2019-2020年高三(上)期中數(shù)學(xué)試卷(理科)蘇教版含解析.doc
《2019-2020年高三(上)期中數(shù)學(xué)試卷(理科)蘇教版含解析.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高三(上)期中數(shù)學(xué)試卷(理科)蘇教版含解析.doc(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三(上)期中數(shù)學(xué)試卷(理科)蘇教版含解析 一、填空題(本大題共14小題,每小題5分,共70分,請(qǐng)將答案填寫(xiě)在答題卷相應(yīng)的位置上) 1.(5分)已知全集U={1,2,3,4,5,6,7},A={2,4,5},則CUA= {1,3,6,7}?。? 考點(diǎn): 補(bǔ)集及其運(yùn)算. 專(zhuān)題: 計(jì)算題. 分析: 直接利用補(bǔ)集的定義,求出A的補(bǔ)集即可. 解答: 解:因?yàn)槿疷={1,2,3,4,5,6,7},A={2,4,5}, 則CUA={1,3,5,7}. 故答案為:{1,3,5,7}. 點(diǎn)評(píng): 本題考查集合的基本運(yùn)算,補(bǔ)集的定義的應(yīng)用,考查計(jì)算能力. 2.(5分)已知向量,則向量與的夾角為 30 . 考點(diǎn): 數(shù)量積表示兩個(gè)向量的夾角. 專(zhuān)題: 計(jì)算題;平面向量及應(yīng)用. 分析: 由平面向量模的公式和數(shù)量積計(jì)算公式,算出||=||=1且?=,再用向量的夾角公式即可算出向量與的夾角. 解答: 解:∵, ∴||=||=1,且?=cos35cos65+sin35sin65=cos(﹣30)=cos30= 設(shè)與的夾角為θ,可得cosθ== ∵0≤θ≤180,∴θ=30 故答案為:30 點(diǎn)評(píng): 本題給出向量含有三角函數(shù)的坐標(biāo)形式,求它們的夾角大小,著重考查了數(shù)量積表示兩個(gè)向量的夾角的知識(shí),屬于基礎(chǔ)題. 3.(5分)公比為2的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a4a10=16,則a10= 32?。? 考點(diǎn): 等比數(shù)列的通項(xiàng)公式. 專(zhuān)題: 等差數(shù)列與等比數(shù)列. 分析: 設(shè)出等比數(shù)列{an}的首項(xiàng),結(jié)合等比數(shù)列的通項(xiàng)公式和a4a10=16列式求出首項(xiàng), 然后代回等比數(shù)列的通項(xiàng)公式可求a10. 解答: 解:設(shè)等比數(shù)列{an}的首項(xiàng)為a1(a1≠0), 又公比為2, 由a4a10=16,得:, 所以,,解得:. 所以,. 故答案為32. 點(diǎn)評(píng): 本題考查了等比數(shù)列的通項(xiàng)公式,考查了學(xué)生的運(yùn)算能力,注意的是等比數(shù)列中所有項(xiàng)不會(huì)為0,此題是基礎(chǔ)題. 4.(5分)不等式的解集是 {x|x≥3或x=﹣1}?。? 考點(diǎn): 一元二次不等式的解法. 專(zhuān)題: 計(jì)算題. 分析: 先要看根號(hào)有意義的條件,求得x的范圍,同時(shí)看x﹣2≥0求得x的范圍或x﹣2<0且=0,最后分別取交集. 解答: 解:不等式等價(jià)于或解得x≥3或x=﹣1 故答案為:{x|x≥3或x=﹣1} 點(diǎn)評(píng): 本題主要考查了一元二次不等式的解法.解題的時(shí)候要特別留意如根號(hào),對(duì)數(shù),分母等隱含的不等式關(guān)系. 5.(5分)函數(shù)y=xcosx﹣sinx,x∈(0,2π)單調(diào)增區(qū)間是 (π,2π)?。? 考點(diǎn): 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性. 專(zhuān)題: 導(dǎo)數(shù)的綜合應(yīng)用. 