機(jī)械手-自動(dòng)送料機(jī)械手的設(shè)計(jì)
機(jī)械手-自動(dòng)送料機(jī)械手的設(shè)計(jì),機(jī)械手,自動(dòng),設(shè)計(jì)
Compurrrs = $, + $;,=8 = f 2 m,Y;X: + v!- Vk shown below: F”=- O I Q!, = kf, ,$, mki/%4 K1 (6) + (/?:, + u;:,.R:;,. (9b) where the superscripts r and f refer to rigid body and The equations of motion are integrated by using elastic degrees-of-freedom, respectively. K is a block a variable step, variable order predictor-corrector diagonal matrix whose diagonal submatrices are the _ algorithm to obtain the time history of the z,u= 1,2,3; s,v= l,., 12 are the time-invariant matrices, and mk is the mass of ith finite element of the kth body. By defining L = $?A i = 1,2 of the elements are taken as the design variables. The wall thickness of each element is set to be 0.1 Dni. The material properties are E = 72 GPa and p = 2700 kg rnm3. The problem size is reduced by using modal variables. The first two bending modes and the first axial mode with fixed-free boundary conditions are considered. The Fig. 1. A planar robotic manipulator. 24.0 22.0 t t 20.0 & 18.0 f 16.0 14.0 12.0 0 5 10 15 20 25 30 35 Number of iterations Fig. 2. Design histories. 258 S. Oral and S. Kemal Ider Table 1. Optimum solutions for the planar robotic manipulator KS-10 KS-30 KS-SO MCC Weight Dll 012 DZI 022 Number of (N) (mm) (mm) (mm) (mm) iterations 21.374 62.635 50.982 45.107 30.927 14 16.800 55.995 45.409 39.266 27.172 19 16.286 55.210 44.742 38.524 26.736 19 15.719 54.266 44.150 37.552 26.315 38 actuator of link-2 is located at joint-B has a mass of 2 kg and the combined mass of the end-effector and payload is 1 kg. The design problem is solved under the following constraints: -75MPaai75MPa i=l,.,n, 6 0.001 m, where the stress constraints are evaluated at n, number of points which are the top and bottom points at each node. 6 is the deviation (magnitude of the resultant of deviations in x and y directions) of the end-effector E from the rigid motion. The initial design is 50 mm for all design variables, Dki. In this example, the equivalent constraints are formed by employing the most critical constraints and the results are compared by using the Kreisselmeier-Steinhauser function. In the latter, different values of c have been tried. It has been observed that the lower values of c resulted in highly conservative designs, as expected. A value of c = 50 yielded a satisfactory design. It should be noted that the compiler limits may be exceeded for large values of c due to the exponential function if the lower bounds on design variables are set too small. On the other hand, the most critical constraint approach resulted in the lightest design satisfying the deviation constraint exactly. The minimum weights, optimum diameters and number of iterations are tabulated in Table 1. The design histories are shown in Fig. 2. The labels KS-c denote the results obtained by the Kreisselmeier-Steinhauser function, whereas MCC denotes the use of most critical constraint approach. It is seen that the stresses are far below the allowable 10.0 - KS10 - KS30 - KS50 -MCC 6.0 J 0.0 0.1 0.2 0.3 0.4 0.5 t w Fig. 3. The stresses at the middle of link-2 at the top in the optimum designs. 