2019-2020年高中數(shù)學(xué)《三角函數(shù)的圖象和性質(zhì)》教案1蘇教版必修4.doc
《2019-2020年高中數(shù)學(xué)《三角函數(shù)的圖象和性質(zhì)》教案1蘇教版必修4.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《三角函數(shù)的圖象和性質(zhì)》教案1蘇教版必修4.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)三角函數(shù)的圖象和性質(zhì)教案1蘇教版必修4【三維目標(biāo)】:一、知識與技能1.能借助正弦線畫出正弦函數(shù)的圖象,并在此基礎(chǔ)上由誘導(dǎo)公式畫出余弦函數(shù)的圖象;2.弄清正弦、余弦函數(shù)的圖象之間的關(guān)系;記住正弦、余弦函數(shù)的特征;3.會用五點畫正弦、余弦函數(shù)的圖象;4.通過組織學(xué)生觀察、猜想、驗證與歸納,培養(yǎng)學(xué)生的數(shù)學(xué)能力。掌握利用數(shù)形結(jié)合思想分析問題、解決問題的技能。二、過程與方法借助單位圓,利用三角函數(shù)線,作出正弦函數(shù)圖象;讓學(xué)生通過類比,聯(lián)系正弦函數(shù)的誘導(dǎo)公式,自主探究出余弦函數(shù)的誘導(dǎo)公式;能學(xué)以致用,嘗試用五點作圖法作出余弦函數(shù)的圖像,并能結(jié)合圖像分析得到余弦函數(shù)的性質(zhì)。三、情感、態(tài)度與價值觀1.通過作正弦函數(shù)和余弦函數(shù)圖象,培養(yǎng)學(xué)生認(rèn)真負(fù)責(zé),一絲不茍的學(xué)習(xí)精神;2.會用聯(lián)系的觀點看問題,培養(yǎng)學(xué)生的數(shù)形結(jié)合思想,滲透由抽象到具體思想,使學(xué)生理解動與靜的辯證關(guān)系.,激發(fā)學(xué)生的學(xué)習(xí)積極性;3.培養(yǎng)學(xué)生分析問題、解決問題的能力;讓學(xué)生體驗自身探索成功的喜悅感,培養(yǎng)學(xué)生的自信心;使學(xué)生認(rèn)識到轉(zhuǎn)化“矛盾”是解決問題的有效途經(jīng);培養(yǎng)學(xué)生形成實事求是的科學(xué)態(tài)度和鍥而不舍的鉆研精神。【教學(xué)重點與難點】:重點:用“五點法”畫正弦曲線、余弦曲線.難點:正弦曲線、余弦曲線的畫法。教具:多媒體、實物投影儀【學(xué)法與教學(xué)用具】:1.學(xué)法:在初中,我們知道直角三角形中銳角的對邊比上斜邊就叫著這個角的正弦,當(dāng)把銳角放在直角坐標(biāo)系中時,角的終邊與單位圓交于一點,正弦函數(shù)對應(yīng)于該點的縱坐標(biāo),當(dāng)角是任意角時,通過函數(shù)定義的形式引出正弦函數(shù)的定義;作正弦函數(shù)圖像時,在正弦函數(shù)定義的基礎(chǔ)上,通過平移正弦線得出其圖像,再歸結(jié)為五點作圖法。2.教學(xué)用具:多媒體、實物投影儀、三角板.3.教學(xué)模式:啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).【授課類型】:新授課【課時安排】:1課時【教學(xué)思路】: 一、創(chuàng)設(shè)情景,揭示課題問題:怎樣作出三角函數(shù)的圖象?二、研探新知用單位圓中的正弦線、余弦線作正弦函數(shù)、余弦函數(shù)的圖象(幾何法):為了作三角函數(shù)的圖象,三角函數(shù)的自變量要用弧度制來度量,使自變量與函數(shù)值都為實數(shù)在一般情況下,兩個坐標(biāo)軸上所取的單位長度應(yīng)該相同,否則所作曲線的形狀各不相同,從而影響初學(xué)者對曲線形狀的正確認(rèn)識1.函數(shù)y=sinx的圖象(幾何法)用單位圓中的正弦線作正弦函數(shù)的圖象(幾何法):為了作三角函數(shù)的圖象,三角函數(shù)的自變量要用弧度制來度量,使自變量與函數(shù)值都為實數(shù)在一般情況下,兩個坐標(biāo)軸上所取的單位長度應(yīng)該相同,否則所作曲線的形狀各不相同,從而影響初學(xué)者對曲線形狀的正確認(rèn)識第一步:在直角坐標(biāo)系的軸上任取一點,以為圓心作單位圓,從這個圓與軸的交點起把圓分成(這里=12)等份.