分析: 先求導(dǎo),進(jìn)而利用導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系即可得出. 解答: 解:∵函數(shù)y=xcosx﹣sinx,x∈(0,2π),∴y′=﹣xsinx, 由﹣xsinx>0,x∈(0,2π),化為sinx>0,x∈(0,2π),解得π<x<2π. 故函數(shù)y=xcosx﹣sinx,x∈(0,2π)單調(diào)增區(qū)間是(π,2π). 故答案為(π,2π). 點(diǎn)評(píng): 熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的方法是解題的關(guān)鍵. 6.(5分)若實(shí)數(shù)x滿(mǎn)足log2x+cosθ=2,則|x﹣8|+|x+2|= 10 . 考點(diǎn): 對(duì)數(shù)的運(yùn)算性質(zhì);函數(shù)的值域. 專(zhuān)題: 計(jì)算題;函數(shù)的性質(zhì)及應(yīng)用. 分析: 根據(jù)給出的等式,求出x的值,由余弦函數(shù)的值域得到x的范圍,取絕對(duì)值后可得結(jié)果. 解答: 解:由log2x+cosθ=2,得:log2x=2﹣cosθ, 所以,x=22﹣cosθ, 因?yàn)椹?≤cosθ≤1,所以1≤2﹣cosθ≤3, 則2≤22﹣cosθ≤8,所以2≤x≤8. 則|x﹣8|+|x+2|=﹣(x﹣8)+(x+2)=8﹣x+x+2=10. 故答案為10. 點(diǎn)評(píng): 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),考查了余弦函數(shù)的值域,訓(xùn)練了取絕對(duì)值的方法,是基礎(chǔ)題. 7.(5分)已知向量滿(mǎn)足,.若與垂直,則k= 19?。? 考點(diǎn): 數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系. 專(zhuān)題: 平面向量及應(yīng)用. 分析: 由垂直可得向量的數(shù)量積為0,代入已知數(shù)值可得關(guān)于k的方程,解之即可. 解答: 解:∵與垂直, ∴=0 化簡(jiǎn)可得, 代入可得5k+(1﹣3k)??﹣313=0 化簡(jiǎn)可得解得k=19 故答案為:19 點(diǎn)評(píng): 本題考查向量的垂直,轉(zhuǎn)化為數(shù)量積為0是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題. 8.(5分)已知函數(shù)的圖象與函數(shù)y=kx+2的圖象沒(méi)有交點(diǎn),則實(shí)數(shù)k的取值范圍是 [﹣,0]?。? 考點(diǎn): 函數(shù)的零點(diǎn);函數(shù)的圖象與圖象變化. 專(zhuān)題: 函數(shù)的性質(zhì)及應(yīng)用. 分析: 利用零點(diǎn)分段法化簡(jiǎn)函數(shù)的解析式,并畫(huà)出函數(shù)的圖象,根據(jù)直線(xiàn)y=kx+2過(guò)定點(diǎn)A(0,2),數(shù)形結(jié)合可得滿(mǎn)足條件的實(shí)數(shù)k的取值范圍 解答: 解:函數(shù)==, 直線(xiàn)y=kx+2過(guò)定點(diǎn)A(0,2), 取B(1,2),kAB=0, 取C(1,﹣2),kAB=﹣, 根據(jù)圖象可知要使函數(shù)的圖象與函數(shù)y=kx+2的圖象沒(méi)有交點(diǎn), 則直線(xiàn)斜率滿(mǎn)足:[﹣,0]. 故答案為:[﹣,0]. 點(diǎn)評(píng): 本題考查的知識(shí)點(diǎn)是函數(shù)的零點(diǎn)與方程根的關(guān)系,其中畫(huà)出函數(shù)的圖象,并利用圖象分析出滿(mǎn)足條件時(shí)參數(shù)的范圍是解答的關(guān)鍵. 9.(5分)等差數(shù)列{an}中,已知a2≤7,a6≥9,則a10的取值范圍是 [11,+∞)?。? 考點(diǎn): 等差數(shù)列的性質(zhì). 專(zhuān)題: 計(jì)算題;等差數(shù)列與等比數(shù)列. 