0.8 E 0.6 s P $ 0.4 0.2 Fig. 4. The end-effector deviation in the optimum designs. High-speed flexible robotic arms 259 values, hence the stress constraints are inactive. The stresses at the middle of link-2 at the top, where the maximum stresses occur, are plotted in Fig. 3. The end-effector deviation 6 for the optimum solution is shown in Fig. 4. 5. CONCLUSIONS In this study, a methodology for the optimum design of high-speed robotic manipulators subject to dynamic response constraints has been presented. The coupled rigid-elastic motion of the manipulator has been considered. The large number of time-de- pendent constraints has been reduced by forming equivalent time-independent constraints based on the most critical constraints whose time points may vary as the design variables change. It has been shown that the piecewise-smooth nature of this equivalent constraint does not cause a deficiency in the optimization process. Sequential quadratic program- ming is used in the solution of the design problem with sensitivities calculated by overall finite differ- ences. A high-speed planar robotic manipulator has been optimized for minimum weight under stress and deviation constraints. The use of equivalent con- straints based on Kreisselmeier-Steinhauser function yielded conservative designs, while the most critical constraint approach resulted in the best design. REFERENCES I. W. H. Greene and R. T. Haftka, Computational 2. 3. 4. 5. 6. I. a. 9. IO. 11. 12. aspects of sensitivity calculations in transient structural analysis. Compur. Strucr. 32, 433-443 (1989). E. J. Haug and J. S. Arora, Design sensitivity analysis of elastic mechanical systems. Comput. Meth. uppl. Mech. Engng 15, 3562 (1978). G. Kreisselmeier and R. Steinhauser, Systematic control design by optimizing a vector performance index. In: Proc. IFAC Symp. Computer Aided Design of Control Systems, Zurich, pp. 113-I 17 (1979). R. T. Haftka, 2. Gurdal and M. P. Kamat, Elements of Structural Optimization. Kluwer Academic, Dordreicht (1990). D. A. Saravanos and J. S. Lamancusa, Optimum structural design of robotic manipulators with fiber reinforced composite materials. Comput. Struct. 36, 119-132 (1990). M. H. Korayem and A. Basu, Formulation and numerical solution of elastic robot dynamic motion with maximum load carrying capacities. Roboticu 12, 253-261 (1994). J. H. Park and H. Asada, Concurrent design optimization of mechanicai structure and control for high speed robots. ASME J. Dyn. Systems, Mesmt Control 116, 344-356 (1994). A. A. Shabana, Dynamics of Multibody Systems. Wiley, New York (1989). S. S. Kim and E. J. Haug, A recursive formulation for flexible multibody dynamics, Part 1: