礦用JH-10回柱絞車的設計含6張CAD圖
礦用JH-10回柱絞車的設計含6張CAD圖,礦用,jh,10,絞車,設計,cad
中期匯報表學生姓名XX專 業(yè)XX學 號XX設計(論文)題目礦用JH-10回柱絞車畢業(yè)設計(論文)前期工作小結一中期設計工作完成情況: 首先,在開題報告提交之后,開始搜尋并查閱大量余本課題相關的資料和文獻,與老師商量的交涉之后,開始根據已有的課題進行畢業(yè)設計的相關工作。我的題目是礦用JH-10回柱絞車設計。查閱相關資料,整理資料熟悉現(xiàn)有回柱絞車在國內外的發(fā)展現(xiàn)狀,同時掌握它們的工作原理。二存在的問及解決的措施:1,關于回柱絞車的工作原理,性能參數(shù)的計算和一些數(shù)據的確定:解決方案;翻閱資料查詢有關這方面的知識,對數(shù)據進行整理和確定。2, 有關CAD的一些操作方法,還有圖紙的格式進行調整等問題:解決方案:詢問老師和同學向他們請教,有關這方面的知識。三后期工作安排: 部件圖繪制,說明書編寫,總圖繪制,說明書編寫,寫論文副本,完成說明書、圖紙繪制,準備答辯總圖繪制,說明書編寫指導教師意見工作端正,遵守學校出勤紀律,能主動的找導師交流。簽名: 年 月 日XX中期情況檢查表 學院名稱: 機電工程學院 檢查日期: 2018年 5月 29日學生姓名XX專 業(yè)XX指導教師XX設計(論文)題目礦用JH-10回柱絞車工作進度情況工作進度:完成了總體方案,進入部件設計階段。是否符合任務書要求進度是 能否按期完成任務能 工作態(tài)度情況(態(tài)度、紀律、出勤、主動接受指導等)設計中能夠遵守紀律,有事請假,虛心接受老師的指導意見,不斷改進設計存在問題。 質量評價(針對已完成的部分)總體質量:一般。特別是傳動軸的設計存在問題較大,考慮問題不夠全面。解決方法不夠全面。 存在問題和解決辦法傳動軸設計已經提出解決方案供學生選擇。其余設計也存在問題。已經提出方案進行解決。 檢查人簽名 教學院長簽名 自動化表面精加工注塑模具鋼球形研磨和拋光工藝球收件日期:2004年3月30日/接受日期:2004年7月5日/發(fā)表時間:05年3月30號施普林格出版社倫敦有限公司2005要 本研究探討球形研磨和拋光表面處理的自動化的可能性,正如在自由曲面注塑模具鋼PDS5 在數(shù)控加工中心。設計和制造,研磨工具持有人已經完成了這項研究。最佳參數(shù)的確定,采用磨削的塑料注射成型法交PDS5加工中心。最佳表面磨削,荷蘭國際集團的注塑模具鋼PDS5參數(shù) 一個PA的氧化鋁,研磨材料組合磨削,荷蘭國際集團18 000 rpm時,磨削深度為20微米的速度,以及50毫米/分鐘。試樣的表面粗糙度Ra可提高到1.60微米至0.35微米的最佳使用表面磨削參數(shù)。表面粗糙度Ra可進一步改善至約0.343微米至0.06微米之間,擠光與拋光的最佳參數(shù)。 應用表面打磨和拋光最佳參數(shù),順序為細研磨自由曲面模,表面粗糙度Ra的自由曲面上的測試區(qū)部分可提高到約2.15微米至0.07微米。關鍵詞自動化表面精加工球研磨拋光工藝過程測量表面粗糙度的方法塑料是重要的工程材料,由于其特定的特性,如耐化學腐蝕,密度低,易于制造,并有越來越多在工業(yè)應用中替代金屬部件。 注射成型是重要的質粒成形工藝之一 。該模具的注塑表面的光潔度是一個基本要求,由于其直接影響塑料的外觀。整理過程,如研磨,拋光和研磨常用來改善表面光潔度。裝入的研磨工具(輪),已被廣泛應用于在傳統(tǒng)模具精加工產業(yè)。幾何模型安裝工具磨床自動化表面光潔度,荷蘭國際集團過程中引入了1。一個整理過程模型球研磨系統(tǒng)自動化表面精加工的工具,電信設備制造商開發(fā)了在2。磨削速度,切削深度,進給如研磨材料,磨料率,車輪性能,晶粒尺寸,都為球形研磨主導參數(shù),荷蘭國際集團的過程,如圖所示。 1、最佳球面磨床,注塑模具鋼的參數(shù)尚未掌控的以文獻為基礎。 近年來,一些研究已經在德國進行了擠光球的最佳參數(shù)的研究(圖2)。例如,它已經發(fā)現(xiàn),塑料對工件表面形成可減少使用碳化鎢球或滾子,從而提高了表面粗糙度,表面硬度和抗疲勞性3-6。該拋光過程是由加工中心3,4和車床5,6。主要參數(shù)有打磨。表面粗糙度的影響是滾珠或滾子的材料,打磨力,進給速度,拋光速度,潤滑,打磨等3通過。最佳注塑模具鋼拋光參數(shù)PDS5是一個組合的潤滑脂,進給速度200毫米/分鐘,打磨拋光速度是40微米,力量是 300 N。該深度的滲透拋光表面采用最佳球擠光參數(shù)約2.5微米的表面粗糙的改善,通過打磨一般介于40和903-7。這項研究的目的是開發(fā)和球面磨削擠光表面光潔度過程而言,是一個自由曲面。 2、 在注塑模具加工中心。該流程圖利用自動化表面光潔度研磨球,其過程如圖所示。 3、我們通過設計和制造球形研磨工具及其對準去副加工中心上使用。最佳表面球形磨削工藝參數(shù)進行了測定,利用正交表的方法。四因素三對應,然后選擇了矩陣實驗。最佳裝球的表面磨削參數(shù)研磨,然后應用到一個自由曲面光潔度表面的載體。為了改善表面粗糙度,對表面進一步打磨,使用最佳擠光參數(shù)。 2設計和球面磨削工具的定位裝置了能從球面磨削過程中的自由曲面表面上看,球磨床中心應配合Z軸加工中心軸。裝入的研磨球工具及其調節(jié)裝置的設計,如圖4所示。電動砂輪機是安裝在刀架上有兩個支點螺絲。該磨床球中心以及相同走線的COM的錐形槽求助。經對齊磨床球,兩個可調整的支點螺釘擰緊之后,校準組件可能被取消。中心坐標之間的偏差,球磨床和納茨是約5微米,它是衡量一臺數(shù)控三坐標測量機。由機床振動引起的力量是AB - 吸附由螺旋彈簧。所生產的球形磨削荷蘭國際集團的工具和球擠光工具被安裝,如圖5主軸被鎖定為球面磨床,其進程和由主軸鎖球及制程機制。3規(guī)劃矩陣實驗3.1配置的直交幾個參數(shù)的影響可以達到有效通過開展正交陣列的實驗8。為配合上述球面磨削的PA,該磨床球研磨材料(與直徑10毫米),進料速度,磨削深度和電動砂輪機被選定為四個實驗因素(參數(shù))和一個指定的因子D(見表1)研究。三個等級(設置)為每個因素被配置,其范圍是由數(shù)字1,2和3確定。三研磨材料,即碳化硅(SiC),白鋁氧化物(氧化鋁,),粉紅色三氧化二鋁(Al2O3微粉,)分別被選用和研究。每個因素三個數(shù)值乃根據預先研究的結果開展4個3級的球形研磨工藝因素矩陣實驗。3.2定義的數(shù)據分析工程設計問題可分為較小的,更好的類型,標稱的最佳類型,較大的,更好的類型,簽署的目標類型,其中包括8。該信號與信噪比(S / N)作為優(yōu)化目標函數(shù)的產品或工藝設計。表面粗糙度值通過適當?shù)哪ハ鲄?shù)組合應比原表面小。因此,球面磨削過程是一個較小的,更好的類型問題的例子。S / N比,是由以下方程定義8:之后的S / N從每個實驗數(shù)據比 正交表進行計算,各因素的主效應測定使用方差分析(ANOVA) 8。較小的,很好的解決問題的優(yōu)化策略是盡量由公式式定義。 