度 y(米)與登山時(shí)間 x(分)之間的函數(shù)關(guān)系式;(3)登山多長時(shí)間時(shí),甲、乙兩人距地面的高度差為 70 米?23.如圖 1,在平面直角坐標(biāo)系中,點(diǎn) O 是坐標(biāo)原點(diǎn),四邊形 ABCO是菱形,點(diǎn) A 的坐標(biāo)為(﹣3,4),點(diǎn) C 在 x 軸的正半軸上,直線AC 交 y 軸于點(diǎn) M,AB 邊交 y 軸于點(diǎn) H,連接 BM(1)菱形 ABCO 的邊長 (2)求直線 AC 的解析式;(3)動(dòng)點(diǎn) P 從點(diǎn) A 出發(fā),沿折線 ABC 方向以 2 個(gè)單位/秒的速度向終點(diǎn) C 勻速運(yùn)動(dòng),設(shè)△PMB 的面積為 S(S≠0 ),點(diǎn) P 的運(yùn)動(dòng)時(shí)間為 t 秒,①當(dāng) 0<t<時(shí),求 S 與 t 之間的函數(shù)關(guān)系式;②在點(diǎn) P 運(yùn)動(dòng)過程中,當(dāng) S=3,請直接寫出 t 的值. 參考答案一.選擇題1.解:A、k=﹣2,b=4,函數(shù)的圖象經(jīng)過第一、二、四象限,不經(jīng)過第三象限,不符合題意;B、函數(shù)的圖象與 y 軸的交點(diǎn)坐標(biāo)是(0,4),符合題意;C、函數(shù)的圖象向下平移 4 個(gè)單位長度得 y=﹣2x 的圖象,不符合題意;D、k=﹣2,函數(shù)值隨自變量的增大而減小,不符合題意;故選:B.2.解:∵一次函數(shù) y=﹣x+1 中 k=﹣1<0,b=1>0,∴此函數(shù)的圖象經(jīng)過一、二、四象限,不經(jīng)過第三象限.故選:C.3.解:∵函數(shù) y=kx+b 的圖象經(jīng)過第一、二、三象限,∴k>0,b>0,∴函數(shù) y=﹣bx+k 的圖象經(jīng)過第一、二、四象限.故選:C.4.解:∵y=(m﹣1)+3 是一次函數(shù),∴,∴m=﹣1,故選:B.5.解:∵函數(shù) y=kx 的圖象經(jīng)過點(diǎn) P(3,﹣1),∴3k=﹣1,∴k=﹣.故選:D.6.解:小敏從相遇到 B 點(diǎn)用了 2.8﹣1.6=1.2 小時(shí),所以小敏的速度==4(千米/時(shí)),小聰從 B 點(diǎn)到相遇用了 1.6 小時(shí),所以小聰?shù)乃俣龋剑?(千米/時(shí)).故選:D.7.解:根據(jù)題意可知火車進(jìn)入隧道的時(shí)間 x 與火車在隧道內(nèi)的長度y 之間的關(guān)系具體可描述為:當(dāng)火車開始進(jìn)入時(shí) y 逐漸變大,火車完全進(jìn)入后一段時(shí)間內(nèi) y 不變,當(dāng)火車開始出來時(shí) y 逐漸變小,故反映到圖象上應(yīng)選 A.故選:A.8.解:①y=﹣2x+1,k=﹣2<0;②y=6﹣x,k=﹣1<0;③y=,k=﹣<0;④y=(1﹣)x,k=(1﹣)<0.所以四函數(shù)都是 y 隨 x 的增大而減小.故選:D.9.解:設(shè)∠A=α,點(diǎn) M 運(yùn)動(dòng)的速度為 a,則 AM=at,當(dāng)點(diǎn) N 在 AD 上時(shí),MN=tanα×AM=tanα?at,此時(shí) S=×at×tanα?at=tanα×a2t2,∴前半段函數(shù)圖象為開口向上的拋物線的一部分,當(dāng)點(diǎn) N 在 DC 上時(shí),MN 長度不變,此時(shí) S=×at×MN=a×MN×t,∴后半段函數(shù)圖象為一條線段,故選:C.10.解:A、由于 S=18 時(shí),t 甲=2.5,t 乙=2,所以乙比甲先到達(dá) B 地,故本選項(xiàng)說法正確;B、由于甲與乙所表示的 S 與 t 之間的函數(shù)關(guān)系的圖象由交點(diǎn),且交點(diǎn)的橫坐標(biāo)小于 2,所以乙在行駛過程中追上了甲,故本選項(xiàng)說法錯(cuò)誤;C、由于 S=0 時(shí),t 甲=0,t 乙=0.5,所以甲同學(xué)比乙同學(xué)先出發(fā)半小時(shí),故本選項(xiàng)說法錯(cuò)誤;D、根據(jù)速度=路程÷時(shí)間,可知甲的行駛速度為 18÷2.5=7.2 千米/時(shí),乙的行駛速度為 18÷1.5=12 千米/時(shí),所以甲的行駛速度比乙的行駛速度慢,故本選項(xiàng)說法錯(cuò)誤;故選:A.