open loop systems. Comput. Meth. appl. Mech. Engng II, 293-314 (1988). S. K. Ider and F. M. L. Amirouche, Nonlinear modeling of flexible multibody systems dynamics subjected to variable constraints. ASME J. appl. Mech. 56, 444451 (1989). K. Schittkowski, NLPQL-A Fortran subroutine solving constrained nonlinear programming problems. Ann. opns Res. 5, 485500 (1985): - _ T. R. Kane. P. W. Likins and D. A. Levinson. Spacecraft Dynamics. McGraw-Hill, New York (1983): CAS 6512-E 南京理工大學(xué)泰州科技學(xué)院畢業(yè)設(shè)計(jì)(論文)外文資料翻譯系部: 機(jī)械工程系 專 業(yè): 機(jī)械工程及自動(dòng)化 姓 名: 尚征瑞 學(xué) 號(hào): 05010133 外文出處: Computers & Structures Vol.65, No.2,pp255-259,1997 Elsevier Science 附 件: 1.外文資料翻譯譯文;2.外文原文。 指導(dǎo)教師評(píng)語(yǔ): 簽名: 年 月 日注:請(qǐng)將該封面與附件裝訂成冊(cè)。附件1:外文資料翻譯譯文具有動(dòng)態(tài)特性約束的高速靈活的機(jī)械手優(yōu)化設(shè)計(jì)摘要:本文提出了一種強(qiáng)調(diào)時(shí)間獨(dú)立和位移約束的機(jī)器手優(yōu)化設(shè)計(jì)理論,該理論用數(shù)學(xué)編程的方法給予了實(shí)現(xiàn)。將各元件用靈活的連桿連接起來(lái)。設(shè)計(jì)變量即為零件橫截面尺寸。另用最關(guān)鍵的約束等量替換時(shí)間約束。結(jié)果表明,此方法產(chǎn)生的設(shè)計(jì)結(jié)果比運(yùn)用Kresselmeier-Steinhauser函數(shù),且利用等量約束所產(chǎn)生的設(shè)計(jì)方案更好。建立了序列二次方程基礎(chǔ)上的優(yōu)化設(shè)計(jì)方案,且設(shè)計(jì)靈敏度通過(guò)總體有限偏差來(lái)評(píng)定。動(dòng)態(tài)非線性方程組包含了有效運(yùn)動(dòng)和實(shí)際運(yùn)動(dòng)的自由度。為了舉例說(shuō)明程序,設(shè)計(jì)了一款平面機(jī)器人,其中利用某一特定的方案并且運(yùn)用了不同的等量約束進(jìn)行了設(shè)計(jì)。 版權(quán)屬于 1997年埃爾塞維爾科技有限公司1 導(dǎo)論目前對(duì)高速機(jī)器人的設(shè)計(jì)要求越來(lái)越高,元件質(zhì)量的最小化是必不可少的要求。傳統(tǒng)機(jī)器手的設(shè)計(jì)取決于靜態(tài)體系中運(yùn)動(dòng)方式的多樣化,但這并不適合于高速系統(tǒng)即應(yīng)力和繞度均受動(dòng)力效應(yīng)控制的系統(tǒng)。為了防止失敗,在設(shè)計(jì)的時(shí)候必須考慮到有效軌跡和實(shí)際運(yùn)動(dòng)軌跡之間的相互影響。在暫態(tài)負(fù)載下對(duì)結(jié)構(gòu)系統(tǒng)進(jìn)行設(shè)計(jì)已經(jīng)開(kāi)始展開(kāi)研究,該研究是基于下面幾個(gè)不同的等量約束條件下進(jìn)行的,分別為對(duì)臨界點(diǎn)的選擇上1 , 反約束的時(shí)間限制2 ,和Kreisselmeier - Steinhauser函數(shù)3,4的基礎(chǔ)上進(jìn)行研究。在選擇臨界點(diǎn)時(shí),假定臨界點(diǎn)的位置的時(shí)間是固定的,然而這種假設(shè)不適合高速系統(tǒng)。第二個(gè)辦法的缺點(diǎn)是等量約束在可行域內(nèi)幾乎為0,因此現(xiàn)在還沒(méi)有跡象表明這些約束是否重要。使用Kreisselmeier - Steinhauser函數(shù)在可行域中產(chǎn)生了非零的等量約束,但它定義了一個(gè)保守的約束,從而產(chǎn)生了一個(gè)過(guò)于安全的設(shè)計(jì)方法。 在設(shè)計(jì)機(jī)器手的時(shí)候,常規(guī)方法是考慮多靜態(tài)姿態(tài)5-7,而不是考慮時(shí)間上的約束。這種方法并不適合高速系統(tǒng),原因是一些姿態(tài)不能代表整個(gè)系統(tǒng)的運(yùn)動(dòng),此外,位移和應(yīng)力的計(jì)算也是不準(zhǔn)確的,這是因?yàn)樵谟?jì)算的時(shí)候省略了剛性和彈性運(yùn)動(dòng)之間的聯(lián)系。事實(shí)上,這種聯(lián)系是靈活多體分析中最基本的8-10 。 在這項(xiàng)研究中,開(kāi)發(fā)了一種設(shè)計(jì)高速機(jī)械手的方法,這種方法考慮了系統(tǒng)剛性彈性運(yùn)動(dòng)之間的聯(lián)系及時(shí)間獨(dú)立等約束。把最關(guān)鍵的約束作為等量約束。 最關(guān)鍵的約束的時(shí)間點(diǎn)可能隨著設(shè)計(jì)變量值的變化而變化。反應(yīng)靈敏度由整體偏移所決定,設(shè)計(jì)的最優(yōu)化取決于序列二次方程式。為了說(shuō)明程序, 對(duì)雙桿平面機(jī)器手的強(qiáng)度和剛度進(jìn)行了優(yōu)化。設(shè)計(jì)結(jié)果與那些采用了Kreisselmeier - Steinhauser函數(shù)的機(jī)器手進(jìn)行對(duì)比。2、設(shè)計(jì)理念在這一節(jié)中,機(jī)器手的優(yōu)化設(shè)計(jì)方法使用用于計(jì)算強(qiáng)度和剛性的非線性數(shù)學(xué)編程方法。機(jī)器手由N個(gè)活動(dòng)連桿組成,每一個(gè)連桿由Ek個(gè)有限零件柱組成。其目的是盡可能的減小機(jī)械手的質(zhì)量。