水平,最大限度地將負責的因素,有一個顯著的影響的選擇。球形研磨的最佳條件可以被確定。4實驗工作和結果在這項研究中所使用的材料是PDS5工具鋼(相當于采用AISI P20的)9,這是常見的大型注塑產品的模具用于汽車零部件和家用電器領域。這種材料的硬度為HRC33(HS46)9。這樣做的一個好處是物質特殊加工后,模具可直接用于未經熱處理的進一步整理,由于其特殊的前處理工藝。該標本的設計和制造,使它們可以在一個測力計測量反應上。大體標本的PDS5加工,然后安裝在測功機上進行三軸加工中心作出銑削。鋼鐵公司(類型的MV - 3A)款,配備了FUNUC的數(shù)控控制器(類型0M的)10。預加工表面的粗糙度進行了測量,使用Hommelwerke T4000裝備,將約1.6微米。圖6顯示了實驗設置在球面磨削工藝。一個MP10觸摸觸發(fā)由雷尼紹公司生產的探針也集成加工中心刀庫來衡量和確定試樣的原產地。該數(shù)控為球擠光加工路徑生成所需的代碼是PowerMILL CAM軟件。這些代碼可以傳到該加工中心。數(shù)控控制器通過RS232串行接口。表2總結了地面測量表面粗糙度值Ra和計算的S / N為每18課比正交氬 光用均衡器。 1,后執(zhí)行的18式實驗。平均的S / N為每四個因素可以得到的比率,如表3所列,采取的數(shù)值見表2。平均的S / N為每四個因素的比率是圖形如圖所示。 7圖。實驗裝置,以確定運算球面磨削參數(shù) 表2.PDS5試樣表面粗糙度表3.平均的S / N比值因子水平(分貝)朗讀顯示對應的拉丁字符的拼音在球面磨削過程的目的是盡量減少表面的粗糙度由determin地面標本價值荷蘭國際集團各因素的最佳水平。因為是一個單調減函數(shù),我們應盡量的使用S / N比。形成機制,我們能確定每個因素的最佳水平作為一級的最高值。因此,在試驗的基礎矩陣,最佳研磨材料呈粉紅色氧化鋁;最佳的進給為50毫米/分鐘;最佳的磨削深度為20微米,以及最佳轉速18000轉,如表4所示。各因素的主要作用是進一步確定使用方差分析(ANOVA)技術分析和F比為了測試,以確定其意義(見表5)。該 F0.10,2,13是平等的顯著性水平2.76至0.10(或90置信水平);因素的自由度為2,匯集了錯誤的自由度為13,根據F分布表11。一架F比值大于2.76可歸納為表面粗糙度有顯著影響,并確定了一個星號。因此,進給和深度磨削表面粗糙度有一個顯著的效果。五,進行了驗證實驗,觀察重復性使用研磨的最佳組合,如表6。表面粗糙度的索取這些標本價值進行測量,約為0.35微米。在使用球面磨削參數(shù)的最佳組合后表面粗糙度提高約78。在表面進一步打磨使用最佳擠光參數(shù)的RA = 0.06m的表面粗糙度值的OB 拋光球。用30 光學顯微鏡觀察改進光面粗糙度,如圖所示。預加工表面粗糙度的改善約95,打磨的過程。 表面研磨球的最佳工藝參數(shù)的OB從實驗被應用于對自由曲面模具插入到evalu表面光潔度, 表面粗糙度的改善,一個選定為測試載體。模具的數(shù)控加工,為測試對象是與PowerMILL CAM的SERT的模擬軟件。經過精細加工的模具,進一步地插入與球面磨削獲得最佳參數(shù)的矩陣實驗。此后不久,表面拋光的最佳擠光參數(shù),進一步提高被測物體的表面粗糙度(見圖。9)。模具的表面粗糙度測量插入, 與Hommelwerke T4000設備。平均表面粗糙度對模具的插入精細研磨表面價值平均為2.15微米,這對表面為0.45微米 圖7 控制因素的影響表4。優(yōu)化組合球面磨削參數(shù)因子水平磨料Al2 O3 , PA進給50 mm/min磨削深度20 m公轉18000 rpm表5。方差分析表的S / N的表面粗糙度比因子 自由度 平方和 平均平方 F比率A224.79112.3963.620B20.6920.346C228.21814.1094.121D24.7762.388錯誤939.043總和1797.520匯集錯誤1344.5113.424* F比率值 2.76有顯著影響表面粗糙度表6.表面的粗糙度值測試后驗證實驗標本圖。 8。一個工具制造者對被測樣品表面和預加工表面之間的打磨情況在顯微鏡下的比較(30 )圖. 9.精細研磨,研磨和拋光模t圖85結論在這項工作中,自動球形的最佳參數(shù),卡爾研磨和球擠光表面處理過程中一個自由曲面注塑模具開發(fā)了cessfully的加工中心。裝入的研磨球工具(和其排列組成部分)的設計和制造。最佳球形表面磨削參數(shù)磨削確定了矩陣進行實驗。最佳球面磨削參數(shù)為注塑模具鋼PDS5是對合并磨料粉紅色的鋁氧化物(氧化鋁,),50毫米/分鐘,20微米的磨削深度,以及18000轉的壽命。試樣的表面粗糙度Ra可提高約1.6微米的表面用研磨球的最佳條件,以0.35微米研磨。通過應用最佳表面打磨和拋光參數(shù)對自由曲面模的表面光潔度,表面粗糙度進行測量,為改善表面約79.1,在表面上,約96.7的磨光表面上。朗讀顯示對應的拉丁字符的拼音致謝:作者感謝國科會的支持與中華人民共和國共和國授予國科會89 - 2212 - - 011 - 059本研究。References 1. Chen CCA, Yan WS (2000) Geometric model of mounted grindingtools for automated surface finishing processes. In: Proceedings of the6th International Conference on Automation Technology, Taipei, May 9-11, pp 43-472. Chen CCA, Duffie NA, Liu WC (1997) A finishing model of spherical grinding tools for automated surface finishing systems. Int J Manuf SciProd 1(1):17-263. Loh NH, Tam SC (1988) Effects of ball burnishing parameters on surface finish-a literature survey and discussion. Precis Eng 10(4):215-2204. Loh NH, Tam SC, Miyazawa S (1991) Investigations on the surface roughness produced by ball burnishing. Int J Mach Tools Manuf 31(1):75-815. Yu X, Wang L (1999) Effect of various parameters on the surface roughness of an aluminum alloy burnished with a spherical surfaced polycrystalline diamond