二.填空題(共 6 小題)11.解:由函數(shù)的圖象可知,當(dāng) x<﹣1 時(shí),y>0;故答案為 x<﹣1.12.解:∵一次函數(shù)的圖象經(jīng)過第一、三、四象限,∴k>0,b<0,∴寫出的解析式只要符合上述條件即可,例如 y=x﹣1.故答案為 y=x﹣1.13.解:∵點(diǎn)(m,n)在函數(shù) y=2x+1 的圖象上,∴2m+1=n,即 2m﹣n=﹣1.故答案為:﹣1.14.解:由題可得:點(diǎn) P 運(yùn)動(dòng) 2.5 秒時(shí),P 點(diǎn)運(yùn)動(dòng)了 5cm,此時(shí),點(diǎn) P 在 BC 上,∴CP=8﹣5=3cm,Rt△PCQ 中,由勾股定理,得PQ==3cm,故答案為:.15.解:如圖,∵C(0,50),D(10,150),∴直線 CD 的解析式為 y=10x+50,由題意 A(2,30),甲的速度為 10 米/分,∴乙加速后的速度為 40 米/分,∴乙從 A 到 B 的時(shí)間==3,∴B ( 5,150),∴直線 AB 的解析式為 y=40x﹣50,由,解得,∴那么他們出發(fā)分鐘時(shí),乙追上了甲.故答案為.16.解:根據(jù)圖象可知點(diǎn) P 在 BC 上運(yùn)動(dòng)時(shí),此時(shí) BP 不斷增大,由圖象可知:點(diǎn) P 從 B 向 C 運(yùn)動(dòng)時(shí),BP 的最大值為 5,即 BC=5,由于 M 是曲線部分的最低點(diǎn),∴此時(shí) BP 最小,即 BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于圖象的曲線部分是軸對稱圖形,∴PA=3,∴AC =6,∴△ABC 的面積為:×4×6=12故答案為:12三.解答題(共 7 小題)17.解:(1)把 P(3,﹣3)代入正比例函數(shù) y=kx,得 3k=﹣3,k=﹣1,所以正比例函數(shù)的函數(shù)解析式為 y=﹣x;(2)把點(diǎn) A(a,2)代入 y=﹣x 得,﹣a=2,a=﹣2.18.解:(1)由 x=0 得:y=3,即:B(0,3).由 y=0 得:2x+3=0,解得:x=﹣,即:A(﹣,0);(2)由 B(0,3)、A(﹣,0)得:OB=3,OA=∵S△ABP = AP?OB=∴AP=,解得:AP=.設(shè)點(diǎn) P 的坐標(biāo)為(m,0),則 m﹣(﹣)=或﹣﹣m=,解得:m=1 或﹣4,∴P 點(diǎn)坐標(biāo)為( 1,0)或( ﹣4,0).19.解:(1)∵經(jīng)過 A(0,1),∴b=1,∴直線 AB 的解析式是.當(dāng) y=0 時(shí),,解得 x=3,∴點(diǎn) B(3,0).(2)過點(diǎn) A 作 AM⊥PD,垂足為 M,則有 AM=1,∵x=1 時(shí),=,P在點(diǎn) D 的上方,∴PD=n﹣ ,由點(diǎn) B(3,0),可知點(diǎn) B 到直線 x=1 的距離為 2,即△BDP 的邊PD 上的高長為 2,∴,∴;(3)當(dāng) S△ABP=2 時(shí),,解得 n=2,∴點(diǎn) P(1,2).∵E( 1,0),∴PE= BE=2,∴∠EPB = ∠EBP =45° .第 1 種情況,如圖 1,∠CPB=90°,BP=PC,過點(diǎn) C 作 CN⊥直線 x=1 于點(diǎn) N.∵∠CPB = 90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC= EB=PE=2,∴NE =NP+PE=2+2=4,∴C ( 3,4).第 2 種情況,如圖 2∠PBC=90°,BP=BC,過點(diǎn) C 作 CF⊥x 軸于點(diǎn) F.∵∠PBC = 90°,∠EBP=45°,∴∠CBF = ∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF ≌△ PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF =3+2=5,∴C ( 5,2).