與強(qiáng)度關(guān)聯(lián)的約束主要是應(yīng)力元素和剛性約束。這些約束將使得有效運(yùn)動(dòng)的位移產(chǎn)生偏移。設(shè)計(jì)變量就是連桿和零件的截面特性。從數(shù)學(xué)上來(lái)說(shuō),目標(biāo)函數(shù)應(yīng)滿足這樣的約束: (1)其中和分別是第k個(gè)機(jī)構(gòu)的第i個(gè)零件的密度和體積,x是設(shè)計(jì)變量的矢量,是時(shí)間約束總數(shù)。在驗(yàn)證位移和應(yīng)力的時(shí)候,參考文獻(xiàn)10中的遞推公式可用來(lái)計(jì)算機(jī)器手有效軌跡與實(shí)際軌跡。將連桿的變形與連桿參照系聯(lián)系起來(lái),其中在一定邊界約束條件下做完整運(yùn)動(dòng)。這樣通過(guò)縮小模型就可以減少每個(gè)連桿的實(shí)際自由度數(shù)了。 系統(tǒng)的廣義坐標(biāo)系是由連桿變量和模塊變量組成的。微粒P的運(yùn)動(dòng)速度可表式為 (2)其中和是相互制約的系數(shù)。凱恩(Kane)等人的方程式12曾被用來(lái)測(cè)定一些運(yùn)動(dòng)方程式如 (3)其中是整體速度向量,F(xiàn)是合成外力向量,M、Q還有分別為總質(zhì)量、柯氏力、地心引力和彈力,計(jì)算公式如下: (4) (5) (6)其中上標(biāo)r和f分別代表有效自由度和實(shí)際自由度。K為對(duì)角矩陣,其對(duì)角線上的子矩陣是減少了的有效矩陣以連桿變量的形式出現(xiàn)的。為了驗(yàn)證子矩陣在方程(4,5)中是否正確,和可表示如下: p, r=1,2,3; q=1,; s=1, ,12 (7a) p, r=1,2,3; q=1,m; s=1,12 (7b) 其中是元件形狀函數(shù),是連桿變量數(shù),m是模塊變量數(shù)。方程式中的標(biāo)注即多次出現(xiàn)的下標(biāo)指數(shù)是以概括的形式出現(xiàn)的,這些下標(biāo)只不過(guò)是公式的一部分,并不表示某一含義除非特定指明。這些子矩陣可表示成: 其中和;z,u=1,2,3; s,v=1,12是時(shí)間變量,是第k個(gè)機(jī)構(gòu)的第i個(gè)元件的質(zhì)量。在定義和時(shí),柯氏力和地心引力可由下列算式計(jì)算出來(lái): 這個(gè)運(yùn)動(dòng)方程式綜合了變量步長(zhǎng)和變量預(yù)測(cè)校正的算法,以獲取坐標(biāo)系和中的時(shí)間記錄。于是,有關(guān)物體參考系的節(jié)點(diǎn)位移可由模塊轉(zhuǎn)換公式獲得。由應(yīng)力與位移關(guān)系式計(jì)算出零件受到的壓應(yīng)力。整個(gè)參考系中各點(diǎn)的位移可用和機(jī)架的各節(jié)點(diǎn)位移算出。點(diǎn)的偏移可由那個(gè)點(diǎn)在實(shí)際運(yùn)動(dòng)和有效運(yùn)動(dòng)的位移差精確的求出。應(yīng)當(dāng)指出的是,在運(yùn)動(dòng)方程式中,設(shè)計(jì)變量函數(shù)的形式有矩陣,零件的質(zhì)量和初始矢量中的、陣列。因此在對(duì)靈敏度進(jìn)行分析的時(shí)候,這些都應(yīng)與設(shè)計(jì)變量區(qū)分開(kāi)來(lái)。然而,分析并且驗(yàn)證靈敏度在這次研究中是個(gè)非常困難的項(xiàng)目。不全面的分析或是允許極小誤差的方式來(lái)研究這一問(wèn)題也未嘗不是個(gè)好方法。3.減少約束對(duì)機(jī)器手進(jìn)行動(dòng)態(tài)分析的方法就是計(jì)算個(gè)獨(dú)立點(diǎn)在同一時(shí)間內(nèi)的運(yùn)動(dòng)。因此,約束數(shù)目最好滿足 ,而且這么多的約束在優(yōu)化設(shè)計(jì)時(shí)也是不切實(shí)際的。不過(guò)有一個(gè)很有效的辦法可以使約束數(shù)控制在范圍內(nèi)又可以使約束數(shù)滿足t的所有值,這就是用Kreisselmeier - Steinhauser函數(shù) 3 等量替換單個(gè)時(shí)間約束,此函數(shù)表示如下: 其中和C是正數(shù)并由和之間的關(guān)系決定即min().這可以說(shuō)明Kreisselmeier-Steinhauser函數(shù)限定了一個(gè)保守的值域4比如總是比min()更重要,而且c的值越大和min()之間的差就越小。這就是所謂用最關(guān)鍵的約束等量替換了諸如 (11)之類的約束。在這一方法中,用等量約束限定了分段函數(shù)并使其由向間斷的過(guò)渡。在這一值域里盡管左右突出的構(gòu)件在過(guò)渡點(diǎn)有差異,但他們具有相同的標(biāo)識(shí)和梯度,因此可在過(guò)渡點(diǎn)自然結(jié)合。隨著時(shí)間逐步的趨近零點(diǎn),等量約束也變得逐漸光滑。上述所提到的非線性約束優(yōu)化問(wèn)題可以由NLPQL11來(lái)解決,即運(yùn)用序列二次方程的方法。這種優(yōu)化需要初始信息和,m=1, 這兩個(gè)可由目前研究出的有限差來(lái)計(jì)算。4.舉例雙桿平面機(jī)器人如圖1所示。運(yùn)動(dòng)原理是被動(dòng)塊E沿直線從初始位置(1=120,2=-150)運(yùn)動(dòng)到終點(diǎn)位置(1=60,2=-30)。E的運(yùn)動(dòng)軌跡表示如下:整個(gè)運(yùn)動(dòng)過(guò)程的時(shí)間T=0.5s。 每一個(gè)連桿的長(zhǎng)度為0.6米并由兩個(gè)等長(zhǎng)的零件連接著。其零件的外徑,其為本設(shè)計(jì)的變量,k=1,2;i=1,2。零件的厚度為0.1。物體的壓強(qiáng)和密度分別是E=72GPa,=2700Kg/m-3。模塊變量縮小了形狀尺寸。最先結(jié)合的兩個(gè)模塊和最先有著固定自由的約束條件的軸也都被考慮到了。位于連接點(diǎn)B處的桿2質(zhì)量為2kg,被動(dòng)物塊和有效載荷的總質(zhì)量為1kg。設(shè)計(jì)的約束條件如下:-75MPai75MPa i=1, 0,001m其中應(yīng)力約束由節(jié)點(diǎn)頂部或底部的個(gè)點(diǎn)來(lái)驗(yàn)證。是E的實(shí)際運(yùn)動(dòng)軌跡與有效運(yùn)動(dòng)軌跡的偏離量(即x和y方向的最大偏移值)。