tool. Int J Mach Tools Manuf 39:459-469 6. Klocke F, Liermann J (1996) Roller burnishing of hard turned surfaces.Int J Mach Tools Manuf 38(5):419-4237. Shiou FJ, Chen CH (2003) Determination of optimal ball-burnishing parameters for plastic injection molding steel. Int J Adv Manuf Technol 3:177-1858. Phadke MS (1989) Quality engineering using robust design. Prentice-Hall, Englewood Cliffs, New Jersey9. Ta-Tung Company (1985) Technical handbook for the selection of plastic injection mold steel. Taiwan10. Yang Iron Works (1996) Technical handbook of MV-3A vertical machining center. Taiwan11. Montgomery DC (1991) Design and analysis of experiments. Wiley, New York 礦用JH-10回柱絞車MINE JH-10 PILLAR WINCH摘要礦用回柱絞車稱之為慢速絞車,是一種起升機械,用于從上部工作柱拆卸和回收機械設備。牽引力高,牽引緩慢是礦山后面絞車的主要特點。在這一點上,中國的煤炭工業(yè)正在快速增長。 在地下采礦工作中,當煤層的一側完成時,需要進行封蓋。 由于后立柱的操作是危險的工作,員工不能直接進入塔頂,金屬成本高。 如果柱子是手動回收的,安全性低,效率低。 此時,返回絞車可以設置在遠離返回塔的空柱的危險部分的安全區(qū)域中,并且上部柱被電纜吊鉤頭拉動并收回。 由于重量減輕和重量輕,不僅需要薄煤層,而且還需要陡傾的煤礦,以及回收金屬棒的各個方面,這些金屬棒沉入土壤或被蛭石掩埋。 除了絞車立柱可用于返回頂部立柱工作外,還可用于搬運重物和運輸車輛。 針對現(xiàn)代工業(yè)生產的高生產率和先進的技術經濟指標,絞盤回收利用既經濟又快速。根據礦山機械的特殊要求,本文著重介紹了傳動部分,線圈部分和制動部分的設計, 起重機的兩個主要部分,線圈缺少力的直接后果成為焊縫的破碎。 制動器是絞車制動裝置, 其功能是克服和抵消起重機運動系統(tǒng)的慣性力并防止其移動,并且當系統(tǒng)靜止時,起重系統(tǒng)制動可產生運動。 。 簡而言之,它用于減緩提升機的運動,并將其置于故障狀態(tài)下的某些參數(shù)中。關鍵詞 小絞盤;容繩量;鋼絲繩平均運行速度IIIAbstractMine recycling mainstay winch, which is also called slowly winch, it is widely used to dismantle and recovery the coal mining machinery and equipments, larger traction engine and slowly speed are the main properties of the recycling mainstay winch. Currently, our countrys coal mining industry is developing rapidly,In the work of underground coaling, we will release top-coal when a place of work after the coal mining. Due to the recovery of hydraulic prop assignments, workers cannot risk directly into the whole area, prop-pulling, And the high cost of metal, If hydraulic prop cannot be recovered, It will cause a larger waste. If using artificial recycling hydraulic props, It is poor safety and low efficiency。This can be arranged in winch is empty section top prop-pulling far safer ground, use rope hook head to pull down and recycling spots. Because of its low weight light, it is very applicable in the thin coal seam, and steep coal seam mining face, and various mining face slab or sink recycling waste metal staff of pressure.Prop-pulling hoist can recycle hydraulic prop,release top coal ,it is also available to transfer the weight and the transport vehicles, etc. It is economic and quickly to use prop-pulling hoist to recycle hydraulic props, It complies with the standards of modern industrials high productivity and advanced technical economic indexes.For some small winch (such as scraper winch, winch, etc.) do type inspection at the manufacturer, because the capacity is large, some manufacturers to design field winding rope.The wire rope with equal length, the capacity of rope, the average running speed of wire rope and the height difference between the hoist drum rim and the outer steel wire rope can not be