分析: 由等差數(shù)列的通項(xiàng)公式an=am+(n﹣m)d,結(jié)合題意可求得其公差d≥,從而可求得a10的取值范圍. 解答: 解:∵等差數(shù)列{an}中,a2≤7,a6≥9, ∴﹣a2≥﹣7,設(shè)該等差數(shù)列的公差為d, 則a6=a2+4d≥9, ∴4d≥9﹣a2≥2, ∴d≥, ∴4d≥2,又a6≥9, ∴a10=a6+4d≥11. 故a10的取值范圍是[11,+∞). 故答案為:[11,+∞). 點(diǎn)評(píng): 本題考查等差數(shù)列的性質(zhì),求得其公差d≥是關(guān)鍵,著重考查等差數(shù)列的通項(xiàng)公式與不等式的性質(zhì),屬于中檔題. 10.(5分)已知A、B、C是直線(xiàn)l上的三點(diǎn),向量,,滿(mǎn)足,則函數(shù)y=f(x)的表達(dá)式為 . 考點(diǎn): 函數(shù)解析式的求解及常用方法;向量的加法及其幾何意義. 專(zhuān)題: 計(jì)算題. 分析: 由三點(diǎn)共線(xiàn)可得f(x)+2f′(1)x﹣lnx=1,求導(dǎo)數(shù)并把x=1代入可得f′(1)的值,進(jìn)而可得解析式. 解答: 解:∵A、B、C三點(diǎn)共線(xiàn),且, ∴f(x)+2f′(1)x﹣lnx=1,兩邊求導(dǎo)數(shù)可得:f′(x)+2f′(1)﹣=0, 把x=1代入可得f′(1)+2f′(1)﹣1=0,解得f′(1)=, 故f(x)+x﹣lnx=1,即 故答案為: 點(diǎn)評(píng): 本題考查函數(shù)解析式的求解,涉及向量的知識(shí)和導(dǎo)數(shù)內(nèi)容,屬基礎(chǔ)題. 11.(5分)已知f(x)=log3(x﹣3),若實(shí)數(shù)m,n滿(mǎn)足f(m)+f(3n)=2,則m+n的最小值為 . 考點(diǎn): 基本不等式;對(duì)數(shù)的運(yùn)算性質(zhì). 專(zhuān)題: 不等式的解法及應(yīng)用. 分析: 由已知得出m、n關(guān)系式和取值范圍,再利用基本不等式的性質(zhì)即可求出. 解答: 解:∵f(x)=log3(x﹣3),f(m)+f(3n)=2,∴,解得. ∴m+n==4++4=,當(dāng)且僅當(dāng),m>3,n>1,,解得,, 即當(dāng),時(shí),取等號(hào). ∴m+n的最小值為. 故答案為. 點(diǎn)評(píng): 正確已知得出m、n關(guān)系式和取值范圍和熟練掌握利用基本不等式的性質(zhì)是解題的關(guān)鍵. 12.(5分)已知函數(shù)若?x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是 (﹣∞,1)∪(2,+∞)?。? 考點(diǎn): 特稱(chēng)命題;分段函數(shù)的解析式求法及其圖象的作法. 專(zhuān)題: 函數(shù)的性質(zhì)及應(yīng)用. 分析: 由題意可得,若?x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,則說(shuō)明f(x)在R上不單調(diào),分a=0及a≠0兩種情況分布求解即可求得結(jié)論. 解答: 解:若?x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,則說(shuō)明f(x)在R上不單調(diào). ①當(dāng)a=0時(shí),f(x)=滿(mǎn)足題意 其其圖象如圖所示,滿(mǎn)足題意 ②當(dāng)a<0時(shí),函數(shù)y=﹣x2+2ax的對(duì)稱(chēng)軸x=a<0,其圖象如圖所示,滿(mǎn)足題意 ③當(dāng)a>0時(shí),函數(shù)y=﹣x2+ax的對(duì)稱(chēng)軸x=a>0,其圖象如圖所示,要使得f(x)在R上不單調(diào) 則只要二次函數(shù)的對(duì)稱(chēng)軸x=a<1,或 ∴0<a<1或a>2, 綜合得:a的取值范圍是(﹣∞,1)∪(2,+∞). 故答案為:(﹣∞,1)∪(2,+∞). 