初始設(shè)計(jì)變量均為50mm. 圖1 平面機(jī)器手操作器在這個(gè)例子里,等量約束是由最關(guān)鍵的約束組成的并且其結(jié)果與Kreisselmeier-Steunhauser函數(shù)的結(jié)果進(jìn)行了比較。后者函數(shù)中適用了c的不同值,可以發(fā)現(xiàn)c的值越小其產(chǎn)生的設(shè)計(jì)就越死板。c=50時(shí)的設(shè)計(jì)是最理想的。應(yīng)當(dāng)指出的是編譯器的限制可能會(huì)超過(guò)c的最大值,這完全取決于指數(shù)函數(shù)也就是只要設(shè)計(jì)變量的低限足夠的小。另一方面,最關(guān)鍵的約束會(huì)產(chǎn)生極小質(zhì)量的設(shè)計(jì)并且精確的迎合偏移位移量。最小的質(zhì)量,恰當(dāng)?shù)闹睆胶头磸?fù)運(yùn)動(dòng)的次數(shù)在表1中列出。設(shè)計(jì)軌跡見(jiàn)表2。表KS-c表明了由Kreisselmeier-Steinhauser函數(shù)產(chǎn)生的結(jié)果,然而MCC表示關(guān)鍵約束。可見(jiàn)應(yīng)力遠(yuǎn)遠(yuǎn)小于允許值,因此應(yīng)力約束受到了限制。連桿2中間的應(yīng)力最大(見(jiàn))圖3。被動(dòng)物塊的偏移量的最佳解決方案見(jiàn)圖4圖2 設(shè)計(jì)參數(shù)表1 平面機(jī)器人控制器最佳方法圖3 頂部連接兩個(gè)的平均壓力的最佳設(shè)計(jì)圖4 最終效應(yīng)器偏差的最佳設(shè)計(jì)5.總結(jié)在研究中,高速遙控操縱器的最佳設(shè)計(jì)方案取決于動(dòng)態(tài)特性。操縱器的固定軌跡與實(shí)際軌跡運(yùn)動(dòng)也必須考慮到。把最關(guān)鍵的約束用作等量約束。 最關(guān)鍵的約束的時(shí)間點(diǎn)可能隨著設(shè)計(jì)變量的改變而變化。這表明分段的等量約束并不會(huì)使設(shè)計(jì)過(guò)程產(chǎn)生缺陷。序列二次方程用于解決設(shè)計(jì)問(wèn)題,其是運(yùn)用整體偏差進(jìn)行靈敏度計(jì)算。 高速平面遙控操縱器已被優(yōu)化設(shè)計(jì)成在應(yīng)力和偏差限制下的最小質(zhì)量。基于Kreisselmeier - Steinhauser函數(shù)產(chǎn)生的保守設(shè)計(jì)下使用等量約束,最好的設(shè)計(jì)理念就是用最關(guān)鍵的約束。附件2:外文原文(復(fù)印件) 南京理工大學(xué)泰州科技學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(論文)作 者:尚征瑞學(xué) 號(hào):05010133系部:機(jī)械專 業(yè):機(jī)械工程及自動(dòng)化題 目:送料機(jī)械手的設(shè)計(jì)講師曹春平指導(dǎo)者: 張衛(wèi)高級(jí)工程師評(píng)閱者: 2009 年 5 月 南京理工大學(xué)泰州科技學(xué)院畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告學(xué) 生 姓 名:尚征瑞學(xué) 號(hào):05010133專 業(yè):機(jī)械工程及自動(dòng)化設(shè)計(jì)(論文)題目:送料機(jī)械手的設(shè)計(jì)指 導(dǎo) 教 師:曹春平 倪文彬2008年 3月22日開(kāi)題報(bào)告填寫要求1開(kāi)題報(bào)告(含“文獻(xiàn)綜述”)作為畢業(yè)設(shè)計(jì)(論文)答辯委員會(huì)對(duì)學(xué)生答辯資格審查的依據(jù)材料之一。此報(bào)告應(yīng)在指導(dǎo)教師指導(dǎo)下,由學(xué)生在畢業(yè)設(shè)計(jì)(論文)工作前期內(nèi)完成,經(jīng)指導(dǎo)教師簽署意見(jiàn)及所在專業(yè)審查后生效;2開(kāi)題報(bào)告內(nèi)容必須用黑墨水筆工整書寫或按教務(wù)處統(tǒng)一設(shè)計(jì)的電子文檔標(biāo)準(zhǔn)格式(可從教務(wù)處網(wǎng)頁(yè)上下載)打印,禁止打印在其它紙上后剪貼,完成后應(yīng)及時(shí)交給指導(dǎo)教師簽署意見(jiàn);3“文獻(xiàn)綜述”應(yīng)按論文的格式成文,并直接書寫(或打?。┰诒鹃_(kāi)題報(bào)告第一欄目?jī)?nèi),學(xué)生寫文獻(xiàn)綜述的參考文獻(xiàn)應(yīng)不少于15篇科技論文的信息量,一般一本參考書最多相當(dāng)于三篇科技論文的信息量(不包括辭典、手冊(cè));4有關(guān)年月日等日期的填寫,應(yīng)當(dāng)按照國(guó)標(biāo)GB/T 740894數(shù)據(jù)元和交換格式、信息交換、日期和時(shí)間表示法規(guī)定的要求,一律用阿拉伯?dāng)?shù)字書寫。如“2009年3月15日”或“2009-03-15”。 畢 業(yè) 設(shè) 計(jì)(論 文)開(kāi) 題 報(bào) 告1結(jié)合畢業(yè)設(shè)計(jì)(論文)課題情況,根據(jù)所查閱的文獻(xiàn)資料,每人撰寫2000字左右的文獻(xiàn)綜述:文 獻(xiàn) 綜 述摘要 文章闡述了機(jī)械手在制造工業(yè)中的發(fā)展,并分析了機(jī)械的組成部分及其工作原理和設(shè)計(jì)的過(guò)程。同時(shí)闡述了機(jī)械手在國(guó)內(nèi)外的發(fā)展?fàn)顩r,以及機(jī)械手的分類。最后闡述了該課題的意義,及主要研究?jī)?nèi)容及研究方法。關(guān)鍵詞 機(jī)械手 AutoCAD 工業(yè)機(jī)器人1 工業(yè)機(jī)器人概述目前,工業(yè)機(jī)器人的定義,世界各國(guó)尚未統(tǒng)一,分類也不盡相同。最近聯(lián)合國(guó)國(guó)際標(biāo)準(zhǔn)化組織采納了美國(guó)機(jī)器人協(xié)會(huì)給工業(yè)機(jī)器人下的定義:工業(yè)機(jī)器人是一種可重復(fù)編程的多功能操作裝置,可以通過(guò)改變動(dòng)作程序,來(lái)完成各種工作,主要用于搬運(yùn)材料,傳遞工件。