measured practically. After deduction and research, it is applied.The basic mathematical formulas set up a simple calculation method for the rope volume of the winch, the average running speed of the wire rope and the difference of the edge height.Keywordsthe small winchthe volume of the ropethe average running speed of the wire rope目錄摘要IAbstractII1 緒論12 初始數(shù)據73 工作條件84 方案的初步擬定94.1 各部分的結構及其特征94.2 傳動特點105 總體設計116 蝸輪蝸桿傳動件設計146.1 選擇蝸桿傳動類型146.2 選擇材料146.3 根據齒面接觸疲勞強度進行設計146.4 校核齒根彎曲疲勞強度147 齒輪的傳動設計177.1 齒輪模數(shù)的確定177.2 齒輪的變位187.2.1 變位187.2.2 變位系數(shù)的確定187.2.3 接觸強度和彎曲強度的校核228 蝸輪軸設計279 中間軸設計3010 滾筒及主軸的設計計算3111 軸承的校核3512 鍵的選擇與校核3613 聯(lián)軸器的選擇3714 回柱絞車制動器設計3815 回柱絞車的使用與維修42結論44致謝45參考文獻461 緒論1.1 JH-10 回柱絞車型號含義和組成1.1.1 型號含義開頭字母 J 是卷揚機的類稱符,字母 H 的含義是回柱絞車,數(shù)字 10 的含義是拉力為10T 鋼絲繩的平均靜張力1.1.2 組成JH-10 的回柱絞車由一下幾個部分組成,如下看圖 1-1 絞車原理圖1.電動機 2 聯(lián)軸器 3 蝸輪 4 蝸桿 5 內齒輪 6 撥塊 7 徘徊齒輪 8 錐面端蓋 9 過橋齒輪 10大齒輪 11 滾筒電機:使用F 級別防爆減速器:減速器使用一級弧形蝸桿和一級齒輪。蝸輪軸上設有內齒離合器,其中內齒 5 與徘徊齒輪 7 相嚙合,通過操縱手柄推動撥快可以使得徘徊齒輪軸向移動脫離內齒 5,這時候的滾筒可以自行轉動,當滾筒轉速過快時可以撥動撥快至遠離內齒 5 的極限位置,為了使小齒輪 7 的摩擦圓錐與渦輪機箱體端蓋處的摩擦圓錐一致,起到一個制動的效果。過橋齒輪:它是兩個齒輪之間的一個過渡齒輪,通過它可以使得過橋齒輪兩邊的齒輪轉向相同,并且不會影響到前后轉動的齒數(shù)比,最主要的目的是為了滿足絞車結構上的需求,就是增加卷筒與蝸輪的中心距離。卷筒部分:卷筒的結構主要由四個部分組成,包括卷軸,主軸,齒輪和軸承座。底座部分:底座部分的外觀呈雪橇狀和長方形。電機、減速器、卷筒三個部分排列分布形成一個整體。1.2 傳動結構1.傳動系統(tǒng)的第一階段是渦輪蝸桿減速,它的優(yōu)點在于自身具備自鎖功能,在這樣的條件下重物拉動滾筒旋轉的情況就不會出現(xiàn)462.總體上來講傳動比非常大,可選用功率較小的電機,并且不影響其傳動效率。3. 整體結構非常緊湊,節(jié)省空間,節(jié)省生產成本。4.由于是礦井運作,所以本回柱絞車的電機及其他部分皆使用防瓦斯防爆的設備,保證了在該惡劣環(huán)境下的安全使用5.本回柱絞車安有制動裝置,在徘徊齒輪的末尾處設置有錐形摩擦制動,使得徘徊齒輪在脫離內齒輪的極限位置能夠與之契合,產生制動效果。6蝸輪蝸桿運行過程發(fā)熱量大,容易損壞,所以需要重點關注其潤滑和維護工作1.3 回柱絞車的布置1.3.1 安裝于回風巷內如下圖 0-1 所示圖 1-2 回風巷內回風道中的位置需要滿足遵循操作程序的要求。其中安裝于回風巷的優(yōu)點有:1.方便回柱絞車安置于固定位置,無需在工作中各種搬運轉移位置 2.在煤礦層傾斜角度很大、壓力很大的工作平面內能夠有較為理想的適應程度。其中缺點有:1.在材料的運輸方面可能對其有著一定程度上的影響 2.鋼絲繩需要一定大的抗拉強度因為其纏繞軌跡需要 90 度繞過一個導向輪,若其抗拉強度不足容易導致其繩子損毀 3.對導向輪的固定要求較高,增加了作業(yè)難度。1.3.2 安裝于回采工作面上端回柱絞車緊貼著回風巷,并且安裝于靠上的密集柱之中,如下圖 1-3圖 1-3 回采工作面上端安裝在該工作平面的優(yōu)勢有:1.解決了前面安裝于回風巷內繩子繞 90 度牽引的弊端, 鋼絲繩的走向為直線較為可靠,繩子在工作上的運行上順滑阻力不大且不容易造成鋼絲繩的損毀 2.鑒于之前材料運輸不便的問題有了很好的解決。其中的劣勢有:1.工作循環(huán)進行一次就需要搬運回柱絞車調整位置,極其不便 2.無法再煤礦層傾角過量的情況利用,故頂板需要有較強的穩(wěn)定性能。在頂上遭受較強的力量時,機座在這種惡劣情況下易改變其形狀 3.如果頂上受力不均發(fā)生較惡劣冒落會導致回柱絞車的掩埋,對于工作也許會產生不必要的麻煩。故該安置方式很少被采取。1.3.3 絞車直接安裝在工作平面上如下圖所示圖 1-4 在工作平面上對于安裝在工作平面上的優(yōu)勢有以下幾條:1.可以增加回柱速度在很多臺回柱絞車同時工作的條件下,該工作條件符合普通的開采煤礦的工作面 2.解決了前面回風巷內的運輸困難問題,也方便了里面的人員走動 3.該放置方式依然解決了安裝于回風巷內繩子繞 90 度牽引的弊端,鋼絲繩的走向為直線較為可靠,繩子在工作上的運行上順滑阻力不大且不容易造成鋼絲繩的損毀。安置于工作平面的劣勢有:1. 工作循環(huán)進行一次就需要搬運回柱絞車調整位置,極其不便 2.無法再煤礦層傾角較大的條件下采用,要求頂板有較好的條件。3. 若是頂板不穩(wěn)定發(fā)生嚴重的冒落可能造成回柱絞車的被掩埋,對于工作也許會產生不必要的麻煩。該放置方式是以回柱工藝時長很大,已經遠遠超過了開采煤礦的工藝時長的情況下采用,所以這可以提升生產效率和提升經濟效率,雖說如此也要在正常安全的確保條件下使用。