點(diǎn)評(píng): 本題考查函數(shù)的單調(diào)性,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題. 13.(5分)給出以下命題: (1)在△ABC中,sinA>sinB是A>B的必要不充分條件; (2)在△ABC中,若tanA+tanB+tanC>0,則△ABC一定為銳角三角形; (3)函數(shù)與函數(shù)y=sinπx,x∈{1}是同一個(gè)函數(shù); (4)函數(shù)y=f(2x﹣1)的圖象可以由函數(shù)y=f(2x)的圖象按向量平移得到. 則其中正確命題的序號(hào)是 (2)(3)?。ò阉姓_的命題序號(hào)都填上). 考點(diǎn): 命題的真假判斷與應(yīng)用. 分析: 從條件A,結(jié)論B,看A能否得到B,再看B能否得到A,來(lái)判斷充要條件; 從否定結(jié)論入手能否得出與條件矛盾來(lái)判斷命題的真假; 看兩個(gè)函數(shù)是否為同一函數(shù),要先看定義域是否相同,再看對(duì)應(yīng)法則是否相同; 函數(shù)圖象變化,y=f(x)→y=f(x+φ)平移的向量=(﹣φ,0). 解答: 解:①在△ABC中,A>B,若A≤,∵y═sinx是增函數(shù),∴sinA>sinB;若A≥,>π﹣A>B>0,∴sinA>sinB.反過(guò)來(lái)若sinA>sinB,在△ABC中,得A>B,∴sinA>sinB是A>B的充要條件,∴①. 對(duì)②可用反證法證明:假設(shè)△ABC為鈍角△,不妨設(shè)A>,tanA<0,∵A+B+C=π,∴tanA+tanB+tanC=tanA+tan(B+C)(1﹣tanBtanC)=tanA+(﹣tanA)(1﹣tanBtanC)=tanAtanBtanC<0與題設(shè)tanAtanBtanC>0矛盾.△ABC不是直角△,∴△ABC為銳角△,∴②√. ③中y=+定義域是x∈{1},兩函數(shù)定義域、對(duì)應(yīng)法則、值域相同.∴為同一函數(shù),③√. 對(duì)④中函數(shù)y=f(2x﹣1)的圖象可由y=f(2x)的圖象向左平移個(gè)單位得到,∴④. 故答案是②③ 點(diǎn)評(píng): 要正確理解充要條件的含義,掌握判斷方法.判斷命題的真假可用反證法, 14.(5分)數(shù)列{an}滿(mǎn)足,則{an}的前40項(xiàng)和為 420 . 考點(diǎn): 數(shù)列的求和. 專(zhuān)題: 計(jì)算題;等差數(shù)列與等比數(shù)列. 分析: 利用數(shù)列遞推式,可得數(shù)列{an}是從第一項(xiàng)開(kāi)始,依次取2個(gè)相鄰奇數(shù)項(xiàng)的和都等于1,從第二項(xiàng)開(kāi)始,依次取2個(gè)相鄰偶數(shù)項(xiàng)的和構(gòu)成以5為首項(xiàng),以8為公差的等差數(shù)列,由此可得結(jié)論. 解答: 解:∵, ∴a2﹣a1=1,a3+a2=2,a4﹣a3=3,a5+a4=4,…,a50﹣a49=49. ∴a3+a1=1,a4+a2=5,a7+a5=1,a8+a6=13,a9+a11=1,a12+a10=21,… 從第一項(xiàng)開(kāi)始,依次取2個(gè)相鄰奇數(shù)項(xiàng)的和都等于1,從第二項(xiàng)開(kāi)始,依次取2個(gè)相鄰偶數(shù)項(xiàng)的和構(gòu)成以5為首項(xiàng),以8為公差的等差數(shù)列. 所以{an}的前40項(xiàng)和為101+105+=420 故答案為:420. 點(diǎn)評(píng): 本題考查數(shù)列遞推式,考查數(shù)列求和,屬于中檔題. 二、解答題:(本大題共6道題,計(jì)90分.解答應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟) 15.(14分)設(shè)函數(shù)f(x)=sin(2x+φ)(﹣π<φ<0).y=f(x)圖象的一條對(duì)稱(chēng)軸是直線(xiàn). (1)求函數(shù)f(x)的解析式; (2)若,試求的值. 考點(diǎn): 由y=Asin(ωx+φ)的部分圖象確定其解析式;函數(shù)解析式的求解及常用方法;函數(shù)的值. 