參考國(guó)外的定義,結(jié)合我國(guó)的習(xí)慣用語(yǔ),對(duì)工業(yè)機(jī)器人作如下定義:工業(yè)機(jī)器人是一種機(jī)體獨(dú)立,動(dòng)作自由度較多,程序可靈活變更,能任意定位,自動(dòng)化程度高的自動(dòng)操作機(jī)械。主要用于加工自動(dòng)線和柔性制造系統(tǒng)中傳遞和裝卸工件或夾具1。工業(yè)機(jī)器人以剛性高的手臂為主體,與人相比,可以有更快的運(yùn)動(dòng)速度,可以搬運(yùn)更重的東西,而且定位精度相當(dāng)高,它可以根據(jù)外部來(lái)的信號(hào),自動(dòng)進(jìn)行各種操作。工業(yè)機(jī)器人是在計(jì)算機(jī)控制下可編程的自動(dòng)機(jī)器。采用工業(yè)機(jī)器人是提高產(chǎn)品質(zhì)量與勞動(dòng)生產(chǎn)率,實(shí)現(xiàn)生產(chǎn)過(guò)程自動(dòng)化,改善勞動(dòng)條件,減輕勞動(dòng)強(qiáng)度的一種有效手段。機(jī)器人的誕生和發(fā)展雖只有30多年的歷史,但它已應(yīng)用到國(guó)民經(jīng)濟(jì),民事技術(shù)等眾多的領(lǐng)域,具有廣闊的應(yīng)用和發(fā)展前景,顯示出強(qiáng)大的生命力1-2。1.1 工業(yè)機(jī)器人功能 根據(jù)所處的環(huán)境和作業(yè)需求,工業(yè)機(jī)器人具有至少一項(xiàng)或多項(xiàng)擬人功能,如抓取功能或移動(dòng)功能,或兩者兼有之,另外還可能程度不等的具有某些環(huán)境感知功能(如視覺(jué),力覺(jué),觸覺(jué)等)。以及語(yǔ)音功能及至邏輯思維,判斷決策功能等。從而使其能在要求的環(huán)境中代替人進(jìn)行作業(yè)。 在工業(yè)機(jī)器人的諸多功能中,抓取和移動(dòng)是最主要的功能。這兩項(xiàng)功能實(shí)現(xiàn)的技術(shù)基礎(chǔ)是精巧的機(jī)械結(jié)構(gòu)設(shè)計(jì)和良好的伺服控制驅(qū)動(dòng)。本次設(shè)計(jì)就是在這一思維下展開(kāi)的。根據(jù)設(shè)計(jì)內(nèi)容和需求確定圓柱坐標(biāo)型工業(yè)機(jī)器人,利用錐齒輪傳動(dòng)實(shí)現(xiàn)機(jī)器人的旋轉(zhuǎn),利用液壓缸實(shí)現(xiàn)其移動(dòng)以及對(duì)零件的抓取。在步進(jìn)電機(jī)的控制下,機(jī)器達(dá)到精確的回轉(zhuǎn)運(yùn)動(dòng)3-4。1.2 工業(yè)機(jī)器人的發(fā)展工業(yè)機(jī)器人的發(fā)展,由簡(jiǎn)單到復(fù)雜,由初級(jí)到高級(jí)逐步完善,它的發(fā)展過(guò)程可分為三代:第一代工業(yè)機(jī)器人就是目前工業(yè)中大量使用的示教再現(xiàn)型工業(yè)機(jī)器人,它主要由手部、臂部、驅(qū)動(dòng)系統(tǒng)和控制系統(tǒng)組成。它的控制方式比較簡(jiǎn)單,應(yīng)用在線編程,即通過(guò)示教存貯信息,工作時(shí)讀出這些信息,向執(zhí)行機(jī)構(gòu)發(fā)出指令,執(zhí)行機(jī)構(gòu)按指令再現(xiàn)示教的操作。第二代機(jī)器人是帶感覺(jué)的機(jī)器人。它具有尋力覺(jué)、觸覺(jué)、視覺(jué)等進(jìn)行反饋的能力。其控制方式較第一代工業(yè)機(jī)器人要復(fù)雜得多,這種機(jī)器人從1980年開(kāi)始進(jìn)入了實(shí)用階段,不久即將普及應(yīng)用。第三代工業(yè)機(jī)器人即智能機(jī)器人。這種機(jī)器人除了具有觸覺(jué)、視覺(jué)等功能外,還能夠根據(jù)人給出的指令認(rèn)識(shí)自身和周圍的環(huán)境,識(shí)別對(duì)象的有無(wú)及其狀態(tài),再根據(jù)這一識(shí)別自動(dòng)選擇程序進(jìn)行操作,完成規(guī)定的任務(wù)。并且能跟蹤工作對(duì)象的變化,具有適應(yīng)工作環(huán)境的功能。這種機(jī)器人還處于研制階段,尚未大量投入工業(yè)應(yīng)用4。1.3 工業(yè)機(jī)器人的總體結(jié)構(gòu)工業(yè)機(jī)器人的組成及各部分關(guān)系概述:它主要由機(jī)械系統(tǒng)(執(zhí)行系統(tǒng)、驅(qū)動(dòng)系統(tǒng))、控制檢測(cè)系統(tǒng)及智能系統(tǒng)組成。(1) 執(zhí)行系統(tǒng):執(zhí)行系統(tǒng)是工業(yè)機(jī)器人完成抓取工件,實(shí)現(xiàn)各種運(yùn)動(dòng)所必需的機(jī)械部件,它包括手部、腕部、機(jī)身等。(a) 手部:機(jī)器人為了進(jìn)行作業(yè)而配置的操作機(jī)構(gòu),又稱手爪或抓取機(jī)構(gòu),它直接抓取工件或夾具。(b) 腕部:又稱手腕,是連接手部和臂部的部件,其作用是調(diào)整或改變手部的工作方位。(c) 臂部:聯(lián)接機(jī)座和手部的部分,是支承腕部的部件,作用是承受工件的管理管理荷重,改變手部的空間位置,滿足機(jī)器人的作業(yè)空間,將各種載荷傳遞到機(jī)座。(d) 機(jī)身:機(jī)器人的基礎(chǔ)部分,起支撐作用,是支撐手臂的部件,其作用是帶動(dòng)臂部自轉(zhuǎn)、升降或俯仰運(yùn)動(dòng)。(2) 驅(qū)動(dòng)系統(tǒng):為執(zhí)行系統(tǒng)各部件提供動(dòng)力,并驅(qū)動(dòng)其動(dòng)力的裝置。常用的有機(jī)械傳動(dòng)、液壓傳動(dòng)、氣壓傳動(dòng)和電傳動(dòng)。(3) 控制系統(tǒng):通過(guò)對(duì)驅(qū)動(dòng)系統(tǒng)的控制,使執(zhí)行系統(tǒng)按照規(guī)定的要求進(jìn)行工作,當(dāng)發(fā)生錯(cuò)誤或故障時(shí)發(fā)出報(bào)警信號(hào)。(4) 檢測(cè)系統(tǒng):作用是通過(guò)各種檢測(cè)裝置、傳感裝置檢測(cè)執(zhí)行機(jī)構(gòu)的運(yùn)動(dòng)情況,根據(jù)需 要反饋給控制系統(tǒng),與設(shè)定進(jìn)行比較,以保證運(yùn)動(dòng)符合要求。 