1.4 回柱絞車的普通結構分析1.4.1 普通蝸輪蝸桿常見的蝸輪蝸桿的傳動效率非常低,且運行的過程中會產生大量的熱,外形寬大且重量也大,因此搬運起來非常的困難,非常不適用與礦井下的工作環(huán)境,故不適用礦用回柱絞車1.4.2 圓弧面蝸輪蝸桿傳動該蝸輪蝸桿現(xiàn)如今廣泛應用于礦井回柱絞車的各個型號生產,機械效率非常的高可以達到約為 0.85 到 0,9 之間,且減小了體積和重量1.5 各個型號的回柱絞車類比表 1-1 型號類比JH-8JH-5牽引力最大千牛80牽引力最大千牛57最小69最小42卷筒尺寸直徑 寬度毫米280230卷筒尺寸直徑 寬度毫米276272鋼絲繩直徑毫米15.5鋼絲繩直徑毫米16繩速最大米/秒0.12繩速最大米/秒0.199最小0.083最小0.141減速比181.17減速比157容繩比米80容繩比米80電動機功率千瓦7.5電動機功率千瓦7.5轉速轉/分970轉速轉/分1450使用電 壓伏380/660使用電壓伏380/660外形尺寸長度毫米1550外形尺寸長度毫米1450寬度530寬度512高度570高度515絞車重量包括電 機千克650絞車重量包括電機千克620配套電器QC83-80N 隔爆可逆磁力啟動器配套電器QC83-80N 隔爆可逆磁力啟動器LA81-3 隔爆控制按鈕LA81-3 隔爆控制按鈕型 號參 數(shù)JH-14AJH-14BJH-14C牽引力里層(KN)140外層(KN)97中層(KN)110繩速最大(m/s)0.12最小(m/s)0.08平均(m/s)0.10卷筒規(guī)格(直徑 寬度mm)380300鋼絲繩直徑(mm)22容繩量(m)120傳動比188外形尺寸(長寬 高 mm)195568081520306808151955680815絞車質量(kg)135014001350電動機型號YB200L-8功率(KW)15轉速(r/min)725附屬電氣設備隔爆磁力啟動器QC83-80N 或 QC815-60NQC12-4NH (非防 爆)隔爆控制按鈕LA81-3LA10-3H(非防爆)由上述列表中我們可得三種不同型號的絞車之間的聯(lián)系和共性,JH-5 和 JH-8 兩種屬于重量較輕的兩種,且體積也較小,這兩種型號的絞車的優(yōu)勢是便于挪移比較靈活,但劣勢是容繩量和鋼絲繩的牽引力較小不適用于重物重量較大的場合。JH-14 這個型號的優(yōu)勢在于容繩量和繩子的拉力相對于前面兩個型號有了較大的提升,但是劣勢也很明顯體積和質量都較大。1.6 國內外回柱絞車發(fā)展現(xiàn)狀國內外的絞車有著跨越式的變化,國外絞車魚目混雜,單雙筒、雙折線、各種傳動類型等多種種類規(guī)格,各個型號適用于各種場合。我國的絞車種類較少,主要以單筒為主, 且形態(tài)各異,不是特別的同意沒有標準。源動力類型也基本上是以電動機為主,極少有液壓或者風力為源動力。國內的絞車在使用壽命、安全可靠性等方面都與國外有一點差距。國外例如蘇聯(lián)等國家要求絞車的壽面年限范圍在至少五年以上,且要求分貝值低于一定標準才能投入生產, 國內的絞車壽命年限要短一些且根據使用用戶的反饋信息來看,分貝較大也是個比較廣泛的問題,許配備相應耳機,也增大的工作成本。綜上所述國內絞車發(fā)展時間較短且應用場合較少,故應用上以礦用小絞車為主,便于搬運和使用。從發(fā)展趨勢來看,國內外發(fā)展趨勢基本一致,具有以下特點1.向更長的使用壽命上發(fā)展2.向占地面積更小體積更小的方向發(fā)展3.向高效率高效能的方向發(fā)展4.向低分貝低噪音的方向發(fā)展5.向多功能多場合適用的方向發(fā)展6.向結構簡潔省材美觀的方向發(fā)展7.向統(tǒng)一標準化方向發(fā)展2 初始數(shù)據3 工作條件1.工作時長:1600 天2.工作環(huán)境:礦井3.工作需求:噪音分貝在一定的標準范圍內,防爆氣體的安全指標符合國家標準4.運作要求:滾筒可雙向轉動且間歇運作以滿足工作中的一些硬性需要5.工作能力:容繩量可以涉及到百分之十左右4 方案的初步擬定JH-10 方案定義由回柱絞車提升的力和絞車布局結構是否簡單以及是否能方便拖運搬遷,工作環(huán)境適合較為狹小的環(huán)境故該回柱絞車的大小尺寸應該滿足結構緊湊體積較小的要求,然后由于是礦井下的工作環(huán)境所以需要電機以及其他的工作元件具備防瓦斯防爆等基本的安全需求,由于其重量較輕所以其抗震抗沖擊能力略低。綜上所給出的設計要求以及所給出的相應的數(shù)據,JH-10 回柱絞車的初步擬定方案如下,電機部分選用防爆防瓦斯的電機滿足一定的功率,整體布局要緊湊有條理,減速器部分使用球面蝸輪蝸桿和直齒輪減速器,其結構簡圖如下圖所示圖 4-1 結構簡圖1.電機 2.彈性聯(lián)軸器 3.球面蝸桿 4.徘徊齒輪 5.過橋齒輪 6.大齒輪 7.卷筒4.1 各部分的結構及其特征1.電機:本JH-10 回柱絞車所用的電機由于其礦井下的工作環(huán)境需要故使用防爆電機、F 級絕緣2.減速器:減速機使用一級弧形蝸輪和一級齒輪。蝸輪軸上設有內齒離合器,其中內齒 5 與徘徊齒輪 7 相嚙合,通過操縱手柄推動撥快可以使得徘徊齒輪軸向移動脫離內齒 5,這時候的滾筒可以自行轉動,當滾筒轉速過快時可以撥動撥快至遠離內齒 5 的極限位置,為了使小齒輪 7 的摩擦圓錐與渦輪機箱體端蓋處的摩擦圓錐一致,起到一個制動的效果。3.聯(lián)軸器部分:采用的是彈性聯(lián)軸器,能夠有效的傳遞扭矩,增加使用壽命,并且具有一點的減震效果4.中間齒輪:中間齒輪就是過橋齒輪其作用是使其兩邊的齒輪轉向相同且不影響其傳遞效果,增加了大齒輪軸到徘徊齒輪軸的平行距離。5.卷筒部分:卷筒的結構主要由四個部分組成,包括卷軸,主軸,齒輪和軸承座。 大齒輪與卷筒同軸 6.底座部分:底座部分的外觀呈雪橇狀和長方形。電機、減速器、卷筒三個部分排列分布形成一個整體。4.2 傳動特點圖 4-2 傳動結構簡圖電機通過彈性聯(lián)軸器首先與球面的蝸輪蝸桿減速器相連接,與蝸輪蝸桿就減速器相連接的優(yōu)勢是此種傳動效率是最高的也是最合適的。減速器部分:由于其減速比較大故采用的是球面的蝸輪蝸桿減速器傳動,其主要優(yōu)勢是具有自鎖功能且傳動效率高,噪音較小不會像傳動的蝸輪蝸桿產出大量的熱導致壽命減少且易損壞。本卷筒能夠自鎖,卷筒的順時針和逆時針的轉動通過僅僅通過電機來控制, 這樣可以保證絞車的安全性。當電機斷電時要求卷筒立即停止轉動這個時候蝸輪蝸桿的自鎖作用就體現(xiàn)出來了。因此,該設計采用了蝸輪減速器結構。易損壞,故采用球面的蝸輪蝸桿可以解決,并且還增加了使用壽命也增強了其承載能力。5 總體設計5.1 電動機的選擇5.1.1 電動機類型的選擇常規(guī)的電動機當中我們常常采用三相交流電動機,故本設計絞車也采用該電機, 由于所處的環(huán)境比較惡劣,需要防塵防瓦斯防爆等多項要求故采用皆可防護的電機設備, 故我選擇使用三相異步防爆的 Y 系列。5.1.2 電動機功率的選擇卷筒所需要的有效功率為:PW =Fv1000hw= 80 1000 0.102 1000 1kw =8.13 kw;其中,hW 為繩筒軸的輸出效率,取為 1.電動機輸出功率為: Pd = PW /h查1表 2-2 得從電動機到繩筒之間各傳動機構和軸承的效率:柱銷聯(lián)軸器效率h1 =0.99; 蝸輪蝸桿減速器傳動效率h2 =0.8;滾動軸承傳動效率h3 =0.99;圓柱齒輪傳動效率h4 =0.98。則總傳動效率h =h h h 3 h 2 =0.990.8 0.993 0.982 =0.74; P = P /h =1234dW8.13 / 0.74 kw=10.89 kw;取電動機的額定功率為 11 kw。5.1.3 電動機轉速的選擇需要在礦井下工作得特殊條件下,所以其安全條件必須要得到強有力的保障,故此 YB160 防爆電機是個非常好的選擇(980 轉/分)。5.1.4 電動機型號的確定根據電動機功率和同步轉速,查2選擇電動機型號為 YB160-6 型三相異步防爆電動機,查2表 16-1-89 知電動機的機座中心高為 160 mm,外伸軸頸為 42 mm,外伸軸長度為 110 mm。