專(zhuān)題: 三角函數(shù)的圖像與性質(zhì). 分析: (1)根據(jù)是函數(shù)y=f(x)的圖象的對(duì)稱(chēng)軸,求得,再根據(jù)?的范圍求出?的值,即可求得函數(shù)的解析式. (2)由,求得sin(α﹣) 和cos(α﹣)的值,利用兩角和的正弦公式求得sinα的值,再利用二倍角公式求得 的值. 解答: 解:(1)∵是函數(shù)y=f(x)的圖象的對(duì)稱(chēng)軸, ∴,∴,…(2分) ∵﹣π<?<0,∴,…(4分) 故…(6分) (2)因?yàn)椋? 所以,.…(8分) 故 =.…(11分) 故有 =.…(14分) 點(diǎn)評(píng): 本題主要考查利用y=Asin(ωx+?)的圖象特征,由函數(shù)y=Asin(ωx+?)的部分圖象求解析式,兩角和差的正弦公式的應(yīng)用,同角三角函數(shù)的基本關(guān)系,屬于中檔題. 16.(14分)如圖,點(diǎn)P在△ABC內(nèi),AB=CP=2,BC=3,∠P+∠B=π,記∠B=α. (1)試用α表示AP的長(zhǎng); (2)求四邊形ABCP的面積的最大值,并寫(xiě)出此時(shí)α的值. 考點(diǎn): 余弦定理. 專(zhuān)題: 計(jì)算題. 分析: (1)在三角形ABC中,由AB,BC及cosB,利用余弦定理列出關(guān)系式,記作①;在三角形APC中,由AP,PC及cosP,利用余弦定理列出關(guān)系式,記作②,由①②消去AC,得到關(guān)于AP的方程,整理后可用α表示AP的長(zhǎng); (2)由三角形的面積公式表示出三角形ABC及三角形APC的面積,兩三角形面積之差即為四邊形ABCP的面積,整理后將表示出的AP代入,根據(jù)正弦函數(shù)的圖象與性質(zhì)即可求出四邊形ABCP的面積的最大值,以及此時(shí)α的值. 解答: 解:(1)△ABC與△APC中,AB=CP=2,BC=3,∠B=α,∠P=π﹣α, 由余弦定理得,AC2=22+32﹣223cosα,① AC2=AP2+22﹣2AP2cos(π﹣α),② 由①②得:AP2+4APcosα+12cosα﹣9=0,α∈(0,π), 解得:AP=3﹣4cosα; (2)∵AP=3﹣4cosα,α∈(0,π), ∴S四邊形ABCP=S△ABC﹣S△APC=23sinα﹣2APsin(π﹣α) =3sinα﹣(3﹣4cosα)sinα =4sinα?cosα=2sin2α,α∈(0,π), 則當(dāng)α=時(shí),Smax=2. 點(diǎn)評(píng): 此題考查了余弦定理,三角形的面積公式,誘導(dǎo)公式,以及三角函數(shù)的性質(zhì),熟練掌握定理及公式是解本題的關(guān)鍵. 17.(14分)(xx?寧波模擬)已知f(x)=ax﹣lnx,x∈(0,e],其中e是自然常數(shù),a∈R. (1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間和極值; (2)若f(x)≥3恒成立,求a的取值范圍. 考點(diǎn): 函數(shù)在某點(diǎn)取得極值的條件;函數(shù)恒成立問(wèn)題;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性. 專(zhuān)題: 導(dǎo)數(shù)的綜合應(yīng)用. 分析: (1)當(dāng)a=1時(shí),f(x)=x﹣lnx,求出f′(x),在定義域內(nèi)解不等式f′(x)<0,f′(x)>0即可得到單調(diào)區(qū)間,由單調(diào)性即可得到極值; (2)f(x)≥3恒成立即a≥+恒成立,問(wèn)題轉(zhuǎn)化為求函數(shù),x∈(0,e]的最大值,利用導(dǎo)數(shù)即可求得; 解答: 解:(1)當(dāng)a=1時(shí),f(x)=x﹣lnx,f′(x)=1﹣=, 當(dāng)0<x<1時(shí),f′(x)<0,此時(shí)f(x)單調(diào)遞減; 當(dāng)1<x<e時(shí),f′(x)>0,此時(shí)f(x)為單調(diào)遞增. ∴當(dāng)x=1時(shí)f(x)取得極小值,f(x)的極小值為f(1)=1,f(x)無(wú)極大值; (2)∵f(x)=ax﹣lnx,x∈(0,e], ∴ax﹣lnx≥3在x∈(0,e]上恒成立,即a≥+在x∈(0,e]上恒成立, 令,x∈(0,e], 則, 令g′(x)=0,則, 當(dāng)時(shí),f′(x)>0,此時(shí)f(x)單調(diào)遞增, 當(dāng)時(shí),f′(x)<0,此時(shí)f(x)單調(diào)遞減, ∴, ∴a≥e2,即a的取值范圍為a≥e2. 