實(shí)踐證明,工業(yè)機(jī)械手可以代替人手的繁重勞動(dòng),顯著減輕工人的勞動(dòng)強(qiáng)度,改善勞動(dòng)條件,提高勞動(dòng)生產(chǎn)率和自動(dòng)化水平。工業(yè)生產(chǎn)中經(jīng)常出現(xiàn)的笨重工件的搬運(yùn)和長(zhǎng)期頻繁、單調(diào)的操作,采用機(jī)械手是有效的。此外,它能在高溫、低溫、深水、宇宙、放射性和其他有毒、污染環(huán)境條件下進(jìn)行操作,更顯示其優(yōu)越性,有著廣闊的發(fā)展前途4-8。2 不同驅(qū)動(dòng)系統(tǒng)工業(yè)機(jī)器人的比較工業(yè)機(jī)器人的驅(qū)動(dòng)方式可分為四種:(1) 氣力驅(qū)動(dòng)式的機(jī)器人:氣源壓力一般只有60Mpa左右,適宜抓舉力較小的場(chǎng)合。(2) 液力驅(qū)動(dòng)式的機(jī)器人:結(jié)構(gòu)緊湊,傳動(dòng)平穩(wěn)且動(dòng)作靈敏,但對(duì)密封的要求較高,且不宜在高溫或低溫的場(chǎng)合工作,要求的制造精度較高,成本較高。(3) 電力驅(qū)動(dòng)式的機(jī)器人:無(wú)環(huán)境污染,易于控制,運(yùn)動(dòng)精度高,成本低,驅(qū)動(dòng)效率高等優(yōu)點(diǎn),其運(yùn)用最為廣泛。(4) 新型驅(qū)動(dòng)式的機(jī)器人:例如靜電驅(qū)動(dòng)器,壓電驅(qū)動(dòng)器,形狀記憶合金驅(qū)動(dòng)器,人工肌肉及光驅(qū)動(dòng)器等4。3 工業(yè)機(jī)械手3.1 機(jī)械手結(jié)構(gòu)(1) 手部:是機(jī)械手與工件接觸的部件。由于與物體接觸的形式不同,可分為夾持式和吸附式手部。由于本課題的工件是圓柱狀棒料,所以采用夾持式。由手指和傳力機(jī)構(gòu)所構(gòu)成,手指與工件接觸而傳力機(jī)構(gòu)則通過(guò)手指夾緊力來(lái)完成夾放工件的任務(wù)。(2) 手腕:是聯(lián)接手部和手臂的部件,起調(diào)整或改變工件方位的作用。(3) 手臂:支承手腕和手部的部件,用以改變工件的空間位置。(4) 立柱:是支承手臂的部件。手臂的回轉(zhuǎn)運(yùn)動(dòng)和升降運(yùn)動(dòng)均與立柱有密切的聯(lián)系。機(jī)械手的立柱通常為固定不動(dòng)的。(5) 機(jī)座:是機(jī)械手的基礎(chǔ)部分。機(jī)械手執(zhí)行機(jī)構(gòu)的各部件和驅(qū)動(dòng)系統(tǒng)均安裝于機(jī)座上,故起支承和聯(lián)接的作用7。3.2 機(jī)械手的分類(1)根據(jù)所承擔(dān)的作業(yè)的特點(diǎn),工業(yè)機(jī)械手可分為以下三類:(a)承擔(dān)搬運(yùn)工作的機(jī)械手:這種機(jī)械手在主要工藝設(shè)備運(yùn)行時(shí),用來(lái)完成輔助作業(yè),如裝卸毛坯、工件和工夾具。(b)生產(chǎn)工業(yè)用機(jī)械手:可用于完成工藝過(guò)程中的主要作業(yè),如裝配、焊接、涂漆、彎曲、切斷等。(c)通用工業(yè)機(jī)械手:其用途廣泛,可以完成各種工藝作業(yè)9。(2)按功能分類:(a)專用機(jī)械手:它是附屬于主機(jī)的具有固定程序而無(wú)獨(dú)立控制系統(tǒng)的機(jī)械裝置。專用機(jī)械手具有動(dòng)作少,工作對(duì)象單一,結(jié)構(gòu)簡(jiǎn)單,實(shí)用可靠和造價(jià)低等特點(diǎn),適用于大批大量的自動(dòng)化生產(chǎn),如自動(dòng)機(jī)床,自動(dòng)線的上、下料機(jī)械手和“加工中心”附屬的自動(dòng)換刀機(jī)械手。(b)通用機(jī)械手:又稱工業(yè)機(jī)器人。它是一種具有獨(dú)立控制系統(tǒng)的機(jī)械裝置。具有程序可變、工作范圍大、定位精度高、通用性強(qiáng)的特點(diǎn),適用于不斷變換品種的中小批量自動(dòng)化的生產(chǎn)。(c)示教再現(xiàn)機(jī)械手:采用示教法編程的通用機(jī)械手。所謂示教,即由人通過(guò)手動(dòng)控制,“拎著”機(jī)械手做一遍操作示范,完成全部動(dòng)作后,其儲(chǔ)存裝置即能記憶下來(lái)。機(jī)械手可按示范操作的程序行程進(jìn)行重復(fù)的再現(xiàn)工作。(3)按驅(qū)動(dòng)方式分:(a)液壓傳動(dòng)機(jī)械手(b)氣壓傳動(dòng)機(jī)械手(c)機(jī)械傳動(dòng)機(jī)械手(4)按控制方式分:(a)固定程序機(jī)械手:控制系統(tǒng)是一個(gè)固定程序的控制器。程序簡(jiǎn)單,程序數(shù)少,而且是固定的,行程可調(diào)但不能任意點(diǎn)定位。(b)可編程序機(jī)械手:控制系統(tǒng)是一個(gè)可變程序控制器。其程序可按需要編排,行程能很方便改變10-15。3.3 機(jī)械手應(yīng)用按機(jī)械手布局形式分可分為:架空式機(jī)械手、附機(jī)式機(jī)械手、落地式機(jī)械手三種。此外,還有安裝在自動(dòng)線料道上或料道旁,實(shí)現(xiàn)工件上、下料,傳遞轉(zhuǎn)位、轉(zhuǎn)向,粉料等用途的機(jī)械手,他們具有運(yùn)動(dòng)單一、結(jié)構(gòu)簡(jiǎn)單,位置靈活及精度一般要求較低的特點(diǎn)。機(jī)械手通常用作機(jī)床或其他機(jī)器的附加裝置,如在自動(dòng)機(jī)床或自動(dòng)生產(chǎn)線上裝卸和傳遞工件,在加工中心中更換刀具等,一般沒(méi)有獨(dú)立的控制裝置4 課題研究?jī)?nèi)容及進(jìn)度安排4.1 設(shè)計(jì)參數(shù)及技術(shù)要求(1)原始數(shù)據(jù):(a)生產(chǎn)綱領(lǐng):100000件(兩班制生產(chǎn))(b)自由度(四個(gè)自由度)臂轉(zhuǎn)動(dòng)180臂上下運(yùn)動(dòng) 500mm臂伸長(zhǎng)(收縮)500mm手部轉(zhuǎn)動(dòng) 180(2)技術(shù)要求(a)坐標(biāo)形式:圓柱坐標(biāo)系(b)臂的運(yùn)動(dòng)行程:伸縮運(yùn)動(dòng)500mm,回轉(zhuǎn)運(yùn)動(dòng)180。