5.2 計算傳動裝置總傳動比和傳動比5.2.1 傳動裝置總傳動比mi= nm = 910 =187.6 ;其中nm 為電動機的滿載轉速n =910 r/min.算得的傳動nw 4.85比與已知的總傳動比 i=181 相差不大,故所選擇的電動機型號合適。5.2.2 分配各級傳動比機械設計中的總傳動方案是把總的傳動一個個的分配到幾個加速器,且其中必須要求各級傳動系統(tǒng)結構緊湊具有較強的承載力,工作效率高。使用上簡單,外觀簡潔。根據總傳動比 i 總=157。通過其他類似結構絞車可得各傳動比為:蝸輪蝸桿傳動比:i 1 =29.92第一對齒輪傳動比:i 2 =1.73第二對齒輪傳動比:i 3 =3.5總傳動比 i=i 1 .i 2 .i 3 =29.92 1.73 3.5=181.17 181.5.2.3 計算機械傳動系統(tǒng)的性能參數(shù)n 電 =970r/min n 桿= n電 =970r/minn = n桿 =970 1=32.42r/mini129.92nn= i2=32.42 1 =18.74r/min1.73n= n =18.74 i31 =5.35r/min3.5計算各軸功率 :P電 =11kwP 桿= P電 h1 =11 0.99=10.89kwP= P 桿 h2 h3 =10.89 0.8 0.99=8.62kw P = Ph3 h4 =8.62 0.99 0.98=8.36kw P = P h3 h4 =8.36 0.99 0.98=8.11kw計算各軸扭矩:T=9550 P電 =9550 電n電11 =108.30 Nm970T桿=9550 P桿n桿=9550 10.89 =107.22 Nm970T =9550 P =9550 8.62=2539.20 Nmn32.42T=9550 P =9550 n8.36 =4260.30 Nm18.74T=9550 P =9550 8.11 =14476.73 Nmn5.35表 5-1 各軸傳遞數(shù)據軸功率 P(kw)轉速 n(r/min)轉矩 T(Nm)電機軸11970108.30蝸桿軸10.89970107.22軸8.6232.422539.20軸8.3618.744260.30軸8.115.3514468.726 蝸輪蝸桿傳動件設計6.1 選擇蝸桿傳動類型根據 GB/T100951988 的推薦,采用圓弧面蝸桿(ZI)6.2 選擇材料指向于本絞車,由于蝸桿和蝸桿的傳動功率被認為是非常小的,因為它的高效率要求,該蝸桿與45 號鋼一起使用。耐磨,所以蠕蟲螺旋吃面條需要淬火,硬度45-55 HRC。如軸承,軸套,蝸輪,摩擦輪,機螺絲螺母等),金屬模鑄造。 輪芯用灰鑄鐵 HT100鑄造。6.3 根據齒面接觸疲勞強度進行設計根據閉式蝸桿傳動的設計準則,先按齒面接觸疲勞強度設計,再校核齒根彎曲疲勞強度.a 確定作用在蝸輪上的轉矩:由前面計算可知 T=2539200Nmm;確定載荷系數(shù) K:因工作較穩(wěn)定,故取載荷分布不均有系數(shù) Kb = 1 ;由表 11-5 選取使用系數(shù) KA = 1.15 ;于轉速不高,沖擊不大,可取動載系數(shù) KV確定彈性影響系數(shù) ZE := 1.05 ,則 K=KA Kv Kb =1.151.051=1.21E因選用的是鑄錫青銅蝸輪和鋼蝸桿相配,故 Z = 160MPa1/ 2確定接觸系數(shù) Zr :11r先假設蝸桿分度圓直徑d 和傳動中心距a 的比值d / a = 0.35 ,從中查得Z = 2.9確定許用接觸應力sH :H根據蝸輪材料為鑄錫磷青銅 ZcuSn10P1,金屬模鑄造,蝸桿螺旋齒面硬度45HRC,可得蝸輪得基本許用應力s = 268MPa7h應力循環(huán)次數(shù)N=60j n2 L =60132.4228000=5.510壽命系數(shù)KHN = 81075.5 107=0.808HNHH則s = s K=0.808268=216.5MPa計算中心距2160 2.9 a 3 1.21 2539200 216.5 =241.7取中心距 a=150mm,根據傳動比,從手冊中取模數(shù) m=6,蝸桿分度圓直徑d1 =60mm.這時1rrrd /a=0.40,可得接觸系數(shù)Z =2.78, 因為 Z Z ,因此以上計算結果可用.蝸桿與蝸輪的主要參數(shù)與幾何尺寸蝸桿軸向齒距Pa =3.14m=3.146=18.84mm 徑系數(shù)q = 10mm ;齒頂圓直徑da1 = 96mm ;分度圓導程角g = 5.70;蝸桿軸向齒厚S = 1 3.14m= 1 3.146=9.42mma 22蝸輪蝸輪齒數(shù)Z2 = 40 ;變位系數(shù)x2 =0蝸輪分度圓直徑蝸輪喉圓直徑 蝸輪齒根圓直徑蝸輪咽喉母圓半徑d2 =m z2 =640=240mmda 2 = d2 +2 ha 2 =240+28=256 mmd f 2 = d2-2 hf 2 =240-21.6=236.8 mmr=a- d=150- 1 256=22mmg 2a 226.4 校核齒根彎曲疲勞強度校核齒根彎曲疲勞強度s = 1.53KT2 YY= s FFa 2 bFd1d2m當量齒數(shù)zv 2=z2cos3 g=40cos3 5.70= 40.2根據 zv2 = 40.2 , x 2 = 0 ,從中可查得齒形系數(shù)YFa2 = 2.43g5.70螺旋角系數(shù)Yb = 1 -= 1 -= 0.959314001400許用彎曲應力s F = s F KFN從中可得由 ZcuSn10P1 制造的蝸輪的基本許用彎曲應力s F = 56MPa壽命系數(shù): KFN = 91065.5 107 =0.64FFNF所以s = s K=35.88MPas = 1.53 1.21 253920 2.430.9593=12.4 s F60 240 6F彎曲強度滿足要求。7.1 齒輪模數(shù)的確定7 齒輪的傳動設計參考同類產品:選取小齒輪材料為 40C r 鋼,齒面淬火,淬火硬度為 HRC4550;中間橋輪材料為 40C r 鋼,表面淬火,淬火硬度為 HBC4855;大齒輪用 40C r 合金鋼鑄成,調質處理,硬度 HRC230260。初選 z 1 =13,則 z2 =i 2 13=1.7313=22, z 3 =i 3 z2 =3.522=77,為減小傳動的尺寸,小齒輪和橋輪均為硬齒面;大齒輪采用軟齒面,其目的是使大齒輪和中間齒輪使用壽命相當。模數(shù)大小需由彎曲疲勞強度確定。由于第二對齒輪傳動承載較大,就按第二對齒輪傳動初步計算。 (注:有關計算公式、圖表、數(shù)據引自濮良貴,紀名剛主編的機械設計(第七版).