點(diǎn)評(píng): 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、求函數(shù)極值及函數(shù)恒成立問(wèn)題,具有一定綜合性,恒成立問(wèn)題往往轉(zhuǎn)化為函數(shù)最值解決. 18.(16分)各項(xiàng)均為正數(shù)的數(shù)列{an}中,前n項(xiàng)和. (1)求數(shù)列{an}的通項(xiàng)公式; (2)若恒成立,求k的取值范圍; (3)對(duì)任意m∈N*,將數(shù)列{an}中落入?yún)^(qū)間(2m,22m)內(nèi)的項(xiàng)的個(gè)數(shù)記為bm,求數(shù)列{bm}的前m項(xiàng)和Sm. 考點(diǎn): 數(shù)列與不等式的綜合;數(shù)列的求和;等差數(shù)列與等比數(shù)列的綜合. 專(zhuān)題: 綜合題;等差數(shù)列與等比數(shù)列. 分析: (1)由,知,由此得到,由此能能求出an. (2)由,,結(jié)合題設(shè)條件能求出k的取值范圍. (3)對(duì)任意m∈N+,2m<2n﹣1<22m,由,能求出數(shù)列{bm}的前m項(xiàng)和Sm. 解答: 解:(1)∵, ∴, 兩式相減得,…(2分) 整理得(an+an﹣1)(an﹣an﹣1﹣2)=0, ∵數(shù)列{an}的各項(xiàng)均為正數(shù), ∴an﹣an﹣1=2,n≥2,∴{an}是公差為2的等差數(shù)列,…(4分) 又得a1=1,∴an=2n﹣1.…(5分) (2)由題意得, ∵, ∴ =…(8分)∴…(10分) (3)對(duì)任意m∈N+,2m<2n﹣1<22m,則, 而n∈N*,由題意可知,…(12分) 于是 =, 即.…(16分) 點(diǎn)評(píng): 本題考查數(shù)列的通項(xiàng)公式的求法,考查不等式的證明,考查數(shù)列的前m項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用. 19.(16分)定義在實(shí)數(shù)集上的函數(shù)f(x)滿(mǎn)足下列條件: ①f(x)是偶函數(shù);②對(duì)任意非負(fù)實(shí)數(shù)x、y,都有f(x+y)=2f(x)f(y);③當(dāng)x>0時(shí),恒有. (1)求f(0)的值; (2)證明:f(x)在[0,+∞)上是單調(diào)增函數(shù); (3)若f(3)=2,解關(guān)于a的不等式f(a2﹣2a﹣9)≤8. 考點(diǎn): 抽象函數(shù)及其應(yīng)用;函數(shù)單調(diào)性的判斷與證明;函數(shù)單調(diào)性的性質(zhì). 專(zhuān)題: 函數(shù)的性質(zhì)及應(yīng)用. 分析: (1)令x=0,y=1,易由f(x+y)=2f(x)f(y)求出f(0)的值; (2)設(shè)0≤x1<x2,根據(jù)當(dāng)x>0時(shí),恒有及f(x)是偶函數(shù),結(jié)合函數(shù)單調(diào)性的定義可判斷出f(x)在[0,+∞)上是單調(diào)增函數(shù); (3)令x=y=3,則f(6)=8,由(2)中函數(shù)的單調(diào)性,可將抽象不等式具體為|a2﹣2a﹣9|≤6,解絕對(duì)值不等式可得答案. 解答: 解:(1)解:令x=0,y=1, 則f(1)=2f(0)?f(1), ∵, ∴.…(4分) (2)∵當(dāng)x>0時(shí),恒有,又f(x)是偶函數(shù), ∴當(dāng)x<0時(shí),, 又,f(x)>0恒成立.…(6分) 設(shè)0≤x1<x2,則x2﹣x1>0,, ∴f(x2)=2f(x1)f(x2﹣x1)>f(x1),…(9分) ∴f(x)在[0,+∞)上是單調(diào)增函數(shù).