(c)運(yùn)動(dòng)速度:使生產(chǎn)率滿足生產(chǎn)綱領(lǐng)的要求即可。(d)控制方式:起止設(shè)定位置。(e)定位精度:0.5mm。(f)手指握力:392N(g)驅(qū)動(dòng)方式:液壓驅(qū)動(dòng)4.2 課題研究?jī)?nèi)容(1)根據(jù)設(shè)計(jì)要求及原始數(shù)據(jù),進(jìn)行機(jī)械手抓取機(jī)構(gòu)設(shè)計(jì);(2)進(jìn)行液壓系統(tǒng)原理設(shè)計(jì),并畫草圖;(3)進(jìn)行機(jī)座機(jī)身的結(jié)構(gòu)設(shè)計(jì);(4)研究機(jī)械手的定位及平穩(wěn)性;(5)研究機(jī)械手的控制方式。5 結(jié)束語(yǔ)本課題通過(guò)應(yīng)用AutoCAD 技術(shù)對(duì)機(jī)械手進(jìn)行結(jié)構(gòu)設(shè)計(jì)和液壓傳動(dòng)原理設(shè)計(jì)。它能實(shí)行自動(dòng)上料運(yùn)動(dòng);在安裝工件時(shí),將工件送入卡盤中的夾緊運(yùn)動(dòng)等。上料機(jī)械手的運(yùn)動(dòng)速度是按著滿足生產(chǎn)率的要求來(lái)設(shè)定。參 考 文 獻(xiàn)1 徐灝.機(jī)械設(shè)計(jì)手冊(cè)3M.北京:機(jī)械工業(yè)出版社,1998.2 徐灝.機(jī)械設(shè)計(jì)手冊(cè)4M.北京:機(jī)械工業(yè)出版社,1998.3 徐灝.機(jī)械設(shè)計(jì)手冊(cè)5M.北京:機(jī)械工業(yè)出版社,1998.4 張建民.工業(yè)機(jī)器人M.北京:北京理工大學(xué)出版社,1994.5 工業(yè)機(jī)械手編寫組.工業(yè)機(jī)械手-機(jī)械結(jié)構(gòu)上M.上海:上??茖W(xué)技術(shù)出版社,2005.6 機(jī)床設(shè)計(jì)手冊(cè)編寫組.機(jī)床設(shè)計(jì)手冊(cè)3M.北京:機(jī)械工業(yè)出版,1999.7 丁樹(shù)模.液壓傳動(dòng)M.北京:機(jī)械工業(yè)出版社,1998.8 顏永年.機(jī)械制圖M.大連:大連理工大學(xué)工程畫教教研室,1998.9 李恒權(quán),朱明臣,王德云.畢業(yè)設(shè)計(jì)指導(dǎo)書M.山東:青島海洋出版社,1990.10 王棟梁.機(jī)械基礎(chǔ)M.北京:機(jī)械基礎(chǔ),1995.11 隆生.Solid Works設(shè)計(jì)與應(yīng)用M.北京:電子工業(yè)出版社,2004.12 黃鶴汀.機(jī)械制造技術(shù)M.北京:機(jī)械工業(yè)出版社,1998.13 吳宗澤,羅圣國(guó).機(jī)械設(shè)計(jì)課程設(shè)計(jì)手冊(cè)M.北京:高等教育出版社,200614 李允文.工業(yè)機(jī)械手設(shè)計(jì)M.機(jī)械工業(yè)出版社,北京,1996.15 丁樹(shù)模.液壓傳動(dòng)M.機(jī)械工業(yè)出版社,北京,1992. 畢 業(yè) 設(shè) 計(jì)(論 文)開(kāi) 題 報(bào) 告本課題要研究或解決的問(wèn)題和擬采用的研究手段(途徑):1 要研究的問(wèn)題了解送料機(jī)械手的特點(diǎn):根據(jù)送料機(jī)械手的特點(diǎn),執(zhí)行系統(tǒng)一般包括手部、腕部、臂部、機(jī)身機(jī)座等,其中最主要是運(yùn)動(dòng)系統(tǒng)。機(jī)械手主要由執(zhí)行系統(tǒng)、驅(qū)動(dòng)系統(tǒng)及控制系統(tǒng)三部分組成。手部是夾緊(或吸附、托持)與松開(kāi)工件或工具 的部件,由手指(或吸盤),驅(qū)動(dòng)元件和傳動(dòng)元件等組成。腕部、臂部、機(jī)身是將手部抓取的工件或工具進(jìn)行搬運(yùn)或操作的部件。驅(qū)動(dòng)系統(tǒng)是驅(qū)動(dòng)臂部、腕部、手部和機(jī)械手整體運(yùn)動(dòng)機(jī)構(gòu)動(dòng)作的動(dòng)力裝置,常用的驅(qū)動(dòng)方式有液壓、氣動(dòng)、機(jī)械、電氣或其他的組合??刂葡到y(tǒng)是支配機(jī)械手按規(guī)定程序和要求進(jìn)行運(yùn)動(dòng)的裝置,他們主要用來(lái)控制:位置(點(diǎn)位控制或連續(xù)軌跡控制)時(shí)間、速度 和加速度等參數(shù)機(jī)械手與主機(jī)及其它有關(guān)裝置之間的聯(lián)系。2 要采用的手段1) 在學(xué)校圖書館查閱相關(guān)資料。通過(guò)書籍和網(wǎng)絡(luò)查找最新的夾具設(shè)計(jì)的發(fā)展動(dòng)向,盡量在保證原來(lái)參數(shù)的基礎(chǔ)上,采用最新的一些結(jié)構(gòu),這樣才能使設(shè)計(jì)具有實(shí)用性和時(shí)代性。2) 通過(guò)老師的指導(dǎo)。通過(guò)老師的指導(dǎo),可以便捷地設(shè)計(jì)步驟。3) 通過(guò)瀏覽因特網(wǎng)上的相關(guān)資料。網(wǎng)上有很多關(guān)于機(jī)械手設(shè)計(jì)指導(dǎo)。4) 用相關(guān)的繪圖軟件畫出零件圖和裝配圖。學(xué)習(xí)AutoCAD、Pro/Engineer等軟件,繪出零件圖和裝配圖。同時(shí)對(duì)照課題任務(wù)的內(nèi)容和要求,對(duì)具體參數(shù)進(jìn)行設(shè)計(jì)和計(jì)算,選擇合適的結(jié)構(gòu)和部件,畫出重要部件或者結(jié)構(gòu)的視圖,同時(shí)通過(guò)指導(dǎo)老師的指導(dǎo)對(duì)每一個(gè)可執(zhí)行的方案進(jìn)行最后的分析和確認(rèn), 5) 撰寫設(shè)計(jì)說(shuō)明書。 畢 業(yè) 設(shè) 計(jì)(論 文)開(kāi) 題 報(bào) 告指導(dǎo)教師意見(jiàn):1對(duì)“文獻(xiàn)綜述”的評(píng)語(yǔ):2對(duì)本課題的深度、廣度及工作量的意見(jiàn)和對(duì)設(shè)計(jì)(論文)結(jié)果的預(yù)測(cè): 指導(dǎo)教師: 年 月 日所在專業(yè)審查意見(jiàn): 負(fù)責(zé)人: 年 月 日
收藏