把軸上從0到2這一段分成 (這里=12)等份.(預(yù)備:取自變量值弧度制下角與實數(shù)的對應(yīng)).第二步:在單位圓中畫出對應(yīng)于角,,,2的正弦線正弦線(等價于“列表” ).把角的正弦線向右平行移動,使得正弦線的起點與軸上相應(yīng)的點重合,則正弦線的終點就是正弦函數(shù)圖象上的點(等價于“描點” ). 第三步:連線。用光滑曲線把這些正弦線的終點連結(jié)起來,就得到正弦函數(shù),0,2的圖象根據(jù)終邊相同的同名三角函數(shù)值相等,把上述圖象沿著軸向右和向左連續(xù)地平行移動,每次移動的距離為2,就得到,R的圖象. 把角的正弦線平行移動,使得正弦線的起點與軸上相應(yīng)的點重合,則正弦線的終點的軌跡就是正弦函數(shù)的圖象. 2.余弦函數(shù)的圖象用幾何法作余弦函數(shù)的圖象,可以用“反射法”將角的余弦線“豎立”把坐標(biāo)軸向下平移,過作與軸的正半軸成角的直線,又過余弦線的終點作軸的垂線,它與前面所作的直線交于,那么與長度相等且方向同時為正,我們就把余弦線 “豎立”起來成為,用同樣的方法,將其它的余弦線也都“豎立”起來再將它們平移,使起點與軸上相應(yīng)的點重合,則終點就是余弦函數(shù)圖象上的點 也可以用“旋轉(zhuǎn)法”把角 的余弦線“豎立”(把角 的余弦線按逆時針方向旋轉(zhuǎn)到位置,則與長度相等,方向相同.)根據(jù)誘導(dǎo)公式,還可以把正弦函數(shù)=sin的圖象向左平移單位即得余弦函數(shù)的圖象. 正弦函數(shù)的圖象和余弦函數(shù)的圖象分別叫做正弦曲線和余弦曲線3用五點法作正弦函數(shù)和余弦函數(shù)的簡圖(描點法):正弦函數(shù),0,2的圖象中,五個關(guān)鍵點是:(0,0) (,1) (p,0) (,-1) (2p,0)用五點法作圖象,;自變量函數(shù)值y01010也同樣可用五點法作圖: 0,2p的五個點關(guān)鍵是(0,1),(,0),(p,-1),(,0),(2p,1)1yyxo1-1x1 只要這五個點描出后,圖象的形狀就基本確定了因此在精確度不太高時,常采用五點法作正弦函數(shù)的簡圖,要求熟練掌握優(yōu)點是方便,缺點是精確度不高,熟練后尚可以。在描點作圖時要注意到,被這五個點分隔的區(qū)間上函數(shù)變化情況,在附近函數(shù)增加或下降快一些,曲線“陡”一些,在附近,函數(shù)變化慢一些,曲線變得“平緩”,這種作圖法叫做五點法。 作三角函數(shù)圖象的方法一般有兩種:(1)描點法;(2)幾何法(利用三角函數(shù)線)但描點法的各點的縱坐標(biāo)都是查三角函數(shù)表得到的數(shù)值,不易描出對應(yīng)點的精確位置,因此作出的圖象不夠準(zhǔn)確幾何法則比較準(zhǔn)確三、質(zhì)疑答辯,排難解惑,發(fā)展思維 例1 (教材例1)用“五點法”畫下列函數(shù)的圖象:(1) (2)【舉一反三】1.作出下列函數(shù)的簡圖:(1) (2)例2(教材例2)求下列函數(shù)的最大值及取得最大值時自變量的集合(1) (2)【舉一反三】1.求下列函數(shù)取得最大值的自變量的集合,并說出最大值是什么?(1) (2)2.利用正弦函數(shù)和余弦函數(shù)和圖象,求滿足下列條件的集合(1) (2)四、鞏固深化,反饋矯正1.用五點作圖:(1); (2);(3); (4)2.求函數(shù)值域并求出此時自變量的集合(1);(2);(3)五、歸納整理,整體認(rèn)識1.正弦、余弦函數(shù)的圖象的幾何作法;2.“五點法”作圖;3.運用函數(shù)圖象求解函數(shù)定義域4.本節(jié)課所涉及到的主要數(shù)學(xué)思想方法有那些? 六、承上啟下,留下懸念 1預(yù)習(xí)三角函數(shù)的性質(zhì)七、板書設(shè)計(略)八、課后記: gkxx- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 三角函數(shù)的圖象和性質(zhì) 2019 2020 年高 數(shù)學(xué) 三角函數(shù) 圖象 性質(zhì) 教案 蘇教版 必修
鏈接地址:http://m.appdesigncorp.com/p-2415102.html