第 3 種情況,如圖 3,∠PCB=90°,CP=EB,∴∠CPB = ∠EBP=45°,在△PCB 和 △PEB 中,∴△PCB ≌△ PEB(SAS),∴PC=CB=PE=EB=2,∴C ( 3,2).∴以 PB 為邊在第一象限作等腰直角三角形 BPC,點(diǎn) C 的坐標(biāo)是(3,4)或(5,2)或(3,2).20.解:(1)設(shè)日銷售量 y(件)與每件產(chǎn)品的銷售價(jià) x(元)之間的函數(shù)表達(dá)式是 y=kx+b,,解得,,即日銷售量 y(件)與每件產(chǎn)品的銷售價(jià) x(元)之間的函數(shù)表達(dá)式是 y=﹣x+40;(2)當(dāng)每件產(chǎn)品的銷售價(jià)定為 35 元時(shí),此時(shí)每日的銷售利潤是:(35﹣10)(﹣35+40)=25×5=125(元),即當(dāng)每件產(chǎn)品的銷售價(jià)定為 35 元時(shí),此時(shí)每日的銷售利潤是 125元.21.解:(1)當(dāng) 0≤x≤100 時(shí),設(shè) y=kx,則有 65=100k,解得 k=0.65.∴y=0.65x.當(dāng) x>100 時(shí),設(shè) y=ax+b,則有,解得,∴y=0.8x﹣15;(2)當(dāng) 0≤x≤100 時(shí),每度電 0.65 元當(dāng) x>100 時(shí),每度電 0.8 元(3)當(dāng) x=62 時(shí),y=40.3,當(dāng) y=105 時(shí),105=0.8x﹣15,解得:x=150,答:該用戶某月用電 62 度,則應(yīng)繳費(fèi) 40.3 元,該用戶某月繳費(fèi)105 元時(shí),該用戶該月用了 150 度電.22.解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分鐘),b=15÷1×2=30.故答案為:10;30;(2)當(dāng) 0≤x<2 時(shí),y=15x;當(dāng) x≥2 時(shí),y=30+10×3(x﹣2)=30x﹣30.當(dāng) y=30x﹣30=300 時(shí),x=11.∴乙登山全程中,距地面的高度 y(米)與登山時(shí)間 x(分)之間的函數(shù)關(guān)系式為 y=;(3)甲登山全程中,距地面的高度 y(米)與登山時(shí)間 x(分)之間的函數(shù)關(guān)系式為 y=10x+100(0≤x≤20).當(dāng) 10x+100﹣(30x﹣30)=70 時(shí),解得:x=3;當(dāng) 30x﹣30﹣(10x+100)=70 時(shí),解得:x=10;當(dāng) 300﹣(10x+100)=70 時(shí),解得:x=13.答:登山 3 分鐘、10 分鐘或 13 分鐘時(shí),甲、乙兩人距地面的高度差為 70 米.23.解:(1)Rt△AOH 中,AO===5,所以菱形邊長為 5;故答案為:5;(2)∵四邊形 ABCO 是菱形,∴OC =OA=AB=5,即 C(5,0).設(shè)直線 AC 的解析式 y=kx+b,函數(shù)圖象過點(diǎn) A、C,得,解得,直線 AC 的解析式 y=﹣x+;(3)設(shè) M 到直線 BC 的距離為 h,當(dāng) x=0 時(shí),y=,即 M(0,),HM=HO﹣OM=4﹣=,由 S△ABC =S△AMB+SBMC=AB?OH=AB?HM+BC?h,×5×4=×5×+×5h,解得 h=,①當(dāng) 0<t<時(shí),BP=BA﹣AP=5﹣2t,HM=OH﹣OM=,S=BP?HM=×(5﹣2t)=﹣t+;②當(dāng) 2.5<t≤5 時(shí),BP=2t﹣5,h=,S=BP?h=×(2t﹣5)=t﹣,把 S=3 代入①中的函數(shù)解析式得,3=﹣t+,解得:t=,把 S=3 代入②的解析式得,3=t﹣,解得:t=.∴t=或.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
10 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 年級(jí) 數(shù)學(xué) 下第 十九 一次 函數(shù) 單元測試 卷人教版含 答案
鏈接地址:http://m.appdesigncorp.com/p-530718.html