高等教育出版社,2001.6)按彎彎曲疲勞強度計算:m式中,轉矩T2 =4260Nm ,z 2=22;查表 10-7 取圓柱齒輪齒寬系數(shù)fd =1.3由式 10-13 計算應力循環(huán)次數(shù):N=60j n L =6018.741(2830010)=5.710712 h212則 N = N / m =5.7107 /3.5=1.5107其中m2 為齒數(shù)比, m2 =7722=3.5由圖 10-20c 查得過橋齒輪的彎曲疲勞強度s FE1 =600MPa;查得大齒輪的彎曲疲勞強度s FE 2 =380MPa;由圖 10-18 取彎曲疲勞系數(shù): KFN1 =0.92, KFN 2 =0.96; 計算彎曲疲勞強度許用應力:取彎曲疲勞安全系數(shù) S=1.4;由式 10-12 得s F 2 = KFN1 s FE1 S= 0.92 600 1.4=394MPas F 3 = KFN 2 s FE 2 S= 0.96 380 1.4=261MPa計算載荷系數(shù) K: K=KA Kv KFaKFb由表 10-2 取 KA =1,由圖 10-8 取動載荷系數(shù) Kv =1.06,直齒輪 KHa = KFa =1,KFb =1;則 K=KA Kv KFaKFb =11.0611=1.06;由表 10-5 查的齒形系數(shù):Y F =2.72 , Y F =2.21a 2a 323a3應力修正系數(shù):Y sa =1.57, Y sa =1.76FSY Ya2a 2= 2.72 1.57 YFY a 3 = 2.211.76 =0.015Ss F 2394s F 3261a3S就按二者中的大值YF Y a 3 計算,將諸值代入s F 3m式,得M 32 1.06 42601.4 222 0.015 =5.85mm圓整,取 m=6mm。大齒輪是軟齒面齒輪,本應按接觸疲勞強度設計。為使按彎曲強度設計的大齒輪的接觸強度足夠,可將 m 值取得大一點。(m,z 不變,d,接觸強度)所以這里取 m 值取 6。7.2 齒輪的變位7.2.1 變位通過互換性這本書的學習我們可知道標準漸開線齒輪具有較好的互換性,設計計算等簡潔等突出的優(yōu)勢,故在實際中應用比較廣泛,但是依然具有以下缺點:1. 一對可以正常嚙合的標準齒輪,小齒輪齒根厚比大齒輪的齒根厚要小,這樣在材質相同的條件下小齒輪的彎曲強度比較低2. 小齒輪的根部比大齒輪的齒根略大,后續(xù)齒輪容易損壞3. 標準齒輪的中心距是一直保持不變的,所以其可能無法滿足一些其他要求,例如要求比理論距離小或者大都無法滿足4. 切根影響,故又限制了它的尺寸以及質量所以后來隨著成產技術的提高和不斷的實踐,出來了變位齒輪這種齒輪。在一定條件下可以滿足中心距的變化且滿足傳動需求和強度要求故對本回柱絞車的設計環(huán)境以及各種各樣的不同需求,我使用了三個變位齒輪來作為傳動齒輪的基礎部件。對于變位齒輪的特性我采用正變位傳動,其益處前面已經有所提到。7.2.2 變位系數(shù)的確定橋齒輪和小齒輪的選定在該齒輪運動過程中,倘齒面硬度比較高的情況則會在齒根處產生疲勞裂紋,導致齒輪的損毀。因此,使用彎曲疲勞強度來計算該齒輪的容許載荷。已知:a已知:z 1 =13,z 2 =22,m=6mm,a =20, h* =1,a=108mm計算嚙合角和確定變位系數(shù):x= h*Zmin - Z1 = 13 -13 = 0a1minmin13Zx= h*Zmin - Z2 = 13 - 22 =-0.692a2minmin13Za= m (Z +Z212)= 6 (13 + 22) =105mm2a =arcos( a cosa )=arcos( 105 cos20)=23.9a108x + x = Z1 + Z2 (inva -inva ) = 13 + 22 (inv23.9-inv20)12 2tga2tg 20o=0.53取 x1 =0.4,則 x2 =0.53-0.4=0.13計算各部分尺寸:d 1 =mz 1 =613=78mm, d 2 =mz 2 =622=132mm,d b1 =d 1 cosa =78cos20=73.30mmd b 2 =d 2 cosa =132cos20=124.04mm y= a-a = 108 - 105 =0.5 m6Dy =( x1 + x2 )-y=0.53-0.5=0.03h a1=( h* + x1- Dy )m=(1+0.4-0.03)6=8.22mm h=( h* + x2- Dy )m=(1+0.13-aaa 20.03)6=6.6mmh=( h* + c* - x )m=(1+0.25-0.4)6=5.1mmf 1a1h=( h*+ c* - x )m=(1+0.25-0.13)6=6.72mmf 2a2h 1 =h a1 +h f 1 =8.22+5.1=13.22mm h 2 =h 21 +h f 2 =6.6+6.72=13.32mmd a1 =d 1 +2h a1 =78+28.22=94.44mm d a 2 =d 2 +2h a 2 =132+26.6=145.2mm d f 1 =d 1 -2h f 1 =78-25.1=67.8mmd f 2 =d 2 -2h f 2 =132-26.72=118.56mmS =( p +2 x tga )m=( p +20.4tg20)6=11.167mm1212S =( p +2 x tga )m=( p +20.13tg20)6=9.998mm2 222驗算齒頂厚:a =arccos( db1 )=arcos( 73.30 )=39.10da1a194.44a =arcos( db 2 )=arcos( 124.04 )=31.35da1a 2145.20da1S=S- d (inva -inva )da11a1a11=11.167 94.44 -94.4444(inv39.10-inv20)78=2.660.4m=2.4S a 2 S a1 ,所以沒有必要檢查,符合要求。驗算重合度:ea =1 Z2p1(tga a1 -tga )+ Z 2(tgaa 2 -tga )= 1 13(0.813-0.443)+22(0.609-0.443)2p=1.4 ea =1.4(1.4 為一般機械制造業(yè)的推薦使用值)故滿足要求.表 7-1 第一級齒輪傳動的主要幾何尺寸齒數(shù)分度齒根圓齒頂圓模數(shù)壓力嚙合角變?yōu)槲粓A直徑直徑直徑角系數(shù)z 1137867.894.4462023.90.4z 222132118.56145.2062023.90.13原中心距 a=105mm,變位后中心距 a=108mm。確定大齒輪的變位系數(shù):因為實際世紀中心距 a=297mm,與標準中心距 a=297 相等。為減小齒輪機構尺寸, 相對提高兩輪承載能力,改善磨損情況,可將大齒輪、中間齒輪這對嚙合齒輪先試設計為高度變位齒輪傳動,即 x- =0 , x2 =- x3 0。顯然中間齒輪應取正變位,大齒輪應取負z變位。這樣中間齒輪齒根變厚,大齒輪根變薄,只要適當選擇變位系數(shù),能使大小兩輪的抗彎強度大致相等,相對地提高了齒輪傳動的承載能力。這種傳動特點為: x2 =a , a=a,y=0,y=0,即分度圓與節(jié)圓重合。由前知 x2 =0.13,故 x3 =- x2 =-0.13.