…(10分) (3)令x=y=3,則f(6)=2f2(3)=8,…(12分) ∴f(a2﹣2a﹣9)=f(|a2﹣2a﹣9|)≤f(6), 由f(x)在[0,+∞)上是單調(diào)增函數(shù), 得|a2﹣2a﹣9|≤6,…(14分) 即, 解得, ∴﹣3≤a≤﹣1或3≤a≤5.…16 分 點(diǎn)評(píng): 本題考查的知識(shí)點(diǎn)是抽象函數(shù)及其應(yīng)用,函數(shù)單調(diào)性的判斷與證明,函數(shù)單調(diào)性的性質(zhì),熟練掌握抽象函數(shù)“湊”的思想是解答的關(guān)鍵,本題難度中檔. 20.(16分)設(shè)函數(shù)f(x)=ax3+bx2+cx+d是奇函數(shù),且當(dāng)時(shí),f(x)取得極小值. (1)求函數(shù)f(x)的解析式; (2)求使得方程僅有整數(shù)根的所有正實(shí)數(shù)n的值; (3)設(shè)g(x)=|f(x)+(3t﹣1)x|,(x∈[﹣1,1]),求g(x)的最大值F(t). 考點(diǎn): 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;函數(shù)解析式的求解及常用方法;函數(shù)的零點(diǎn). 專(zhuān)題: 綜合題;導(dǎo)數(shù)的綜合應(yīng)用. 分析: (1)由f(x)為奇函數(shù),知b=d=0,由及,知a=﹣1,c=1,由此能求出f(x). (2)由方程,知x2﹣nx+4n=0,由方程僅有整數(shù)解,知n為整數(shù),由x2=n(x﹣4)及n>0知,x﹣4>0,由此能求出n. (3)由g(x)=|x3﹣3tx|,x∈[﹣1,1]是偶函數(shù),知只要求出g(x)在[0,1]上的最大值即可.構(gòu)造函數(shù)h(x)=x3﹣3tx,利用導(dǎo)數(shù)性質(zhì)能求出g(x)的最大值F(t). 解答: 解:(1)∵f(x)為奇函數(shù),∴b=d=0,…(2分) 又由及,得a=﹣1,c=1, ∴f(x)=﹣x3+x.…(4分) 當(dāng)時(shí),f(x)<0, 當(dāng)時(shí)f(x)>0, ∴f(x)在時(shí)取得極小值, ∴f(x)=﹣x3+x為所求.…(5分) (2)方程, 化簡(jiǎn)得:x2﹣nx+4n=0, 因?yàn)榉匠虄H有整數(shù)解,故n為整數(shù), 又由x2=n(x﹣4)及n>0知,x﹣4>0.…(7分) 又, 故x﹣4為16的正約數(shù),…(9分) 所以x﹣4=1,2,4,8,16,進(jìn)而得到n=16,18,25.…(10分) (3)因?yàn)間(x)=|x3﹣3tx|,x∈[﹣1,1]是偶函數(shù), 所以只要求出g(x)在[0,1]上的最大值即可. 記h(x)=x3﹣3tx,∵h(yuǎn)(x)=3x2﹣3t=3(x2﹣t), ①t≤0時(shí),h(x)≥0,h(x)在[0,1]上單調(diào)增且h(x)≥h(0)=0. ∴g(x)=h(x),故F(t)=h(1)=1﹣3t.…(12分) ②t>0時(shí),由h(x)=0得,,和, i.當(dāng)即t≥1時(shí),h(x)在[0,1]上單調(diào)減, ∴h(x)≤h(0)=0,故g(x)=﹣h(x),F(xiàn)(t)=﹣h(1)=3t﹣1.…(14分) ii.當(dāng)即0<t<1時(shí),h(x)在單調(diào)減,單調(diào)增, (Ⅰ)當(dāng),即時(shí),,∴, (Ⅱ)當(dāng),即時(shí),,∴F(t)=h(1)=1﹣3t, 綜上可知,.…(16分) 點(diǎn)評(píng): 本題考查函數(shù)的解析式的求法,考查所有正實(shí)數(shù)值的求法,考查函數(shù)的最大值的求法,解題時(shí)時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019 2020 年高 期中 數(shù)學(xué)試卷 理科 蘇教版含 解析
鏈接地址:http://m.appdesigncorp.com/p-3185633.html