2019-2020年高考數(shù)學一輪復習 函數(shù) 第10課時 函數(shù)模型及其應用教學案.doc
《2019-2020年高考數(shù)學一輪復習 函數(shù) 第10課時 函數(shù)模型及其應用教學案.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學一輪復習 函數(shù) 第10課時 函數(shù)模型及其應用教學案.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學一輪復習 函數(shù) 第10課時 函數(shù)模型及其應用教學案 2.建立函數(shù)模型:將變量y表示為x的函數(shù),在中學數(shù)學內(nèi),我們建立的函數(shù)模型一般都是函數(shù)的解析式; 3.求解函數(shù)模型:根據(jù)實際問題所需要解決的目標及函數(shù)式的結(jié)構(gòu)特點正確選擇函數(shù)知識求得函數(shù)模型的解,并還原為實際問題的解. 這些步驟用框圖表示是: 實際問題 函數(shù)模型 抽象概括 實際問題的解 函數(shù)模型的解 還原說明 運用函數(shù)的性質(zhì) 典型例題 例1. 如圖所示,在矩形ABCD中,已知AB=a,BC=b(b<a),在AB,AD,CD,CB上分別截取AE,AH,CG,CF都等于x,當x為何值時,四邊形EFGH的面積最大?并求出最大面積. 解: 設(shè)四邊形EFGH的面積為S, 則S△AEH=S△CFG=x2, S△BEF=S△DGH=(a-x)(b-x), ∴S=ab-2[2+(a-x)(b-x)] =-2x2+(a+b)x=-2(x-2+ 由圖形知函數(shù)的定義域為{x|0<x≤b}. 又0<b<a,∴0<b<,若≤b,即a≤3b時, 則當x=時,S有最大值; 若>b,即a>3b時, S(x)在(0,b]上是增函數(shù), 此時當x=b時,S有最大值為 -2(b-)2+=ab-b2, 綜上可知,當a≤3b時,x=時, 四邊形面積Smax=, 當a>3b時,x=b時,四邊形面積Smax=ab-b2. 變式訓練1:某商人將進貨單價為8元的某種商品按10元一個銷售時,每天可賣出100個,現(xiàn)在他采用提高售價,減少進貨量的辦法增加利潤,已知這種商品銷售單價每漲1元,銷售量就減少10個,問他將售價每個定為多少元時,才能使每天所賺的利潤最大?并求出最大值. 解:設(shè)每個提價為x元(x≥0),利潤為y元,每天銷售總額為(10+x)(100-10x)元, 進貨總額為8(100-10x)元, 顯然100-10x>0,即x<10, 則y=(10+x)(100-10x)-8(100-10x)=(2+x)(100-10x)=-10(x-4)2+360 (0≤x<10). 當x=4時,y取得最大值,此時銷售單價應為14元,最大利潤為360元. 例2. 據(jù)氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度 v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點T(t,0)作橫軸 的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).(1)當t=4時,求s的值; (2)將s隨t變化的規(guī)律用數(shù)學關(guān)系式表示出來; (3)若N城位于M地正南方向,且距M地650 km,試判斷這 場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將 侵襲到N城?如果不會,請說明理由. 解:(1)由圖象可知: 當t=4時,v=34=12, ∴s=412=24. (2)當0≤t≤10時,s=t3t=t2, 當10<t≤20時,s=1030+30(t-10)=30t-150; 當20<t≤35時,s=1030+1030+(t-20)30-(t-20)2(t-20)=-t2+70t-550. 綜上可知s= (3)∵t∈[0,10]時,smax=102=150<650. t∈(10,20]時,smax=3020-150=450<650. ∴當t∈(20,35]時,令-t2+70t-550=650. 解得t1=30,t2=40,∵20<t≤35, ∴t=30,所以沙塵暴發(fā)生30 h后將侵襲到N城. 變式訓練2:某工廠生產(chǎn)一種機器的固定成本(即固定投入)為0.5萬元,但每生產(chǎn)100臺, 需要加可變成本(即另增加投入)0.25萬元.市場對此產(chǎn)品的年需求量為500臺,銷售的收入函數(shù)為R(x)=5x-(萬元)(0≤x≤5),其中x是產(chǎn)品售出的數(shù)量(單位:百臺). (1)把利潤表示為年產(chǎn)量的函數(shù); (2)年產(chǎn)量是多少時,工廠所得利潤最大? (3)年產(chǎn)量是多少時,工廠才不虧本? 