但是,作高度變位傳動時,由于a =a ,故節(jié)點嚙合時的嚙廓綜合曲率半徑 rz =r1r2r1 r2與標準傳動時一樣。所以其齒面接觸強度并沒有提高,而與標準齒輪傳動相同,為了解決這一問題,取 x =-0.124。這時,實際嚙合角a :由 inva = 2xe tga +inva3Z1 + Z211P132表 2-2-9 即 inva = 2 (0.13 - 0.124)tg 20 +0.015 =0.015 得a =2012028 + 72分度圓分離系數(shù) y: y=11P132 表 2-2-9z1 + z22 cosa - cosa cosa 0.0053齒頂高變動系數(shù)Dy : Dy =( x1 + x2 )-y=(0.13-0.124)-0.0053=0.0007實際中心距a :a = 1 m( Z + Z )+ym2121=6(22+77)+0.0536=297.318297mm2由以上計算可知,改變 x3 為-0.124 后,中間齒輪正變位,大齒輪負變位,但 x2 x3 。因此,小齒輪厚相對增加,齒輪嚙合處的齒廓綜合曲率半徑增大,使得齒輪的抗彎強度、接觸強度都提高了。同時其實際嚙合角、中心距、分度圓分離系數(shù)與標準相差甚微,可以忽略。其主要尺寸的計算同上,這里省略,只將其結果列表如下:表 7-2 大齒輪的主要幾何尺寸齒數(shù)分度圓直徑齒根圓直徑齒頂圓直徑模數(shù)壓力角嚙合角變位系數(shù)z377482465.50492.50620130-0.1247.2.3 接觸強度和彎曲強度的校核驗算齒面接觸疲勞強度s H = ZH ZE s H d將F = 2T1 ,f = b 代入上式得:dt1s H =d1 ZH ZE s H 計算齒輪齒數(shù)和精度等級:小齒輪齒數(shù) zb.水平面受力(kc.垂直面受力(kg)Ft DFrFt=13,z 2=22,z 3=77,絞車為一般工作機器,速度不高,估計圓周速度d.水平面彎矩(ke.垂直面彎矩(kf.合成彎矩圖(kg.扭矩圖(kgm)1v=0.25m/s, 選用 7 級精度,GB10095-88. u = z2 =1.7, u = z3 =3.5.zz212確定公式內各量的計算數(shù)值:小齒輪所受轉矩 T 1 =2539200Nmm,橋齒輪所受轉 T 2 =4260300Nmm;由表 10-7 選取齒形系數(shù)fd1 =1.2,fd 2 =1.15;11由表 10-6 查材料的彈性影響系數(shù)ZE1 =189 MPa 2 , ZE1 =188.9 MPa 2 ;由圖 10-21d 按齒面硬度查的小齒輪接觸疲勞強度極限:s H lim1 =1050Mpa,s H lim 2 =1170MPa,s H lim 3 =600Mpa;由式 10-13 計算應力循環(huán)次數(shù):N1 =60j n1 Lh 其中: Lh =2830010=48000應力循環(huán)次數(shù):小齒輪為主動輪,每轉一周,小齒輪同側嚙合一次;中間輪同一側齒面也嚙合一次。因此,接觸應力按脈動循環(huán)變化。N=60j n L =60132042(2830010)=9.310711 h212N = N / i =9.3107 /1.73=5.4107其中i2 為齒數(shù)比, i2 =2213=1.73N = N / i =5.4107 /3.5=1.54107323其中i3 為齒數(shù)比, i3 =7722=3.5由圖 10-19 可得接觸疲勞壽命系數(shù):KHN1 =1.14KHN 2 =1.17KHN 3 =1.28;計算接觸疲勞許用應力s H :取失效概率為 1%,安全系數(shù) S=1;s = KHN1s H lim1 = 1.14 1050 =1197MPa;H 1S1s = KHN2s H lim 2 = 1.17 1170 =1369MPa; H 2S1s = KHN3s H lim3 = 1.28 600 =768MPa; H 3S1確定載荷系數(shù) K:查表 10-2 取使用系數(shù) KA =1; 根據 v=0.25m/s,7 級精度,查圖 10-8 可得動載系數(shù) Kv1 =1, Kv 2 =1.02;查表 10-3 確定齒間載荷分配系數(shù) KHa : KHa1 =1.1, KHa 2 =1.15; 查表 10-4 確定齒向載荷分配系數(shù) KHb : KHb 1 =1.31, KHb 2 =1.24;則載荷系數(shù) K= KA Kv KHaKHb :k1= KA Kv1 KHa1 KHb 1 =111.11.31=1.44;k2 = KA Kv 2 KHa 2計算齒寬:KHb 2 =11.021.151.24=1.45;b=fd1 d =1.1578=89.7mm; b =95mm, b =100mm, b =95mm;1t123計算重合度ea :ea1=1.88-3.2( 1 +131 ) cos b =1.5;22ea 2 =1.88-3.2(1 + 1 ) cos b =1.7;2277由圖 10-30 選取節(jié)點區(qū)域系數(shù)ZH :ZH 1 =2.22, ZH 2 =2.5;驗算:dfus=2K1T1 u1 1 Z ZH 13d1 11H 1E1=2 1.44 2539 1.7 1 2.22 189.8 =72.98MPa s ;0.78 7831.7H 1s=2K2T2 u2 1 Z ZH 3f d 3uH 2E 22 22=2 1.45 4260 3.5 1 2.5188.9 =39.2MPa s H 3 ;113233.5經計算可知:大小齒輪均滿足接觸強度要求。驗算齒根彎曲疲勞強度s= 2KT1YFaYSaYe s ;Ff m3Z 2F將fdd1= b , m = d1 代入上式得:d1z1FFs= 2KT1YFaYSaYe s ;bd1m確定公式中各量的值:查表 10-5 選取齒形系數(shù)YFa 和應力修正系數(shù)YSa :YFa1 =2.32,YFa 2 =2.72,YFa3 =2.23,YSa1 =1.5,YSa 2 =1.57,YSa3 =1.76;計算重合度系數(shù)Ye :Y =0.25+ 0.75 =0.25+ 0.75 =0.75;1e 1ea1.5錯誤!未找到引用源。=0.25+ 0.75 =0.25+ 0.75 =0.69;ea 21.7查表 10-20C 選取彎曲疲勞極限s F lim :s F lim1 =600MPa,s F lim 2 =650MPa,s F lim3 =500MPa;取彎曲安全系數(shù)SF =1;由式 10-13 計算應力循環(huán)次數(shù):N1 =60j n1 Lh 其中: Lh =2830010=48000;應力循環(huán)次數(shù) N:小齒輪為主動輪,每轉一周,小齒輪同一側嚙合一次,彎曲應力按脈動循環(huán)變化;中間橋齒輪每側齒面嚙合一次。因此,彎曲應力按對稱循環(huán)變化。故N=60j n L =60132.42(2830010)=9.31
收藏