解:(1)當x≤5時,產(chǎn)品能售出x百臺; 當x>5時,只能售出5百臺, 故利潤函數(shù)為L(x)=R(x)-C(x) = (2)當0≤x≤5時,L(x)=4.75x--0.5, 當x=4.75時,L(x)max=10.781 25萬元. 當x>5時,L(x)=12-0.25x為減函數(shù), 此時L(x)<10.75(萬元).∴生產(chǎn)475臺時利潤最大. (3)由 得x≥4.75-=0.1(百臺)或x<48(百臺). ∴產(chǎn)品年產(chǎn)量在10臺至4 800臺時,工廠不虧本. 例3. 某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩用戶該月用水量分別為5x,3x噸. (1)求y關(guān)于x的函數(shù); (2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費. 解:(1)當甲的用水量不超過4噸時,即5x≤4,乙的用水量也不超過4噸, y=(5x+3x)1.8=14.4x; 當甲的用水量超過4噸,乙的用水量不超過4噸時, 即3x≤4且5x>4, y=41.8+3x1.8+3(5x-4)=20.4x-4.8. 當乙的用水量超過4噸時, 即3x>4,y=81.8+3(8x-8)=24x-9.6, 所以y= (2)由于y=f(x)在各段區(qū)間上均為單調(diào)遞增, 當x∈[0,]時,y≤f()<26.4; 當x∈(,]時,y≤f()<26.4; 當x∈(,+∞)時,令24x-9.6=26.4,解得x=1.5, 所以甲戶用水量為5x=7.5噸, 付費S1=41.8+3.53=17.70(元); 乙戶用水量為3x=4.5噸, 付費S2=41.8+0.53=8.70(元). 變式訓練3:1999年10月12日“世界60億人口日”,提出了“人類對生育的選擇將決定世界未來”的主題,控制人口急劇增長的緊迫任務(wù)擺在我們的面前. (1)世界人口在過去40年內(nèi)翻了一番,問每年人口平均增長率是多少? (2)我國人口在1998年底達到12.48億,若將人口平均增長率控制在1%以內(nèi),我國人口在xx年底至多有多少億? 以下數(shù)據(jù)供計算時使用: 數(shù)N 1.010 1.015 1.017 1.310 2.000 對數(shù)lgN 0.004 3 0.006 5 0.007 3 0.117 3 0.301 0 數(shù)N 3.000 5.000 12.48 13.11 13.78 對數(shù)lgN 0.477 1 0.699 0 1.096 2 1.117 6 1.139 2 解:(1)設(shè)每年人口平均增長率為x,n年前的人口數(shù)為y, 則y(1+x)n=60,則當n=40時,y=30, 即30(1+x)40=60,∴(1+x)40=2, 兩邊取對數(shù),則40lg(1+x)=lg2, 則lg(1+x)==0.007 525, ∴1+x≈1.017,得x=1.7%. (2)依題意,y≤12.48(1+1%)10, 得lgy≤lg12.48+10lg1.01=1.139 2, ∴y≤13.78,故人口至多有13.78億. 答 每年人口平均增長率為1.7%,xx年人口至多有13.78億. 小結(jié)歸納 解決函數(shù)應用問題應著重注意以下幾點: 1.閱讀理解、整理數(shù)據(jù):通過分析、畫圖、列表、歸類等方法,快速弄清數(shù)據(jù)之間的關(guān)系,數(shù)據(jù)的單位等等; 2.建立函數(shù)模型:關(guān)鍵是正確選擇自變量將問題的目標表示為這個變量的函數(shù),建立函數(shù)模型的過程主要是抓住某些量之間的相等關(guān)系列出函數(shù)式,不要忘記考察函數(shù)的定義域; 3.求解函數(shù)模型:主要是計算函數(shù)的特殊值,研究函數(shù)的單調(diào)性,求函數(shù)的值域、最大(小)值等,注意發(fā)揮函數(shù)圖象的作用. 4.還原評價:應用問題不是單純的數(shù)學問題,既要符合數(shù)學學科又要符合實際背景,因于解出的結(jié)果要代入原問題進行檢驗、評判最后作出結(jié)論,作出回答.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學一輪復習 函數(shù) 第10課時 函數(shù)模型及其應用教學案 2019 2020 年高 數(shù)學 一輪 復習 10 課時 模型 及其 應用 教學
鏈接地址:http://m.appdesigncorp.com/p-2628075.html